/*------------------------------------------------------------------------- * * nodeAgg.c * Routines to handle aggregate nodes. * * ExecAgg evaluates each aggregate in the following steps: * * transvalue = initcond * foreach input_tuple do * transvalue = transfunc(transvalue, input_value(s)) * result = finalfunc(transvalue, direct_argument(s)) * * If a finalfunc is not supplied then the result is just the ending * value of transvalue. * * If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the * input tuples and eliminate duplicates (if required) before performing * the above-depicted process. (However, we don't do that for ordered-set * aggregates; their "ORDER BY" inputs are ordinary aggregate arguments * so far as this module is concerned.) * * If transfunc is marked "strict" in pg_proc and initcond is NULL, * then the first non-NULL input_value is assigned directly to transvalue, * and transfunc isn't applied until the second non-NULL input_value. * The agg's first input type and transtype must be the same in this case! * * If transfunc is marked "strict" then NULL input_values are skipped, * keeping the previous transvalue. If transfunc is not strict then it * is called for every input tuple and must deal with NULL initcond * or NULL input_values for itself. * * If finalfunc is marked "strict" then it is not called when the * ending transvalue is NULL, instead a NULL result is created * automatically (this is just the usual handling of strict functions, * of course). A non-strict finalfunc can make its own choice of * what to return for a NULL ending transvalue. * * Ordered-set aggregates are treated specially in one other way: we * evaluate any "direct" arguments and pass them to the finalfunc along * with the transition value. In addition, NULL placeholders are * provided to match the remaining finalfunc arguments, which correspond * to the aggregated expressions. (These arguments have no use at * runtime, but may be needed to allow resolution of a polymorphic * aggregate's result type.) * * We compute aggregate input expressions and run the transition functions * in a temporary econtext (aggstate->tmpcontext). This is reset at * least once per input tuple, so when the transvalue datatype is * pass-by-reference, we have to be careful to copy it into a longer-lived * memory context, and free the prior value to avoid memory leakage. * We store transvalues in the memory context aggstate->aggcontext, * which is also used for the hashtable structures in AGG_HASHED mode. * The node's regular econtext (aggstate->ss.ps.ps_ExprContext) * is used to run finalize functions and compute the output tuple; * this context can be reset once per output tuple. * * The executor's AggState node is passed as the fmgr "context" value in * all transfunc and finalfunc calls. It is not recommended that the * transition functions look at the AggState node directly, but they can * use AggCheckCallContext() to verify that they are being called by * nodeAgg.c (and not as ordinary SQL functions). The main reason a * transition function might want to know this is so that it can avoid * palloc'ing a fixed-size pass-by-ref transition value on every call: * it can instead just scribble on and return its left input. Ordinarily * it is completely forbidden for functions to modify pass-by-ref inputs, * but in the aggregate case we know the left input is either the initial * transition value or a previous function result, and in either case its * value need not be preserved. See int8inc() for an example. Notice that * advance_transition_function() is coded to avoid a data copy step when * the previous transition value pointer is returned. Also, some * transition functions want to store working state in addition to the * nominal transition value; they can use the memory context returned by * AggCheckCallContext() to do that. * * Note: AggCheckCallContext() is available as of PostgreSQL 9.0. The * AggState is available as context in earlier releases (back to 8.1), * but direct examination of the node is needed to use it before 9.0. * * As of 9.4, aggregate transition functions can also use AggGetAggref() * to get hold of the Aggref expression node for their aggregate call. * This is mainly intended for ordered-set aggregates, which are not * supported as window functions. (A regular aggregate function would * need some fallback logic to use this, since there's no Aggref node * for a window function.) * * * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/executor/nodeAgg.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/htup_details.h" #include "catalog/objectaccess.h" #include "catalog/pg_aggregate.h" #include "catalog/pg_proc.h" #include "executor/executor.h" #include "executor/nodeAgg.h" #include "miscadmin.h" #include "nodes/nodeFuncs.h" #include "optimizer/clauses.h" #include "optimizer/tlist.h" #include "parser/parse_agg.h" #include "parser/parse_coerce.h" #include "utils/acl.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/memutils.h" #include "utils/syscache.h" #include "utils/tuplesort.h" #include "utils/datum.h" /* * AggStatePerAggData - per-aggregate working state for the Agg scan */ typedef struct AggStatePerAggData { /* * These values are set up during ExecInitAgg() and do not change * thereafter: */ /* Links to Aggref expr and state nodes this working state is for */ AggrefExprState *aggrefstate; Aggref *aggref; /* * Nominal number of arguments for aggregate function. For plain aggs, * this excludes any ORDER BY expressions. For ordered-set aggs, this * counts both the direct and aggregated (ORDER BY) arguments. */ int numArguments; /* * Number of aggregated input columns. This includes ORDER BY expressions * in both the plain-agg and ordered-set cases. Ordered-set direct args * are not counted, though. */ int numInputs; /* * Number of aggregated input columns to pass to the transfn. This * includes the ORDER BY columns for ordered-set aggs, but not for plain * aggs. (This doesn't count the transition state value!) */ int numTransInputs; /* Oids of transfer functions */ Oid transfn_oid; Oid finalfn_oid; /* may be InvalidOid */ /* * fmgr lookup data for transfer functions --- only valid when * corresponding oid is not InvalidOid. Note in particular that fn_strict * flags are kept here. */ FmgrInfo transfn; FmgrInfo finalfn; /* Input collation derived for aggregate */ Oid aggCollation; /* number of sorting columns */ int numSortCols; /* number of sorting columns to consider in DISTINCT comparisons */ /* (this is either zero or the same as numSortCols) */ int numDistinctCols; /* deconstructed sorting information (arrays of length numSortCols) */ AttrNumber *sortColIdx; Oid *sortOperators; Oid *sortCollations; bool *sortNullsFirst; /* * fmgr lookup data for input columns' equality operators --- only * set/used when aggregate has DISTINCT flag. Note that these are in * order of sort column index, not parameter index. */ FmgrInfo *equalfns; /* array of length numDistinctCols */ /* * initial value from pg_aggregate entry */ Datum initValue; bool initValueIsNull; /* * We need the len and byval info for the agg's input, result, and * transition data types in order to know how to copy/delete values. * * Note that the info for the input type is used only when handling * DISTINCT aggs with just one argument, so there is only one input type. */ int16 inputtypeLen, resulttypeLen, transtypeLen; bool inputtypeByVal, resulttypeByVal, transtypeByVal; /* * Stuff for evaluation of inputs. We used to just use ExecEvalExpr, but * with the addition of ORDER BY we now need at least a slot for passing * data to the sort object, which requires a tupledesc, so we might as * well go whole hog and use ExecProject too. */ TupleDesc evaldesc; /* descriptor of input tuples */ ProjectionInfo *evalproj; /* projection machinery */ /* * Slots for holding the evaluated input arguments. These are set up * during ExecInitAgg() and then