/* * PostgreSQL type definitions for the INET and CIDR types. * * $PostgreSQL: pgsql/src/backend/utils/adt/network.c,v 1.48 2003/11/29 19:51:59 pgsql Exp $ * * Jon Postel RIP 16 Oct 1998 */ #include "postgres.h" #include #include #include #include #include "catalog/pg_type.h" #include "libpq/pqformat.h" #include "utils/builtins.h" #include "utils/inet.h" static Datum text_network(text *src, int type); static int32 network_cmp_internal(inet *a1, inet *a2); static int bitncmp(void *l, void *r, int n); static bool addressOK(unsigned char *a, int bits, int family); static int ip_addrsize(inet *inetptr); /* * Access macros. */ #define ip_family(inetptr) \ (((inet_struct *)VARDATA(inetptr))->family) #define ip_bits(inetptr) \ (((inet_struct *)VARDATA(inetptr))->bits) #define ip_type(inetptr) \ (((inet_struct *)VARDATA(inetptr))->type) #define ip_addr(inetptr) \ (((inet_struct *)VARDATA(inetptr))->ip_addr) #define ip_maxbits(inetptr) \ (ip_family(inetptr) == PGSQL_AF_INET ? 32 : 128) /* * Return the number of bytes of storage needed for this data type. */ static int ip_addrsize(inet *inetptr) { switch (ip_family(inetptr)) { case PGSQL_AF_INET: return 4; case PGSQL_AF_INET6: return 16; default: return -1; } } /* Common input routine */ static inet * network_in(char *src, int type) { int bits; inet *dst; dst = (inet *) palloc0(VARHDRSZ + sizeof(inet_struct)); /* * First, check to see if this is an IPv6 or IPv4 address. IPv6 * addresses will have a : somewhere in them (several, in fact) so if * there is one present, assume it's V6, otherwise assume it's V4. */ if (strchr(src, ':') != NULL) ip_family(dst) = PGSQL_AF_INET6; else ip_family(dst) = PGSQL_AF_INET; bits = inet_net_pton(ip_family(dst), src, ip_addr(dst), type ? ip_addrsize(dst) : -1); if ((bits < 0) || (bits > ip_maxbits(dst))) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), /* translator: first %s is inet or cidr */ errmsg("invalid input syntax for type %s: \"%s\"", type ? "cidr" : "inet", src))); /* * Error check: CIDR values must not have any bits set beyond the * masklen. */ if (type) { if (!addressOK(ip_addr(dst), bits, ip_family(dst))) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("invalid cidr value: \"%s\"", src), errdetail("Value has bits set to right of mask."))); } VARATT_SIZEP(dst) = VARHDRSZ + ((char *) ip_addr(dst) - (char *) VARDATA(dst)) + ip_addrsize(dst); ip_bits(dst) = bits; ip_type(dst) = type; return dst; } /* INET address reader. */ Datum inet_in(PG_FUNCTION_ARGS) { char *src = PG_GETARG_CSTRING(0); PG_RETURN_INET_P(network_in(src, 0)); } /* CIDR address reader. */ Datum cidr_in(PG_FUNCTION_ARGS) { char *src = PG_GETARG_CSTRING(0); PG_RETURN_INET_P(network_in(src, 1)); } /* * INET address output function. */ Datum inet_out(PG_FUNCTION_ARGS) { inet *src = PG_GETARG_INET_P(0); char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")]; char *dst; int len; dst = inet_net_ntop(ip_family(src), ip_addr(src), ip_bits(src), tmp, sizeof(tmp)); if (dst == NULL) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("could not format inet value: %m"))); /* For CIDR, add /n if not present */ if (ip_type(src) && strchr(tmp, '/') == NULL) { len = strlen(tmp); snprintf(tmp + len, sizeof(tmp) - len, "/%u", ip_bits(src)); } PG_RETURN_CSTRING(pstrdup(tmp)); } /* share code with INET case */ Datum cidr_out(PG_FUNCTION_ARGS) { return inet_out(fcinfo); } /* * inet_recv - converts external binary format to inet * * The external representation is (one byte apiece for) * family, bits, type, address length, address in network byte order. */ Datum inet_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); inet *addr; char *addrptr; int bits; int nb, i; /* make sure any unused bits in a CIDR value are zeroed */ addr = (inet *) palloc0(VARHDRSZ + sizeof(inet_struct)); ip_family(addr) = pq_getmsgbyte(buf); if (ip_family(addr) != PGSQL_AF_INET && ip_family(addr) != PGSQL_AF_INET6) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid address family in external \"inet\" value"))); bits = pq_getmsgbyte(buf); if (bits < 0 || bits > ip_maxbits(addr)) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid bits in external \"inet\" value"))); ip_bits(addr) = bits; ip_type(addr) = pq_getmsgbyte(buf); if (ip_type(addr) != 0 && ip_type(addr) != