/*------------------------------------------------------------------------- * * parse_node.c * various routines that make nodes for query plans * * Portions Copyright (c) 1996-2000, PostgreSQL, Inc * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/parser/parse_node.c,v 1.43 2000/07/05 23:11:32 tgl Exp $ * *------------------------------------------------------------------------- */ #include #include #include #include "postgres.h" #include "access/heapam.h" #include "catalog/pg_operator.h" #include "catalog/pg_type.h" #include "fmgr.h" #include "nodes/makefuncs.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_node.h" #include "parser/parse_oper.h" #include "parser/parse_relation.h" #include "parser/parse_target.h" #include "parser/parse_type.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/syscache.h" static void disallow_setop(char *op, Type optype, Node *operand); static bool fitsInFloat(Value *value); /* make_parsestate() * Allocate and initialize a new ParseState. * The CALLER is responsible for freeing the ParseState* returned. */ ParseState * make_parsestate(ParseState *parentParseState) { ParseState *pstate; pstate = palloc(sizeof(ParseState)); MemSet(pstate, 0, sizeof(ParseState)); pstate->p_last_resno = 1; pstate->parentParseState = parentParseState; return pstate; } /* make_operand() * Ensure argument type match by forcing conversion of constants. */ Node * make_operand(char *opname, Node *tree, Oid orig_typeId, Oid target_typeId) { Node *result; Type target_type = typeidType(target_typeId); if (tree != NULL) { disallow_setop(opname, target_type, tree); /* must coerce? */ if (target_typeId != orig_typeId) result = coerce_type(NULL, tree, orig_typeId, target_typeId, -1); else result = tree; } else { /* otherwise, this is a NULL value */ Const *con = makeNode(Const); con->consttype = target_typeId; con->constlen = typeLen(target_type); con->constvalue = (Datum) NULL; con->constisnull = true; con->constbyval = typeByVal(target_type); con->constisset = false; result = (Node *) con; } return result; } /* make_operand() */ static void disallow_setop(char *op, Type optype, Node *operand) { if (operand == NULL) return; if (nodeTag(operand) == T_Iter) { elog(ERROR, "An operand to the '%s' operator returns a set of %s," "\n\tbut '%s' takes single values, not sets.", op, typeTypeName(optype), op); } } /* make_op() * Operator construction. * * Transform operator expression ensuring type compatibility. * This is where some type conversion happens. */ Expr * make_op(char *opname, Node *ltree, Node *rtree) { Oid ltypeId, rtypeId; Operator tup; Form_pg_operator opform; Oper *newop; Node *left, *right; Expr *result; ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree); rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree); /* right operator? */ if (rtree == NULL) { tup = right_oper(opname, ltypeId); opform = (Form_pg_operator) GETSTRUCT(tup); left = make_operand(opname, ltree, ltypeId, opform->oprleft); right = NULL; } /* left operator? */ else if (ltree == NULL) { tup = left_oper(opname, rtypeId); opform = (Form_pg_operator) GETSTRUCT(tup); right = make_operand(opname, rtree, rtypeId, opform->oprright); left = NULL; } /* otherwise, binary operator */ else { tup = oper(opname, ltypeId, rtypeId, FALSE); opform = (Form_pg_operator) GETSTRUCT(tup); left = make_operand(opname, ltree, ltypeId, opform->oprleft); right = make_operand(opname, rtree, rtypeId, opform->oprright); } newop = makeOper(oprid(tup),/* opno */ InvalidOid,/* opid */ opform->oprresult, /* operator result type */ 0, NULL); result = makeNode(Expr); result->typeOid = opform->oprresult; result->opType = OP_EXPR; result->oper = (Node *) newop; if (!left) result->args = lcons(right, NIL); else if (!right) result->args = lcons(left, NIL); else result->args = lcons(left, lcons(right, NIL)); return result; } /* make_op() */ /* * make_var * Build a Var node for an attribute identified by name */ Var * make_var(ParseState *pstate, Oid relid, char *refname, char *attrname) { HeapTuple tp; Form_pg_attribute att_tup; int vnum, attid; Oid vartypeid; int32 type_mod; int sublevels_up; vnum = refnameRangeTablePosn(pstate, refname, &sublevels_up); tp = SearchSysCacheTuple(ATTNAME, ObjectIdGetDatum(relid), PointerGetDatum(attrname), 0, 0); if (!HeapTupleIsValid(tp)) elog(ERROR, "Relation %s