used for each input row. */ TupleTableSlot *evalslot; /* current input tuple */ TupleTableSlot *uniqslot; /* used for multi-column DISTINCT */ /* * These values are working state that is initialized at the start of an * input tuple group and updated for each input tuple. * * For a simple (non DISTINCT/ORDER BY) aggregate, we just feed the input * values straight to the transition function. If it's DISTINCT or * requires ORDER BY, we pass the input values into a Tuplesort object; * then at completion of the input tuple group, we scan the sorted values, * eliminate duplicates if needed, and run the transition function on the * rest. */ Tuplesortstate *sortstate; /* sort object, if DISTINCT or ORDER BY */ /* * This field is a pre-initialized FunctionCallInfo struct used for * calling this aggregate's transfn. We save a few cycles per row by not * re-initializing the unchanging fields; which isn't much, but it seems * worth the extra space consumption. */ FunctionCallInfoData transfn_fcinfo; } AggStatePerAggData; /* * AggStatePerGroupData - per-aggregate-per-group working state * * These values are working state that is initialized at the start of * an input tuple group and updated for each input tuple. * * In AGG_PLAIN and AGG_SORTED modes, we have a single array of these * structs (pointed to by aggstate->pergroup); we re-use the array for * each input group, if it's AGG_SORTED mode. In AGG_HASHED mode, the * hash table contains an array of these structs for each tuple group. * * Logically, the sortstate field belongs in this struct, but we do not * keep it here for space reasons: we don't support DISTINCT aggregates * in AGG_HASHED mode, so there's no reason to use up a pointer field * in every entry of the hashtable. */ typedef struct AggStatePerGroupData { Datum transValue; /* current transition value */ bool transValueIsNull; bool noTransValue; /* true if transValue not set yet */ /* * Note: noTransValue initially has the same value as transValueIsNull, * and if true both are cleared to false at the same time. They are not * the same though: if transfn later returns a NULL, we want to keep that * NULL and not auto-replace it with a later input value. Only the first * non-NULL input will be auto-substituted. */ } AggStatePerGroupData; /* * To implement hashed aggregation, we need a hashtable that stores a * representative tuple and an array of AggStatePerGroup structs for each * distinct set of GROUP BY column values. We compute the hash key from * the GROUP BY columns. */ typedef struct AggHashEntryData *AggHashEntry; typedef struct AggHashEntryData { TupleHashEntryData shared; /* common header for hash table entries */ /* per-aggregate transition status array - must be last! */ AggStatePerGroupData pergroup[1]; /* VARIABLE LENGTH ARRAY */ } AggHashEntryData; /* VARIABLE LENGTH STRUCT */ static void initialize_aggregates(AggState *aggstate, AggStatePerAgg peragg, AggStatePerGroup pergroup); static void advance_transition_function(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate); static void advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup); static void process_ordered_aggregate_single(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate); static void process_ordered_aggregate_multi(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate); static void finalize_aggregate(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate, Datum *resultVal, bool *resultIsNull); static Bitmapset *find_unaggregated_cols(AggState *aggstate); static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos); static void build_hash_table(AggState *aggstate); static AggHashEntry lookup_hash_entry(AggState *aggstate, TupleTableSlot *inputslot); static TupleTableSlot *agg_retrieve_direct(AggState *aggstate); static void agg_fill_hash_table(AggState *aggstate); static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate); static Datum GetAggInitVal(Datum textInitVal, Oid transtype); /* * Initialize all aggregates for a new group of input values. * * When called, CurrentMemoryContext should be the per-query context. */ static void initialize_aggregates(AggState *aggstate, AggStatePerAgg peragg, AggStatePerGroup pergroup) { int aggno; for (aggno = 0; aggno < aggstate->numaggs; aggno++) { AggStatePerAgg peraggstate = &peragg[aggno]; AggStatePerGroup pergroupstate = &pergroup[aggno]; /* * Start a fresh sort operation for each DISTINCT/ORDER BY aggregate. */ if (peraggstate->numSortCols > 0) { /* * In case of rescan, maybe there could be an uncompleted sort * operation? Clean it up if so. */ if (peraggstate->sortstate) tuplesort_end(peraggstate->sortstate); /* * We use a plain Datum sorter when there's a single input column; * otherwise sort the full tuple. (See comments for * process_ordered_aggregate_single.) */ peraggstate->sortstate = (peraggstate->numInputs == 1) ? tuplesort_begin_datum(peraggstate->evaldesc->attrs[0]->atttypid, peraggstate->sortOperators[0], peraggstate->sortCollations[0], peraggstate->sortNullsFirst[0], work_mem, false) : tuplesort_begin_heap(peraggstate->evaldesc, peraggstate->numSortCols, peraggstate->sortColIdx, peraggstate->sortOperators, peraggstate->sortCollations, peraggstate->sortNullsFirst, work_mem, false); } /* * (Re)set transValue to the initial value. * * Note that when the initial value is pass-by-ref, we must copy it * (into the aggcontext) since we will pfree the transValue later. */ if (peraggstate->initValueIsNull) pergroupstate->transValue = peraggstate->initValue; else { MemoryContext oldContext; oldContext = MemoryContextSwitchTo(aggstate->aggcontext); pergroupstate->transValue = datumCopy(peraggstate->initValue, peraggstate->transtypeByVal, peraggstate->transtypeLen); MemoryContextSwitchTo(oldContext); } pergroupstate->transValueIsNull = peraggstate->initValueIsNull; /* * If the initial value for the transition state doesn't exist in the * pg_aggregate table then we will let the first non-NULL value * returned from the outer procNode become the initial value. (This is * useful for aggregates like max() and min().) The noTransValue flag * signals that we still need to do this. */ pergroupstate->noTransValue = peraggstate->initValueIsNull; } } /* * Given new input value(s), advance the transition function of an aggregate. * * The new values (and null flags) have been preloaded into argument positions * 1 and up in peraggstate->transfn_fcinfo, so that we needn't copy them again * to pass to the transition function. We also expect that the static fields * of the fcinfo are already initialized; that was done by ExecInitAgg(). * * It doesn't matter which memory context this is called in. */ static void advance_transition_function(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate) { FunctionCallInfo fcinfo = &peraggstate->transfn_fcinfo; MemoryContext oldContext; Datum newVal; if (peraggstate->transfn.fn_strict) { /* * For a strict transfn, nothing happens when there's a NULL input; we * just keep the prior transValue. */ int numTransInputs = peraggstate->numTransInputs; int i; for (i = 1; i <= numTransInputs; i++) { if (fcinfo->argnull[i]) return; } if (pergroupstate->noTransValue) { /* * transValue has not been initialized. This is the first non-NULL * input value. We use it as the initial value for transValue. (We * already checked that the agg's input type is binary-compatible * with its transtype, so straight copy here is OK.) * * We must copy the datum into aggcontext if it is pass-by-ref. We * do not need to pfree the old transValue, since it's NULL. */ oldContext = MemoryContextSwitchTo(aggstate->aggcontext); pergroupstate->transValue = datumCopy(fcinfo->arg[1], peraggstate->transtypeByVal, peraggstate->transtypeLen); pergroupstate->transValueIsNull = false; pergroupstate->noTransValue = false; MemoryContextSwitchTo(oldContext); return; } if (pergroupstate->transValueIsNull) { /* * Don't call a strict function with NULL inputs. Note it is * possible to get here despite the above tests, if the transfn is * strict *and* returned a NULL on a prior cycle. If that happens * we will propagate the NULL all the way to the end. */ return; } } /* We run the transition functions in per-input-tuple memory context */ oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory); /* set up aggstate->curperagg for AggGetAggref() */ aggstate->curperagg = peraggstate; /* * OK to call the transition function */ fcinfo->arg[0] = pergroupstate->transValue; fcinfo->argnull[0] = pergroupstate->transValueIsNull; fcinfo->isnull = false; /* just in case transfn doesn't set it */ newVal = FunctionCallInvoke(fcinfo); aggstate->curperagg = NULL; /* * If pass-by-ref datatype, must copy the new value into aggcontext and * pfree the prior transValue. But if transfn returned a pointer to its * first input, we don't need to do anything. */ if (!peraggstate->transtypeByVal && DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue)) { if (!fcinfo->isnull) { MemoryContextSwitchTo(aggstate->aggcontext); newVal = datumCopy(newVal, peraggstate->transtypeByVal, peraggstate->transtypeLen); } if (!pergroupstate->transValueIsNull) pfree(DatumGetPointer(pergroupstate->transValue)); } pergroupstate->transValue = newVal; pergroupstate->transValueIsNull = fcinfo->isnull; MemoryContextSwitchTo(oldContext); } /* * Advance all the aggregates for one input tuple. The input tuple * has been stored in tmpcontext->ecxt_outertuple, so that it is accessible * to ExecEvalExpr. pergroup is the array of per-group structs to use * (this might be in a hashtable entry). * * When called, CurrentMemoryContext should be the per-query context. */ static void advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup) { int aggno; for (aggno = 0; aggno < aggstate->numaggs; aggno++) { AggStatePerAgg peraggstate = &aggstate->peragg[aggno]; AggStatePerGroup pergroupstate = &pergroup[aggno]; ExprState *filter = peraggstate->aggrefstate->aggfilter; int numTransInputs = peraggstate->numTransInputs; int i; TupleTableSlot *slot; /* Skip anything FILTERed out */ if (filter) { Datum res; bool isnull; res = ExecEvalExprSwitchContext(filter, aggstate->tmpcontext, &isnull, NULL); if (isnull || !DatumGetBool(res)) continue; } /* Evaluate the current input expressions for this aggregate */ slot = ExecProject(peraggstate->evalproj, NULL); if (peraggstate->numSortCols > 0) { /* DISTINCT and/or ORDER BY case */ Assert(slot->tts_nvalid == peraggstate->numInputs); /* * If the transfn is strict, we want to check for nullity before * storing the row in the sorter, to save space if there are a lot * of nulls. Note that we must only check numTransInputs columns, * not numInputs, since nullity in columns used only for sorting * is not relevant here. */ if (peraggstate->transfn.fn_strict) { for (i = 0; i < numTransInputs; i++) { if (slot->tts_isnull[i]) break; } if (i < numTransInputs) continue; } /* OK, put the tuple into the tuplesort object */ if (peraggstate->numInputs == 1) tuplesort_putdatum(peraggstate->sortstate, slot->tts_values[0], slot->tts_isnull[0]); else tuplesort_puttupleslot(peraggstate->sortstate, slot); } else { /* We can apply the transition function immediately */ FunctionCallInfo fcinfo = &peraggstate->transfn_fcinfo; /* Load values into fcinfo */ /* Start from 1, since the 0th arg will be the transition value */ Assert(slot->tts_nvalid >= numTransInputs); for (i = 0; i < numTransInputs; i++) { fcinfo->arg[i + 1] = slot->tts_values[i]; fcinfo->argnull[i + 1] = slot->tts_isnull[i]; } advance_transition_function(aggstate, peraggstate, pergroupstate); } } } /* * Run the transition function for a DISTINCT or ORDER BY aggregate * with only one input. This is called after we have completed * entering all the input values into the sort object. We complete the * sort, read out the values in sorted order, and run the transition * function on each value (applying DISTINCT if appropriate). * * Note that the strictness of the transition function was checked when * entering the values into the sort, so we don't check it again here; * we just apply standard SQL DISTINCT logic. * * The one-input case is handled separately from the multi-input case * for performance reasons: for single by-value inputs, such as the * common case of count(distinct id), the tuplesort_getdatum code path * is around 300% faster. (The speedup for by-reference types is less * but still noticeable.) * * When called, CurrentMemoryContext should be the per-query context. */ static void process_ordered_aggregate_single(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate) { Datum oldVal = (Datum) 0; bool oldIsNull = true; bool haveOldVal = false; MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory; MemoryContext oldContext; bool isDistinct = (peraggstate->numDistinctCols > 0); FunctionCallInfo fcinfo = &peraggstate->transfn_fcinfo; Datum *newVal; bool *isNull; Assert(peraggstate->numDistinctCols < 2); tuplesort_performsort(peraggstate->sortstate); /* Load the column into argument 1 (arg 0 will be transition value) */ newVal = fcinfo->arg + 1; isNull = fcinfo->argnull + 1; /* * Note: if input type is pass-by-ref, the datums returned by the sort are * freshly palloc'd in the per-query context, so we must be careful to * pfree them when they are no longer needed. */ while (tuplesort_getdatum(peraggstate->sortstate, true, newVal, isNull)) { /* * Clear and select the working context for evaluation of the equality * function and transition function. */ MemoryContextReset(workcontext); oldContext = MemoryContextSwitchTo(workcontext); /* * If DISTINCT mode, and not distinct from prior, skip it. * * Note: we assume equality functions don't care about collation. */ if (isDistinct && haveOldVal && ((oldIsNull && *isNull) || (!oldIsNull && !*isNull && DatumGetBool(FunctionCall2(&peraggstate->equalfns[0], oldVal, *newVal))))) { /* equal to prior, so forget this one */ if (!peraggstate->inputtypeByVal && !*isNull) pfree(DatumGetPointer(*newVal)); } else { advance_transition_function(aggstate, peraggstate, pergroupstate); /* forget the old value, if any */ if (!oldIsNull && !peraggstate->inputtypeByVal) pfree(DatumGetPointer(oldVal)); /* and remember the new one for subsequent equality checks */ oldVal = *newVal; oldIsNull = *isNull; haveOldVal = true; } MemoryContextSwitchTo(oldContext); } if (!oldIsNull && !peraggstate->inputtypeByVal) pfree(DatumGetPointer(oldVal)); tuplesort_end(peraggstate->sortstate); peraggstate->sortstate = NULL; } /* * Run the transition function for a DISTINCT or ORDER BY aggregate * with more than one input. This is called after we have completed * entering all the input values into the sort object. We complete the * sort, read out the values in sorted order, and run the transition * function on each value (applying DISTINCT if appropriate). * * When called, CurrentMemoryContext should be the per-query context. */ static void process_ordered_aggregate_multi(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate) { MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory; FunctionCallInfo fcinfo = &peraggstate->transfn_fcinfo; TupleTableSlot *slot1 = peraggstate->evalslot; TupleTableSlot *slot2 = peraggstate->uniqslot; int numTransInputs = peraggstate->numTransInputs; int numDistinctCols = peraggstate->numDistinctCols; bool haveOldValue = false; int i; tuplesort_performsort(peraggstate->sortstate); ExecClearTuple(slot1); if (slot2) ExecClearTuple(slot2); while (tuplesort_gettupleslot(peraggstate->sortstate, true, slot1)) { /* * Extract the first numTransInputs columns as datums to pass to the * transfn. (This will help execTuplesMatch too, so we do it * immediately.) */ slot_getsomeattrs(slot1, numTransInputs); if (numDistinctCols == 0 || !haveOldValue || !execTuplesMatch(slot1, slot2, numDistinctCols, peraggstate->sortColIdx, peraggstate->equalfns, workcontext)) { /* Load values into fcinfo */ /* Start from 1, since the 0th