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid type in external \"inet\" value"))); nb = pq_getmsgbyte(buf); if (nb != ip_addrsize(addr)) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid length in external \"inet\" value"))); VARATT_SIZEP(addr) = VARHDRSZ + ((char *) ip_addr(addr) - (char *) VARDATA(addr)) + ip_addrsize(addr); addrptr = (char *) ip_addr(addr); for (i = 0; i < nb; i++) addrptr[i] = pq_getmsgbyte(buf); /* * Error check: CIDR values must not have any bits set beyond the * masklen. */ if (ip_type(addr)) { if (!addressOK(ip_addr(addr), bits, ip_family(addr))) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid external \"cidr\" value"), errdetail("Value has bits set to right of mask."))); } PG_RETURN_INET_P(addr); } /* share code with INET case */ Datum cidr_recv(PG_FUNCTION_ARGS) { return inet_recv(fcinfo); } /* * inet_send - converts inet to binary format */ Datum inet_send(PG_FUNCTION_ARGS) { inet *addr = PG_GETARG_INET_P(0); StringInfoData buf; char *addrptr; int nb, i; pq_begintypsend(&buf); pq_sendbyte(&buf, ip_family(addr)); pq_sendbyte(&buf, ip_bits(addr)); pq_sendbyte(&buf, ip_type(addr)); nb = ip_addrsize(addr); if (nb < 0) nb = 0; pq_sendbyte(&buf, nb); addrptr = (char *) ip_addr(addr); for (i = 0; i < nb; i++) pq_sendbyte(&buf, addrptr[i]); PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } /* share code with INET case */ Datum cidr_send(PG_FUNCTION_ARGS) { return inet_send(fcinfo); } static Datum text_network(text *src, int type) { int len = VARSIZE(src) - VARHDRSZ; char *str = palloc(len + 1); memcpy(str, VARDATA(src), len); *(str + len) = '\0'; PG_RETURN_INET_P(network_in(str, type)); } Datum text_cidr(PG_FUNCTION_ARGS) { return text_network(PG_GETARG_TEXT_P(0), 1); } Datum text_inet(PG_FUNCTION_ARGS) { return text_network(PG_GETARG_TEXT_P(0), 0); } Datum inet_set_masklen(PG_FUNCTION_ARGS) { inet *src = PG_GETARG_INET_P(0); int bits = PG_GETARG_INT32(1); inet *dst; if (bits == -1) bits = ip_maxbits(src); if ((bits < 0) || (bits > ip_maxbits(src))) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid mask length: %d", bits))); /* clone the original data */ dst = (inet *) palloc(VARHDRSZ + sizeof(inet_struct)); memcpy(dst, src, VARHDRSZ + sizeof(inet_struct)); ip_bits(dst) = bits; PG_RETURN_INET_P(dst); } /* * Basic comparison function for sorting and inet/cidr comparisons. * * Comparison is first on the common bits of the network part, then on * the length of the network part, and then on the whole unmasked address. * The effect is that the network part is the major sort key, and for * equal network parts we sort on the host part. Note this is only sane * for CIDR if address bits to the right of the mask are guaranteed zero; * otherwise logically-equal CIDRs might compare different. */ static int32 network_cmp_internal(inet *a1, inet *a2) { if (ip_family(a1) == ip_family(a2)) { int order; order = bitncmp(ip_addr(a1), ip_addr(a2), Min(ip_bits(a1), ip_bits(a2))); if (order != 0) return order; order = ((int) ip_bits(a1)) - ((int) ip_bits(a2)); if (order != 0) return order; return bitncmp(ip_addr(a1), ip_addr(a2), ip_maxbits(a1)); } return ip_family(a1) - ip_family(a2); } Datum network_cmp(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_INT32(network_cmp_internal(a1, a2)); } /* * Boolean ordering tests. */ Datum network_lt(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_BOOL(network_cmp_internal(a1, a2) < 0); } Datum network_le(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_BOOL(network_cmp_internal(a1, a2) <= 0); } Datum network_eq(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_BOOL(network_cmp_internal(a1, a2) == 0); } Datum network_ge(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_BOOL(network_cmp_internal(a1, a2) >= 0); } Datum network_gt(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_BOOL(network_cmp_internal(a1, a2) > 0); } Datum network_ne(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); PG_RETURN_BOOL(network_cmp_internal(a1, a2) != 0); } /* * Boolean network-inclusion tests. */ Datum network_sub(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); if (ip_family(a1) == ip_family(a2)) { PG_RETURN_BOOL(ip_bits(a1) > ip_bits(a2) && bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a2)) == 0); } PG_RETURN_BOOL(false); } Datum network_subeq(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); if (ip_family(a1) == ip_family(a2)) { PG_RETURN_BOOL(ip_bits(a1) >= ip_bits(a2) && bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a2)) == 0); } PG_RETURN_BOOL(false); } Datum network_sup(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); if (ip_family(a1) == ip_family(a2)) { PG_RETURN_BOOL(ip_bits(a1) < ip_bits(a2) && bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a1)) == 0); } PG_RETURN_BOOL(false); } Datum network_supeq(PG_FUNCTION_ARGS) { inet *a1 = PG_GETARG_INET_P(0); inet *a2 = PG_GETARG_INET_P(1); if (ip_family(a1) == ip_family(a2)) { PG_RETURN_BOOL(ip_bits(a1) <= ip_bits(a2) && bitncmp(ip_addr(a1), ip_addr(a2), ip_bits(a1)) == 0); } PG_RETURN_BOOL(false); } /* * Extract data from a network datatype. */ Datum network_host(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); text *ret; int len; char *ptr; char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")]; /* force display of max bits, regardless of masklen... */ if (inet_net_ntop(ip_family(ip), ip_addr(ip), ip_maxbits(ip), tmp, sizeof(tmp)) == NULL) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("could not format inet value: %m"))); /* Suppress /n if present (shouldn't happen now) */ if ((ptr = strchr(tmp, '/')) != NULL) *ptr = '\0'; /* Return string as a text datum */ len = strlen(tmp); ret = (text *) palloc(len + VARHDRSZ); VARATT_SIZEP(ret) = len + VARHDRSZ; memcpy(VARDATA(ret), tmp, len); PG_RETURN_TEXT_P(ret); } Datum network_show(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); text *ret; int len; char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")]; if (inet_net_ntop(ip_family(ip), ip_addr(ip), ip_maxbits(ip), tmp, sizeof(tmp)) == NULL) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("could not format inet value: %m"))); /* Add /n if not present (which it won't be) */ if (strchr(tmp, '/') == NULL) { len = strlen(tmp); snprintf(tmp + len, sizeof(tmp) - len, "/%u", ip_bits(ip)); } /* Return string as a text datum */ len = strlen(tmp); ret = (text *) palloc(len + VARHDRSZ); VARATT_SIZEP(ret) = len + VARHDRSZ; memcpy(VARDATA(ret), tmp, len); PG_RETURN_TEXT_P(ret); } Datum network_abbrev(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); text *ret; char *dst; int len; char tmp[sizeof("xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:255.255.255.255/128")]; if (ip_type(ip)) dst = inet_cidr_ntop(ip_family(ip), ip_addr(ip), ip_bits(ip), tmp, sizeof(tmp)); else dst = inet_net_ntop(ip_family(ip), ip_addr(ip), ip_bits(ip), tmp, sizeof(tmp)); if (dst == NULL) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("could not format inet value: %m"))); /* Return string as a text datum */ len = strlen(tmp); ret = (text *) palloc(len + VARHDRSZ); VARATT_SIZEP(ret) = len + VARHDRSZ; memcpy(VARDATA(ret), tmp, len); PG_RETURN_TEXT_P(ret); } Datum network_masklen(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); PG_RETURN_INT32(ip_bits(ip)); } Datum network_family(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); switch (ip_family(ip)) { case PGSQL_AF_INET: PG_RETURN_INT32(4); break; case PGSQL_AF_INET6: PG_RETURN_INT32(6); break; default: PG_RETURN_INT32(0); break; } } Datum network_broadcast(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); inet *dst; int byte; int bits; int maxbytes; unsigned char mask; unsigned char *a, *b; /* make sure any unused bits are zeroed */ dst = (inet *) palloc0(VARHDRSZ + sizeof(inet_struct)); if (ip_family(ip) == PGSQL_AF_INET) maxbytes = 4; else maxbytes = 16; bits = ip_bits(ip); a = ip_addr(ip); b = ip_addr(dst); for (byte = 0; byte < maxbytes; byte++) { if (bits >= 8) { mask = 0x00; bits -= 8; } else if (bits == 0) mask = 0xff; else { mask = 0xff >> bits; bits = 0; } b[byte] = a[byte] | mask; } ip_family(dst) = ip_family(ip); ip_bits(dst) = ip_bits(ip); ip_type(dst) = 0; VARATT_SIZEP(dst) = VARHDRSZ + ((char *) ip_addr(dst) - (char *) VARDATA(dst)) + ip_addrsize(dst); PG_RETURN_INET_P(dst); } Datum