does not have attribute %s", refname, attrname); att_tup = (Form_pg_attribute) GETSTRUCT(tp); attid = att_tup->attnum; vartypeid = att_tup->atttypid; type_mod = att_tup->atttypmod; return makeVar(vnum, attid, vartypeid, type_mod, sublevels_up); } /* * transformArraySubscripts() * Transform array subscripting. This is used for both * array fetch and array assignment. * * In an array fetch, we are given a source array value and we produce an * expression that represents the result of extracting a single array element * or an array slice. * * In an array assignment, we are given a destination array value plus a * source value that is to be assigned to a single element or a slice of * that array. We produce an expression that represents the new array value * with the source data inserted into the right part of the array. * * pstate Parse state * arrayBase Already-transformed expression for the array as a whole * indirection Untransformed list of subscripts (must not be NIL) * forceSlice If true, treat subscript as array slice in all cases * assignFrom NULL for array fetch, else transformed expression for source. */ ArrayRef * transformArraySubscripts(ParseState *pstate, Node *arrayBase, List *indirection, bool forceSlice, Node *assignFrom) { Oid typearray, typeelement, typeresult; HeapTuple type_tuple; Form_pg_type type_struct_array, type_struct_element; bool isSlice = forceSlice; List *upperIndexpr = NIL; List *lowerIndexpr = NIL; List *idx; ArrayRef *aref; /* Get the type tuple for the array */ typearray = exprType(arrayBase); type_tuple = SearchSysCacheTuple(TYPEOID, ObjectIdGetDatum(typearray), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "transformArraySubscripts: Cache lookup failed for array type %u", typearray); type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple); typeelement = type_struct_array->typelem; if (typeelement == InvalidOid) elog(ERROR, "transformArraySubscripts: type %s is not an array", NameStr(type_struct_array->typname)); /* Get the type tuple for the array element type */ type_tuple = SearchSysCacheTuple(TYPEOID, ObjectIdGetDatum(typeelement), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "transformArraySubscripts: Cache lookup failed for array element type %u", typeelement); type_struct_element = (Form_pg_type) GETSTRUCT(type_tuple); /* * A list containing only single subscripts refers to a single array * element. If any of the items are double subscripts (lower:upper), * then the subscript expression means an array slice operation. In * this case, we supply a default lower bound of 1 for any items that * contain only a single subscript. The forceSlice parameter forces us * to treat the operation as a slice, even if no lower bounds are * mentioned. Otherwise, we have to prescan the indirection list to * see if there are any double subscripts. */ if (!isSlice) { foreach(idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); if (ai->lidx != NULL) { isSlice = true; break; } } } /* * The type represented by the subscript expression is the element * type if we are fetching a single element, but it is the same as the * array type if we are fetching a slice or storing. */ if (isSlice || assignFrom != NULL) typeresult = typearray; else typeresult = typeelement; /* * Transform the subscript expressions. */ foreach(idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); Node *subexpr; if (isSlice) { if (ai->lidx) { subexpr = transformExpr(pstate, ai->lidx, EXPR_COLUMN_FIRST); /* If it's not int4 already, try to coerce */ subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr), INT4OID, -1); if (subexpr == NULL) elog(ERROR, "array index expressions must be integers"); } else { /* Make a constant 1 */ subexpr = (Node *) makeConst(INT4OID, sizeof(int32), Int32GetDatum(1), false, true, /* pass by value */ false, false); } lowerIndexpr = lappend(lowerIndexpr, subexpr); } subexpr = transformExpr(pstate, ai->uidx, EXPR_COLUMN_FIRST); /* If it's not int4 already, try to coerce */ subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr), INT4OID, -1); if (subexpr == NULL) elog(ERROR, "array index expressions must be integers"); upperIndexpr = lappend(upperIndexpr, subexpr); } /* * If doing an array store, coerce the source value to the right type. */ if (assignFrom != NULL) { Oid typesource = exprType(assignFrom); Oid