arg will be the transition value */ for (i = 0; i < numTransInputs; i++) { fcinfo->arg[i + 1] = slot1->tts_values[i]; fcinfo->argnull[i + 1] = slot1->tts_isnull[i]; } advance_transition_function(aggstate, peraggstate, pergroupstate); if (numDistinctCols > 0) { /* swap the slot pointers to retain the current tuple */ TupleTableSlot *tmpslot = slot2; slot2 = slot1; slot1 = tmpslot; haveOldValue = true; } } /* Reset context each time, unless execTuplesMatch did it for us */ if (numDistinctCols == 0) MemoryContextReset(workcontext); ExecClearTuple(slot1); } if (slot2) ExecClearTuple(slot2); tuplesort_end(peraggstate->sortstate); peraggstate->sortstate = NULL; } /* * Compute the final value of one aggregate. * * The finalfunction will be run, and the result delivered, in the * output-tuple context; caller's CurrentMemoryContext does not matter. */ static void finalize_aggregate(AggState *aggstate, AggStatePerAgg peraggstate, AggStatePerGroup pergroupstate, Datum *resultVal, bool *resultIsNull) { FunctionCallInfoData fcinfo; bool anynull = false; MemoryContext oldContext; int i; ListCell *lc; oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory); /* * Evaluate any direct arguments. We do this even if there's no finalfn * (which is unlikely anyway), so that side-effects happen as expected. */ i = 1; foreach(lc, peraggstate->aggrefstate->aggdirectargs) { ExprState *expr = (ExprState *) lfirst(lc); fcinfo.arg[i] = ExecEvalExpr(expr, aggstate->ss.ps.ps_ExprContext, &fcinfo.argnull[i], NULL); anynull |= fcinfo.argnull[i]; i++; } /* * Apply the agg's finalfn if one is provided, else return transValue. */ if (OidIsValid(peraggstate->finalfn_oid)) { int numFinalArgs; /* * Identify number of arguments being passed to the finalfn. For a * plain agg it's just one (the transition state value). For * ordered-set aggs we also pass the direct argument(s), plus nulls * corresponding to the aggregate-input columns. */ if (AGGKIND_IS_ORDERED_SET(peraggstate->aggref->aggkind)) numFinalArgs = peraggstate->numArguments + 1; else numFinalArgs = 1; Assert(i <= numFinalArgs); /* set up aggstate->curperagg for AggGetAggref() */ aggstate->curperagg = peraggstate; InitFunctionCallInfoData(fcinfo, &(peraggstate->finalfn), numFinalArgs, peraggstate->aggCollation, (void *) aggstate, NULL); /* Fill in the transition state value */ fcinfo.arg[0] = pergroupstate->transValue; fcinfo.argnull[0] = pergroupstate->transValueIsNull; anynull |= pergroupstate->transValueIsNull; /* Fill any remaining argument positions with nulls */ while (i < numFinalArgs) { fcinfo.arg[i] = (Datum) 0; fcinfo.argnull[i] = true; anynull = true; i++; } if (fcinfo.flinfo->fn_strict && anynull) { /* don't call a strict function with NULL inputs */ *resultVal = (Datum) 0; *resultIsNull = true; } else { *resultVal = FunctionCallInvoke(&fcinfo); *resultIsNull = fcinfo.isnull; } aggstate->curperagg = NULL; } else { *resultVal = pergroupstate->transValue; *resultIsNull = pergroupstate->transValueIsNull; } /* * If result is pass-by-ref, make sure it is in the right context. */ if (!peraggstate->resulttypeByVal && !*resultIsNull && !MemoryContextContains(CurrentMemoryContext, DatumGetPointer(*resultVal))) *resultVal = datumCopy(*resultVal, peraggstate->resulttypeByVal, peraggstate->resulttypeLen); MemoryContextSwitchTo(oldContext); } /* * find_unaggregated_cols * Construct a bitmapset of the column numbers of un-aggregated Vars * appearing in our targetlist and qual (HAVING clause) */ static Bitmapset * find_unaggregated_cols(AggState *aggstate) { Agg *node = (Agg *) aggstate->ss.ps.plan; Bitmapset *colnos; colnos = NULL; (void) find_unaggregated_cols_walker((Node *) node->plan.targetlist, &colnos); (void) find_unaggregated_cols_walker((Node *) node->plan.qual, &colnos); return colnos; } static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos) { if (node == NULL) return false; if (IsA(node, Var)) { Var *var = (Var *) node; /* setrefs.c should have set the varno to OUTER_VAR */ Assert(var->varno == OUTER_VAR); Assert(var->varlevelsup == 0); *colnos = bms_add_member(*colnos, var->varattno); return false; } if (IsA(node, Aggref)) /* do not descend into aggregate exprs */ return false; return expression_tree_walker(node, find_unaggregated_cols_walker, (void *) colnos); } /* * Initialize the hash table to empty. * * The hash table always lives in the aggcontext memory context. */ static void build_hash_table(AggState *aggstate) { Agg *node = (Agg *) aggstate->ss.ps.plan; MemoryContext tmpmem = aggstate->tmpcontext->ecxt_per_tuple_memory; Size entrysize; Assert(node->aggstrategy == AGG_HASHED); Assert(node->numGroups > 0); entrysize = sizeof(AggHashEntryData) + (aggstate->numaggs - 1) * sizeof(AggStatePerGroupData); aggstate->hashtable = BuildTupleHashTable(node->numCols, node->grpColIdx, aggstate->eqfunctions, aggstate->hashfunctions, node->numGroups, entrysize, aggstate->aggcontext, tmpmem); } /* * Create a list of the tuple columns that actually need to be stored in * hashtable entries. The incoming tuples from the child plan node will * contain grouping columns, other columns referenced in our targetlist and * qual, columns used to compute the aggregate functions, and perhaps just * junk columns we don't use at all. Only columns of the first two types * need to be stored in the hashtable, and getting rid of the others can * make the table entries significantly smaller. To avoid messing up Var * numbering, we keep the same tuple descriptor for hashtable entries as the * incoming tuples have, but set unwanted columns to NULL in the tuples that * go into the table. * * To eliminate duplicates, we build a bitmapset of the needed columns, then * convert it to an integer list (cheaper to scan at runtime). The list is * in decreasing order so that the first entry is the largest; * lookup_hash_entry depends on this to use slot_getsomeattrs correctly. * Note that the list is preserved over ExecReScanAgg, so we allocate it in * the per-query context (unlike the hash table itself). * * Note: at present, searching the tlist/qual is not really necessary since * the parser should disallow any unaggregated references to ungrouped * columns. However, the search will be needed when we add support for * SQL99 semantics that allow use of "functionally dependent" columns that * haven't been explicitly grouped by. */ static List * find_hash_columns(AggState *aggstate) { Agg *node = (Agg *) aggstate->ss.ps.plan; Bitmapset *colnos; List *collist; int i; /* Find Vars that will be needed in tlist and qual */ colnos = find_unaggregated_cols(aggstate); /* Add in all the grouping columns */ for (i = 0; i < node->numCols; i++) colnos = bms_add_member(colnos, node->grpColIdx[i]); /* Convert to list, using lcons so largest element ends up first */ collist = NIL; while ((i = bms_first_member(colnos)) >= 0) collist = lcons_int(i, collist); bms_free(colnos); return collist; } /* * Estimate per-hash-table-entry overhead for the planner. * * Note that the estimate does not include space for pass-by-reference * transition data values, nor for the representative tuple of each group. */ Size hash_agg_entry_size(int numAggs) { Size entrysize; /* This must match build_hash_table */ entrysize = sizeof(AggHashEntryData) + (numAggs - 1) * sizeof(AggStatePerGroupData); entrysize = MAXALIGN(entrysize); /* Account for hashtable overhead (assuming fill factor = 1) */ entrysize += 3 * sizeof(void *); return entrysize; } /* * Find or create a hashtable entry for the tuple group containing the * given tuple. * * When called, CurrentMemoryContext should be the per-query context. */ static AggHashEntry lookup_hash_entry(AggState *aggstate, TupleTableSlot *inputslot) { TupleTableSlot *hashslot = aggstate->hashslot; ListCell *l; AggHashEntry entry; bool isnew; /* if first time through, initialize hashslot by cloning input slot */ if (hashslot->tts_tupleDescriptor == NULL) { ExecSetSlotDescriptor(hashslot, inputslot->tts_tupleDescriptor); /* Make