typeneeded = isSlice ? typearray : typeelement; if (typesource != InvalidOid) { if (typesource != typeneeded) { /* XXX fixme: need to get the array's atttypmod? */ assignFrom = CoerceTargetExpr(pstate, assignFrom, typesource, typeneeded, -1); if (assignFrom == NULL) elog(ERROR, "Array assignment requires type '%s'" " but expression is of type '%s'" "\n\tYou will need to rewrite or cast the expression", typeidTypeName(typeneeded), typeidTypeName(typesource)); } } } /* * Ready to build the ArrayRef node. */ aref = makeNode(ArrayRef); aref->refattrlength = type_struct_array->typlen; aref->refelemlength = type_struct_element->typlen; aref->refelemtype = typeresult; /* XXX should save element type * too */ aref->refelembyval = type_struct_element->typbyval; aref->refupperindexpr = upperIndexpr; aref->reflowerindexpr = lowerIndexpr; aref->refexpr = arrayBase; aref->refassgnexpr = assignFrom; return aref; } /* * make_const * * Convert a Value node (as returned by the grammar) to a Const node * of the "natural" type for the constant. Note that this routine is * only used when there is no explicit cast for the constant, so we * have to guess what type is wanted. * * For string literals we produce a constant of type UNKNOWN ---- whose * representation is the same as text, but it indicates to later type * resolution that we're not sure that it should be considered text. * Explicit "NULL" constants are also typed as UNKNOWN. * * For integers and floats we produce int4, float8, or numeric depending * on the value of the number. XXX In some cases it would be nice to take * context into account when determining the type to convert to, but in * other cases we can't delay the type choice. One possibility is to invent * a dummy type "UNKNOWNNUMERIC" that's treated similarly to UNKNOWN; * that would allow us to do the right thing in examples like a simple * INSERT INTO table (numericcolumn) VALUES (1.234), since we wouldn't * have to resolve the unknown type until we knew the destination column * type. On the other hand UNKNOWN has considerable problems of its own. * We would not like "SELECT 1.2 + 3.4" to claim it can't choose a type. */ Const * make_const(Value *value) { Datum val; Oid typeid; int typelen; bool typebyval; Const *con; switch (nodeTag(value)) { case T_Integer: val = Int32GetDatum(intVal(value)); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; break; case T_Float: if (fitsInFloat(value)) { val = Float8GetDatum(floatVal(value)); typeid = FLOAT8OID; typelen = sizeof(float8); typebyval = false; /* XXX might change someday */ } else { val = DirectFunctionCall3(numeric_in, CStringGetDatum(strVal(value)), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); typeid = NUMERICOID; typelen = -1; /* variable len */ typebyval = false; } break; case T_String: val = DirectFunctionCall1(textin, CStringGetDatum(strVal(value))); typeid = UNKNOWNOID;/* will be coerced later */ typelen = -1; /* variable len */ typebyval = false; break; default: elog(NOTICE, "make_const: unknown type %d", nodeTag(value)); /* FALLTHROUGH */ case T_Null: /* return a null const */ con = makeConst(UNKNOWNOID, -1, (Datum) NULL, true, false, false, false); return con; } con = makeConst(typeid, typelen, val, false, typebyval, false, /* not a set */ false); /* not coerced */ return con; } /* * Decide whether a T_Float value fits in float8, or must be treated as * type "numeric". We check the number of digits and check for overflow/ * underflow. (With standard compilation options, Postgres' NUMERIC type * can handle decimal exponents up to 1000, considerably more than most * implementations of float8, so this is a sensible test.) */ static bool fitsInFloat(Value *value) { const char *ptr; int ndigits; char *endptr; /* * Count digits, ignoring leading zeroes (but not trailing zeroes). * DBL_DIG is the maximum safe number of digits for "double". */ ptr = strVal(value); while (*ptr == '+' || *ptr == '-' || *ptr == '0' || *ptr == '.') ptr++; ndigits = 0; for (; *ptr; ptr++) { if (isdigit((int) *ptr)) ndigits++; else if (*ptr == 'e' || *ptr == 'E') break; /* don't count digits in exponent */ } if (ndigits > DBL_DIG) return false; /* * Use strtod() to check for overflow/underflow. */ errno = 0; (void) strtod(strVal(value), &endptr); if (*endptr != '\0' || errno != 0) return false; return true; }