sure all unused columns are NULLs */ ExecStoreAllNullTuple(hashslot); } /* transfer just the needed columns into hashslot */ slot_getsomeattrs(inputslot, linitial_int(aggstate->hash_needed)); foreach(l, aggstate->hash_needed) { int varNumber = lfirst_int(l) - 1; hashslot->tts_values[varNumber] = inputslot->tts_values[varNumber]; hashslot->tts_isnull[varNumber] = inputslot->tts_isnull[varNumber]; } /* find or create the hashtable entry using the filtered tuple */ entry = (AggHashEntry) LookupTupleHashEntry(aggstate->hashtable, hashslot, &isnew); if (isnew) { /* initialize aggregates for new tuple group */ initialize_aggregates(aggstate, aggstate->peragg, entry->pergroup); } return entry; } /* * ExecAgg - * * ExecAgg receives tuples from its outer subplan and aggregates over * the appropriate attribute for each aggregate function use (Aggref * node) appearing in the targetlist or qual of the node. The number * of tuples to aggregate over depends on whether grouped or plain * aggregation is selected. In grouped aggregation, we produce a result * row for each group; in plain aggregation there's a single result row * for the whole query. In either case, the value of each aggregate is * stored in the expression context to be used when ExecProject evaluates * the result tuple. */ TupleTableSlot * ExecAgg(AggState *node) { /* * Check to see if we're still projecting out tuples from a previous agg * tuple (because there is a function-returning-set in the projection * expressions). If so, try to project another one. */ if (node->ss.ps.ps_TupFromTlist) { TupleTableSlot *result; ExprDoneCond isDone; result = ExecProject(node->ss.ps.ps_ProjInfo, &isDone); if (isDone == ExprMultipleResult) return result; /* Done with that source tuple... */ node->ss.ps.ps_TupFromTlist = false; } /* * Exit if nothing left to do. (We must do the ps_TupFromTlist check * first, because in some cases agg_done gets set before we emit the final * aggregate tuple, and we have to finish running SRFs for it.) */ if (node->agg_done) return NULL; /* Dispatch based on strategy */ if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED) { if (!node->table_filled) agg_fill_hash_table(node); return agg_retrieve_hash_table(node); } else return agg_retrieve_direct(node); } /* * ExecAgg for non-hashed case */ static TupleTableSlot * agg_retrieve_direct(AggState *aggstate) { Agg *node = (Agg *) aggstate->ss.ps.plan; PlanState *outerPlan; ExprContext *econtext; ExprContext *tmpcontext; Datum *aggvalues; bool *aggnulls; AggStatePerAgg peragg; AggStatePerGroup pergroup; TupleTableSlot *outerslot; TupleTableSlot *firstSlot; int aggno; /* * get state info from node */ outerPlan = outerPlanState(aggstate); /* econtext is the per-output-tuple expression context */ econtext = aggstate->ss.ps.ps_ExprContext; aggvalues = econtext->ecxt_aggvalues; aggnulls = econtext->ecxt_aggnulls; /* tmpcontext is the per-input-tuple expression context */ tmpcontext = aggstate->tmpcontext; peragg = aggstate->peragg; pergroup = aggstate->pergroup; firstSlot = aggstate->ss.ss_ScanTupleSlot; /* * We loop retrieving groups until we find one matching * aggstate->ss.ps.qual */ while (!aggstate->agg_done) { /* * If we don't already have the first tuple of the new group, fetch it * from the outer plan. */ if (aggstate->grp_firstTuple == NULL) { outerslot = ExecProcNode(outerPlan); if (!TupIsNull(outerslot)) { /* * Make a copy of the first input tuple; we will use this for * comparisons (in group mode) and for projection. */ aggstate->grp_firstTuple = ExecCopySlotTuple(outerslot); } else { /* outer plan produced no tuples at all */ aggstate->agg_done = true; /* If we are grouping, we should produce no tuples too */ if (node->aggstrategy != AGG_PLAIN) return NULL; } } /* * Clear the per-output-tuple context for each group, as well as * aggcontext (which contains any pass-by-ref transvalues of the old * group). We also clear any child contexts of the aggcontext; some * aggregate functions store working state in such contexts. * * We use ReScanExprContext not just ResetExprContext because we want * any registered shutdown callbacks to be called. That allows * aggregate functions to ensure they've cleaned up any non-memory * resources. */ ReScanExprContext(econtext); MemoryContextResetAndDeleteChildren(aggstate->aggcontext); /* * Initialize working state for a new input tuple group */ initialize_aggregates(aggstate, peragg, pergroup); if (aggstate->grp_firstTuple != NULL) { /* * Store the copied first input tuple in the tuple table slot * reserved for it. The tuple will be deleted when it is cleared * from the slot. */ ExecStoreTuple(aggstate->grp_firstTuple, firstSlot, InvalidBuffer, true); aggstate->grp_firstTuple = NULL; /* don't keep two pointers */ /* set up for first advance_aggregates call */ tmpcontext->ecxt_outertuple = firstSlot; /* * Process each outer-plan tuple, and then fetch the next one, * until we exhaust the outer plan or cross a group boundary. */ for (;;) { advance_aggregates(aggstate, pergroup); /* Reset per-input-tuple context after each tuple */ ResetExprContext(tmpcontext); outerslot = ExecProcNode(outerPlan); if (TupIsNull(outerslot)) { /* no more outer-plan tuples available */ aggstate->agg_done = true; break; } /* set up for next advance_aggregates call */ tmpcontext->ecxt_outertuple = outerslot; /* * If we are grouping, check whether we've crossed a group * boundary. */ if (node->aggstrategy == AGG_SORTED) { if (!execTuplesMatch(firstSlot, outerslot, node->numCols, node->grpColIdx, aggstate->eqfunctions, tmpcontext->ecxt_per_tuple_memory)) { /* * Save the first input tuple of the next group. */ aggstate->grp_firstTuple = ExecCopySlotTuple(outerslot); break; } } } } /* * Use the representative input tuple for any references to * non-aggregated input columns in aggregate direct args, the node * qual, and the tlist. (If we are not grouping, and there are no * input rows at all, we will come here with an empty firstSlot ... * but if not grouping, there can't be any references to * non-aggregated input columns, so no problem.) */ econtext->ecxt_outertuple = firstSlot; /* * Done scanning input tuple group. Finalize each aggregate * calculation, and stash results in the per-output-tuple context. */ for (aggno = 0; aggno < aggstate->numaggs; aggno++) { AggStatePerAgg peraggstate = &peragg[aggno]; AggStatePerGroup pergroupstate = &pergroup[aggno]; if (peraggstate->numSortCols > 0) { if (peraggstate->numInputs == 1) process_ordered_aggregate_single(aggstate, peraggstate, pergroupstate); else process_ordered_aggregate_multi(aggstate, peraggstate, pergroupstate); } finalize_aggregate(aggstate, peraggstate, pergroupstate, &aggvalues[aggno], &aggnulls[aggno]); } /* * Check the qual (HAVING clause); if the group does not match, ignore * it and loop back to try to process another group. */ if (ExecQual(aggstate->ss.ps.qual, econtext, false)) { /* * Form and return a projection tuple using the aggregate results * and the representative input tuple. */ TupleTableSlot *result; ExprDoneCond isDone; result = ExecProject(aggstate->ss.ps.ps_ProjInfo, &isDone); if (isDone != ExprEndResult) { aggstate->ss.ps.ps_TupFromTlist = (isDone == ExprMultipleResult); return result; } } else InstrCountFiltered1(aggstate, 1); } /* No more groups */ return NULL; } /* * ExecAgg for hashed case: phase 1, read input and build hash table */ static void agg_fill_hash_table(AggState *aggstate) { PlanState *outerPlan; ExprContext *tmpcontext; AggHashEntry entry; TupleTableSlot *outerslot; /* * get state info from node */ outerPlan = outerPlanState(aggstate); /* tmpcontext is the per-input-tuple expression context */ tmpcontext = aggstate->tmpcontext; /* * Process each outer-plan tuple, and then fetch the next one, until we * exhaust the outer plan. */ for (;;) { outerslot = ExecProcNode(outerPlan); if (TupIsNull(outerslot)) break; /* set up for advance_aggregates call */ tmpcontext->ecxt_outertuple = outerslot; /* Find or build hashtable entry for this tuple's group */ entry = lookup_hash_entry(aggstate, outerslot); /* Advance the aggregates */ advance_aggregates(aggstate, entry->pergroup); /* Reset per-input-tuple context after each tuple */ ResetExprContext(tmpcontext); } aggstate->table_filled = true; /* Initialize to walk the hash table */ ResetTupleHashIterator(aggstate->hashtable, &aggstate->hashiter); } /* * ExecAgg for hashed case: phase 2, retrieving groups from hash table */ static TupleTableSlot * agg_retrieve_hash_table(AggState *aggstate) { ExprContext *econtext; Datum *aggvalues; bool *aggnulls; AggStatePerAgg peragg; AggStatePerGroup pergroup; AggHashEntry entry; TupleTableSlot *firstSlot; int aggno; /* * get state info from node */ /* econtext is the per-output-tuple expression context */ econtext = aggstate->ss.ps.ps_ExprContext; aggvalues = econtext->ecxt_aggvalues; aggnulls = econtext->ecxt_aggnulls; peragg = aggstate->peragg; firstSlot = aggstate->ss.ss_ScanTupleSlot; /* * We loop retrieving groups until we find one satisfying * aggstate->ss.ps.qual */ while (!aggstate->agg_done) { /* * Find the next entry in the hash table */ entry = (AggHashEntry) ScanTupleHashTable(&aggstate->hashiter); if (entry == NULL) { /* No more entries in hashtable, so done */ aggstate->agg_done = TRUE; return NULL; } /* * Clear the per-output-tuple context for each group * * We intentionally don't use ReScanExprContext here; if any aggs have * registered shutdown callbacks, they mustn't be called yet, since we * might not be done with that agg. */ ResetExprContext(econtext); /* * Store the copied first input tuple in the tuple table slot reserved * for it, so that it can be used in ExecProject. */ ExecStoreMinimalTuple(entry->shared.firstTuple, firstSlot, false); pergroup = entry->pergroup; /* * Finalize each aggregate calculation, and stash results in the * per-output-tuple context. */ for (aggno = 0; aggno < aggstate->numaggs; aggno++) { AggStatePerAgg peraggstate = &peragg[aggno]; AggStatePerGroup pergroupstate = &pergroup[aggno]; Assert(peraggstate->numSortCols == 0); finalize_aggregate(aggstate, peraggstate, pergroupstate, &aggvalues[aggno], &aggnulls[aggno]); } /* * Use the representative input tuple for any references to * non-aggregated input columns in the qual and tlist. */ econtext->ecxt_outertuple = firstSlot; /* * Check the qual (HAVING clause); if the group does not match, ignore * it and loop back to try to process another group. */ if (ExecQual(aggstate->ss.ps.qual, econtext, false)) { /* * Form and return a projection tuple using the aggregate results * and the representative input tuple. */ TupleTableSlot *result; ExprDoneCond isDone; result = ExecProject(aggstate->ss.ps.ps_ProjInfo, &isDone); if (isDone != ExprEndResult) { aggstate->ss.ps.ps_TupFromTlist = (isDone == ExprMultipleResult); return result; } } else InstrCountFiltered1(aggstate, 1); } /* No more groups */ return NULL; } /* ----------------- * ExecInitAgg * * Creates the run-time information for the agg node produced by the * planner and initializes its outer subtree * ----------------- */ AggState * ExecInitAgg(Agg *node, EState *estate, int eflags) { AggState *aggstate; AggStatePerAgg peragg; Plan *outerPlan; ExprContext *econtext; int numaggs, aggno; ListCell *l; /* check for unsupported flags */ Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); /* * create state structure */ aggstate = makeNode(AggState); aggstate->ss.ps.plan = (Plan *) node; aggstate->ss.ps.state = estate; aggstate->aggs = NIL; aggstate->numaggs = 0; aggstate->eqfunctions = NULL; aggstate->hashfunctions = NULL; aggstate->peragg = NULL; aggstate->curperagg = NULL; aggstate->agg_done = false; aggstate->pergroup = NULL; aggstate->grp_firstTuple = NULL; aggstate->hashtable = NULL; /* * Create expression contexts. We need two, one for per-input-tuple * processing and one for per-output-tuple processing. We cheat a little * by using ExecAssignExprContext() to build both. */ ExecAssignExprContext(estate, &aggstate->ss.ps); aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext; ExecAssignExprContext(estate, &aggstate->ss.ps); /* * We also need a long-lived memory context for holding hashtable data * structures and transition values. NOTE: the details of what is stored * in aggcontext and what is stored in the regular per-query memory * context are driven by a simple decision: we want to reset the * aggcontext at group boundaries (if not hashing) and in ExecReScanAgg to * recover no-longer-wanted space. */ aggstate->aggcontext = AllocSetContextCreate(CurrentMemoryContext, "AggContext", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); /* * tuple table initialization */ ExecInitScanTupleSlot(estate, &aggstate->ss); ExecInitResultTupleSlot(estate, &aggstate->ss.ps); aggstate->hashslot = ExecInitExtraTupleSlot(estate); /* * initialize child expressions * * Note: ExecInitExpr finds Aggrefs for us, and also checks that no aggs * contain other agg calls in their arguments. This would make no sense * under SQL semantics anyway (and it's forbidden by the spec). Because * that is true, we don't need to worry about evaluating the aggs in any * particular order. */ aggstate->ss.ps.targetlist = (List *) ExecInitExpr((Expr *) node->plan.targetlist, (PlanState *) aggstate); aggstate->ss.ps.qual = (List *) ExecInitExpr((Expr *) node->plan.qual, (PlanState *) aggstate); /* * initialize child nodes * * If we are doing a hashed aggregation then the child plan does not need * to handle REWIND efficiently; see ExecReScanAgg. */ if (node->aggstrategy == AGG_HASHED) eflags &= ~EXEC_FLAG_REWIND; outerPlan = outerPlan(node); outerPlanState(aggstate) = ExecInitNode(outerPlan, estate, eflags); /* * initialize source tuple type. */ ExecAssignScanTypeFromOuterPlan(&aggstate->ss); /* * Initialize result tuple type and projection info. */ ExecAssignResultTypeFromTL(&aggstate->ss.ps); ExecAssignProjectionInfo(&aggstate->ss.ps, NULL); aggstate->ss.ps.ps_TupFromTlist = false; /* * get the count of aggregates in targetlist and quals */ numaggs = aggstate->numaggs; Assert(numaggs == list_length(aggstate->aggs)); if (numaggs <= 0) { /* * This is not an error condition: we might be using the Agg node just * to do hash-based grouping. Even in the regular case, * constant-expression simplification could optimize away all of the * Aggrefs in the targetlist and qual. So keep going, but force local * copy of numaggs positive so that palloc()s below don't choke. */ numaggs = 1; } /* * If we are grouping, precompute fmgr lookup data for inner loop. We need * both equality and hashing functions to do it by hashing, but only * equality if not hashing. */ if (node->numCols > 0) { if (node->aggstrategy == AGG_HASHED) execTuplesHashPrepare(node->numCols, node->grpOperators, &aggstate->eqfunctions, &aggstate->hashfunctions); else aggstate->eqfunctions = execTuplesMatchPrepare(node->numCols, node->grpOperators); } /* * Set up aggregate-result storage in the output expr context, and also * allocate my private per-agg working storage */ econtext = aggstate->ss.ps.ps_ExprContext; econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs); econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs); peragg = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs); aggstate->peragg = peragg; if (node->aggstrategy == AGG_HASHED) { build_hash_table(aggstate); aggstate->table_filled = false; /* Compute the columns we actually need to hash on */ aggstate->hash_needed = find_hash_columns(aggstate); } else { AggStatePerGroup pergroup; pergroup = (AggStatePerGroup) palloc0(sizeof(AggStatePerGroupData) * numaggs); aggstate->pergroup = pergroup; } /* * Perform lookups of aggregate function info, and initialize the * unchanging fields of the per-agg data. We also detect duplicate * aggregates (for example, "SELECT sum(x) ... HAVING sum(x) > 0"). When * duplicates are detected, we only make an AggStatePerAgg struct for the * first one. The clones are simply pointed at the same result entry by * giving them duplicate aggno values. */ aggno = -1; foreach(l, aggstate->aggs) { AggrefExprState *aggrefstate = (AggrefExprState *) lfirst(l); Aggref *aggref = (Aggref *) aggrefstate->xprstate.expr; AggStatePerAgg peraggstate; Oid inputTypes[FUNC_MAX_ARGS]; int numArguments; int numDirectArgs; int numInputs; int numSortCols; int numDistinctCols; List *sortlist; HeapTuple aggTuple; Form_pg_aggregate aggform; Oid aggtranstype; AclResult aclresult; Oid transfn_oid, finalfn_oid; Expr *transfnexpr, *finalfnexpr; Datum textInitVal; int i; ListCell *lc; /* Planner should have assigned aggregate to correct level */ Assert(aggref->agglevelsup == 0); /* Look for a previous duplicate aggregate */ for (i = 0; i <= aggno; i++) { if (equal(aggref, peragg[i].aggref) && !contain_volatile_functions((Node *) aggref)) break; } if (i <= aggno) { /* Found a match to an existing entry, so just mark it */ aggrefstate->aggno = i; continue; } /* Nope, so assign a new PerAgg record */ peraggstate = &peragg[++aggno]; /* Mark Aggref state node with assigned index in the result array */ aggrefstate->aggno = aggno; /* Begin filling in the peraggstate data */ peraggstate->aggrefstate = aggrefstate; peraggstate->aggref = aggref; peraggstate->sortstate = NULL; /* Fetch the pg_aggregate row */ aggTuple = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(aggref->aggfnoid)); if (!HeapTupleIsValid(aggTuple)) elog(ERROR, "cache lookup failed for aggregate %u", aggref->aggfnoid); aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple); /* Check permission to call aggregate function */ aclresult = pg_proc_aclcheck(aggref->aggfnoid, GetUserId(), ACL_EXECUTE); if (aclresult != ACLCHECK_OK) aclcheck_error(aclresult, ACL_KIND_PROC, get_func_name(aggref->aggfnoid)); InvokeFunctionExecuteHook(aggref->aggfnoid); peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn; peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn; /* Check that aggregate owner has permission to call component fns */ { HeapTuple procTuple; Oid aggOwner; procTuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(aggref->aggfnoid)); if (!HeapTupleIsValid(procTuple)) elog(ERROR, "cache lookup failed for function %u", aggref->aggfnoid); aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner; ReleaseSysCache(procTuple); aclresult = pg_proc_aclcheck(transfn_oid, aggOwner, ACL_EXECUTE); if (aclresult != ACLCHECK_OK) aclcheck_error(aclresult, ACL_KIND_PROC, get_func_name(transfn_oid)); InvokeFunctionExecuteHook(transfn_oid); if (OidIsValid(finalfn_oid)) { aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner, ACL_EXECUTE); if (aclresult != ACLCHECK_OK) aclcheck_error(aclresult, ACL_KIND_PROC, get_func_name(finalfn_oid)); InvokeFunctionExecuteHook(finalfn_oid); } } /* * Get actual datatypes of the (nominal) aggregate inputs. These * could be different from the agg's declared input types, when the * agg accepts ANY or a polymorphic type. */ numArguments = get_aggregate_argtypes(aggref, inputTypes); peraggstate->numArguments = numArguments; /* Count the "direct" arguments, if any */ numDirectArgs = list_length(aggref->aggdirectargs); /* Count the number of aggregated input columns */ numInputs = list_length(aggref->args); peraggstate->numInputs = numInputs; /* Detect how many columns to pass to the transfn */ if (AGGKIND_IS_ORDERED_SET(aggref->aggkind)) peraggstate->numTransInputs = numInputs; else peraggstate->numTransInputs = numArguments; /* resolve actual type of transition state, if polymorphic */ aggtranstype = resolve_aggregate_transtype(aggref->aggfnoid, aggform->aggtranstype, inputTypes, numArguments); /* build expression trees using actual argument & result types */ build_aggregate_fnexprs(inputTypes, numArguments, numDirectArgs, AGGKIND_IS_ORDERED_SET(aggref->aggkind), aggref->aggvariadic, aggtranstype, aggref->aggtype, aggref->inputcollid, transfn_oid, finalfn_oid, &transfnexpr, &finalfnexpr); /* set up infrastructure for calling the transfn and finalfn */ fmgr_info(transfn_oid, &peraggstate->transfn); fmgr_info_set_expr((Node *) transfnexpr, &peraggstate->transfn); if (OidIsValid(finalfn_oid)) { fmgr_info(finalfn_oid, &peraggstate->finalfn); fmgr_info_set_expr((Node *) finalfnexpr, &peraggstate->finalfn); } peraggstate->aggCollation = aggref->inputcollid; InitFunctionCallInfoData(peraggstate->transfn_fcinfo, &peraggstate->transfn, peraggstate->numTransInputs + 1, peraggstate->aggCollation, (void *) aggstate, NULL); /* get info about relevant datatypes */ get_typlenbyval(aggref->aggtype, &peraggstate->resulttypeLen, &peraggstate->resulttypeByVal); get_typlenbyval(aggtranstype, &peraggstate->transtypeLen, &peraggstate->transtypeByVal); /* * initval is potentially null, so don't try to access it as a struct * field. Must do it the hard way with SysCacheGetAttr. */ textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple, Anum_pg_aggregate_agginitval, &peraggstate->initValueIsNull); if (peraggstate->initValueIsNull) peraggstate->initValue = (Datum) 0; else peraggstate->initValue = GetAggInitVal(textInitVal, aggtranstype); /* * If the transfn is strict and the initval is NULL, make sure input * type and transtype are the same (or at least binary-compatible), so * that it's OK to use the first aggregated input value as the initial * transValue. This should have been checked at agg definition time, * but just in case... */ if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull) { if (numArguments <= numDirectArgs || !IsBinaryCoercible(inputTypes[numDirectArgs], aggtranstype)) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("aggregate %u needs to have compatible input type and transition type", aggref->aggfnoid))); } /* * Get a tupledesc corresponding to the aggregated inputs (including * sort expressions) of the agg. */ peraggstate->evaldesc = ExecTypeFromTL(aggref->args, false); /* Create slot we're going to do argument evaluation in */ peraggstate->evalslot = ExecInitExtraTupleSlot(estate); ExecSetSlotDescriptor(peraggstate->evalslot, peraggstate->evaldesc); /* Set up projection info for evaluation */ peraggstate->evalproj = ExecBuildProjectionInfo(aggrefstate->args, aggstate->tmpcontext, peraggstate->evalslot, NULL); /* * If we're doing either DISTINCT or ORDER BY for a plain agg, then we * have a list of SortGroupClause nodes; fish out the data in them and * stick them into arrays. We ignore ORDER BY for an ordered-set agg, * however; the agg's transfn and finalfn are responsible for that. * * Note that by construction, if there is a DISTINCT clause then the * ORDER BY clause is a prefix of it (see transformDistinctClause). */ if (AGGKIND_IS_ORDERED_SET(aggref->aggkind)) { sortlist = NIL; numSortCols = numDistinctCols = 0; } else if (aggref->aggdistinct) { sortlist = aggref->aggdistinct; numSortCols = numDistinctCols = list_length(sortlist); Assert(numSortCols >= list_length(aggref->aggorder)); } else { sortlist = aggref->aggorder; numSortCols = list_length(sortlist); numDistinctCols = 0; } peraggstate->numSortCols = numSortCols; peraggstate->numDistinctCols = numDistinctCols; if (numSortCols > 0) { /* * We don't implement DISTINCT or ORDER BY aggs in the HASHED case * (yet) */ Assert(node->aggstrategy != AGG_HASHED); /* If we have only one input, we need its len/byval info. */ if (numInputs == 1) { get_typlenbyval(inputTypes[numDirectArgs], &peraggstate->inputtypeLen, &peraggstate->inputtypeByVal); } else if (numDistinctCols > 0) { /* we will need an extra slot to store prior values */ peraggstate->uniqslot = ExecInitExtraTupleSlot(estate); ExecSetSlotDescriptor(peraggstate->uniqslot, peraggstate->evaldesc); } /* Extract the sort information for use later */ peraggstate->sortColIdx = (AttrNumber *) palloc(numSortCols * sizeof(AttrNumber)); peraggstate->sortOperators = (Oid *) palloc(numSortCols * sizeof(Oid)); peraggstate->sortCollations = (Oid *) palloc(numSortCols * sizeof(Oid)); peraggstate->sortNullsFirst = (bool *) palloc(numSortCols * sizeof(bool)); i = 0; foreach(lc, sortlist) { SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc); TargetEntry *tle = get_sortgroupclause_tle(sortcl, aggref->args); /* the parser should have made sure of this */ Assert(OidIsValid(sortcl->sortop)); peraggstate->sortColIdx[i] = tle->resno; peraggstate->sortOperators[i] = sortcl->sortop; peraggstate->sortCollations[i] = exprCollation((Node *) tle->expr); peraggstate->sortNullsFirst[i] = sortcl->nulls_first; i++; } Assert(i == numSortCols); } if (aggref->aggdistinct) { Assert(numArguments > 0); /* * We need the equal function for each DISTINCT comparison we will * make. */ peraggstate->equalfns = (FmgrInfo *) palloc(numDistinctCols * sizeof(FmgrInfo)); i = 0; foreach(lc, aggref->aggdistinct) { SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc); fmgr_info(get_opcode(sortcl->eqop), &peraggstate->equalfns[i]); i++; } Assert(i == numDistinctCols); } ReleaseSysCache(aggTuple); } /* Update numaggs to match number of unique aggregates found */ aggstate->numaggs = aggno + 1; return aggstate; } static Datum GetAggInitVal(Datum textInitVal, Oid transtype) { Oid typinput, typioparam; char *strInitVal; Datum initVal; getTypeInputInfo(transtype, &typinput, &typioparam); strInitVal = TextDatumGetCString(textInitVal); initVal = OidInputFunctionCall(typinput, strInitVal, typioparam, -1); pfree(strInitVal); return initVal; } void ExecEndAgg(AggState *node) { PlanState *outerPlan; int aggno; /* Make sure we have closed any open tuplesorts */ for (aggno = 0; aggno < node->numaggs; aggno++) { AggStatePerAgg peraggstate = &node->peragg[aggno]; if (peraggstate->sortstate) tuplesort_end(peraggstate->sortstate); } /* And ensure any agg shutdown callbacks have been called */ ReScanExprContext(node->ss.ps.ps_ExprContext); /* * Free both the expr contexts. */ ExecFreeExprContext(&node->ss.ps); node->ss.ps.ps_ExprContext = node->tmpcontext; ExecFreeExprContext(&node->ss.ps); /* clean up tuple table */ ExecClearTuple(node->ss.ss_ScanTupleSlot); MemoryContextDelete(node->aggcontext); outerPlan = outerPlanState(node); ExecEndNode(outerPlan); } void ExecReScanAgg(AggState *node) { ExprContext *econtext = node->ss.ps.ps_ExprContext; int aggno; node->agg_done = false; node->ss.ps.ps_TupFromTlist = false; if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED) { /* * In the hashed case, if we haven't yet built the hash table then we * can just return; nothing done yet, so nothing to undo. If subnode's * chgParam is not NULL then it will be re-scanned by ExecProcNode, * else no reason to re-scan it at all. */ if (!node->table_filled) return; /* * If we do have the hash table and the subplan does not have any * parameter changes, then we can just rescan the existing hash table; * no need to build it again. */ if (node->ss.ps.lefttree->chgParam == NULL) { ResetTupleHashIterator(node->hashtable, &node->hashiter); return; } } /* Make sure we have closed any open tuplesorts */ for (aggno = 0; aggno < node->numaggs; aggno++) { AggStatePerAgg peraggstate = &node->peragg[aggno]; if (peraggstate->sortstate) tuplesort_end(peraggstate->sortstate); peraggstate->sortstate = NULL; } /* We don't need to ReScanExprContext here; ExecReScan already did it */ /* Release first tuple of group, if we have made a copy */ if (node->grp_firstTuple != NULL) { heap_freetuple(node->grp_firstTuple); node->grp_firstTuple = NULL; } /* Forget current agg values */ MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numaggs); MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numaggs); /* * Release all temp storage. Note that with AGG_HASHED, the hash table is * allocated in a sub-context of the aggcontext. We're going to rebuild * the hash table from scratch, so we need to use * MemoryContextResetAndDeleteChildren() to avoid leaking the old hash * table's memory context header. */ MemoryContextResetAndDeleteChildren(node->aggcontext); if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED) { /* Rebuild an empty hash table */ build_hash_table(node); node->table_filled = false; } else { /* * Reset the per-group state (in particular, mark transvalues null) */ MemSet(node->pergroup, 0, sizeof(AggStatePerGroupData) * node->numaggs); } /* * if chgParam of subnode is not null then plan will be re-scanned by * first ExecProcNode. */ if (node->ss.ps.lefttree->chgParam == NULL) ExecReScan(node->ss.ps.lefttree); } /* * AggCheckCallContext - test if a SQL function is being called as an aggregate * * The transition and/or final functions of an aggregate may want to verify * that they are being called as aggregates, rather than as plain SQL * functions. They should use this function to do so. The return value * is nonzero if being called as an aggregate, or zero if not. (Specific * nonzero values are AGG_CONTEXT_AGGREGATE or AGG_CONTEXT_WINDOW, but more * values could conceivably appear in future.) * * If aggcontext isn't NULL, the function also stores at *aggcontext the * identity of the memory context that aggregate transition values are * being stored in. */ int AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext) { if (fcinfo->context && IsA(fcinfo->context, AggState)) { if (aggcontext) *aggcontext = ((AggState *) fcinfo->context)->aggcontext; return AGG_CONTEXT_AGGREGATE; } if (fcinfo->context && IsA(fcinfo->context, WindowAggState)) { if (aggcontext) *aggcontext = ((WindowAggState *) fcinfo->context)->aggcontext; return AGG_CONTEXT_WINDOW; } /* this is just to prevent "uninitialized variable" warnings */ if (aggcontext) *aggcontext = NULL; return 0; } /* * AggGetAggref - allow an aggregate support function to get its Aggref * * If the function is being called as an aggregate support function, * return the Aggref node for the aggregate call. Otherwise, return NULL. * * Note that if an aggregate is being used as a window function, this will * return NULL. We could provide a similar function to return the relevant * WindowFunc node in such cases, but it's not needed yet. */ Aggref * AggGetAggref(FunctionCallInfo fcinfo) { if (fcinfo->context && IsA(fcinfo->context, AggState)) { AggStatePerAgg curperagg = ((AggState *) fcinfo->context)->curperagg; if (curperagg) return curperagg->aggref; } return NULL; } /* * AggGetPerTupleEContext - fetch per-input-tuple ExprContext * * This is useful in agg final functions; the econtext returned is the * same per-tuple context that the transfn was called in (which can * safely get reset during the final function). * * As above, this is currently not useful for aggs called as window functions. */ ExprContext * AggGetPerTupleEContext(FunctionCallInfo fcinfo) { if (fcinfo->context && IsA(fcinfo->context, AggState)) { AggState *aggstate = (AggState *) fcinfo->context; return aggstate->tmpcontext; } return NULL; } /* * AggGetPerAggEContext - fetch per-output-tuple ExprContext * * This is useful for aggs to register shutdown callbacks, which will ensure * that non-memory resources are freed. * * As above, this is currently not useful for aggs called as window functions. */ ExprContext * AggGetPerAggEContext(FunctionCallInfo fcinfo) { if (fcinfo->context && IsA(fcinfo->context, AggState)) { AggState *aggstate = (AggState *) fcinfo->context; return aggstate->ss.ps.ps_ExprContext; } return NULL; } /* * aggregate_dummy - dummy execution routine for aggregate functions * * This function is listed as the implementation (prosrc field) of pg_proc * entries for aggregate functions. Its only purpose is to throw an error * if someone mistakenly executes such a function in the normal way. * * Perhaps someday we could assign real meaning to the prosrc field of * an aggregate? */ Datum aggregate_dummy(PG_FUNCTION_ARGS) { elog(ERROR, "aggregate function %u called as normal function", fcinfo->flinfo->fn_oid); return (Datum) 0; /* keep compiler quiet */ }