network_network(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); inet *dst; int byte; int bits; int maxbytes; unsigned char mask; unsigned char *a, *b; /* make sure any unused bits are zeroed */ dst = (inet *) palloc0(VARHDRSZ + sizeof(inet_struct)); if (ip_family(ip) == PGSQL_AF_INET) maxbytes = 4; else maxbytes = 16; bits = ip_bits(ip); a = ip_addr(ip); b = ip_addr(dst); byte = 0; while (bits) { if (bits >= 8) { mask = 0xff; bits -= 8; } else { mask = 0xff << (8 - bits); bits = 0; } b[byte] = a[byte] & mask; byte++; } ip_family(dst) = ip_family(ip); ip_bits(dst) = ip_bits(ip); ip_type(dst) = 1; VARATT_SIZEP(dst) = VARHDRSZ + ((char *) ip_addr(dst) - (char *) VARDATA(dst)) + ip_addrsize(dst); PG_RETURN_INET_P(dst); } Datum network_netmask(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); inet *dst; int byte; int bits; int maxbytes; unsigned char mask; unsigned char *b; /* make sure any unused bits are zeroed */ dst = (inet *) palloc0(VARHDRSZ + sizeof(inet_struct)); if (ip_family(ip) == PGSQL_AF_INET) maxbytes = 4; else maxbytes = 16; bits = ip_bits(ip); b = ip_addr(dst); byte = 0; while (bits) { if (bits >= 8) { mask = 0xff; bits -= 8; } else { mask = 0xff << (8 - bits); bits = 0; } b[byte] = mask; byte++; } ip_family(dst) = ip_family(ip); ip_bits(dst) = ip_bits(ip); ip_type(dst) = 0; VARATT_SIZEP(dst) = VARHDRSZ + ((char *) ip_addr(dst) - (char *) VARDATA(dst)) + ip_addrsize(dst); PG_RETURN_INET_P(dst); } Datum network_hostmask(PG_FUNCTION_ARGS) { inet *ip = PG_GETARG_INET_P(0); inet *dst; int byte; int bits; int maxbytes; unsigned char mask; unsigned char *b; /* make sure any unused bits are zeroed */ dst = (inet *) palloc0(VARHDRSZ + sizeof(inet_struct)); if (ip_family(ip) == PGSQL_AF_INET) maxbytes = 4; else maxbytes = 16; bits = ip_maxbits(ip) - ip_bits(ip); b = ip_addr(dst); byte = maxbytes - 1; while (bits) { if (bits >= 8) { mask = 0xff; bits -= 8; } else { mask = 0xff >> (8 - bits); bits = 0; } b[byte] = mask; byte--; } ip_family(dst) = ip_family(ip); ip_bits(dst) = ip_bits(ip); ip_type(dst) = 0; VARATT_SIZEP(dst) = VARHDRSZ + ((char *) ip_addr(dst) - (char *) VARDATA(dst)) + ip_addrsize(dst); PG_RETURN_INET_P(dst); } /* * Convert a value of a network datatype to an approximate scalar value. * This is used for estimating selectivities of inequality operators * involving network types. * * Currently, inet/cidr values are simply converted to the IPv4 address; * this will need more thought when IPv6 is supported too. MAC addresses * are converted to their numeric equivalent as well (OK since we have a * double to play in). */ double convert_network_to_scalar(Datum value, Oid typid) { switch (typid) { case INETOID: case CIDROID: { inet *ip = DatumGetInetP(value); int len; double res; int i; /* * Note that we don't use the full address here. */ if (ip_family(ip) == PGSQL_AF_INET) len = 4; else len = 5; res = ip_family(ip); for (i = 0; i < len; i++) { res *= 256; res += ip_addr(ip)[i]; } return res; break; } case MACADDROID: { macaddr *mac = DatumGetMacaddrP(value); double res; res = (mac->a << 16) | (mac->b << 8) | (mac->c); res *= 256 * 256 * 256; res += (mac->d << 16) | (mac->e << 8) | (mac->f); return res; } } /* * Can't get here unless someone tries to use scalarltsel/scalargtsel * on an operator with one network and one non-network operand. */ elog(ERROR, "unsupported type: %u", typid); return 0; } /* * int * bitncmp(l, r, n) * compare bit masks l and r, for n bits. * return: * -1, 1, or 0 in the libc tradition. * note: * network byte order assumed. this means 192.5.5.240/28 has * 0x11110000 in its fourth octet. * author: * Paul Vixie (ISC), June 1996 */ static int bitncmp(void *l, void *r, int n) { u_int lb, rb; int x, b; b = n / 8; x = memcmp(l, r, b); if (x) return (x); lb = ((const u_char *) l)[b]; rb = ((const u_char *) r)[b]; for (b = n % 8; b > 0; b--) { if ((lb & 0x80) != (rb & 0x80)) { if (lb & 0x80) return (1); return (-1); } lb <<= 1; rb <<= 1; } return (0); } static bool addressOK(unsigned char *a, int bits, int family) { int byte; int nbits; int maxbits; int maxbytes; unsigned char mask; if (family == PGSQL_AF_INET) { maxbits = 32; maxbytes = 4; } else { maxbits = 128; maxbytes = 16; } Assert(bits <= maxbits); if (bits == maxbits) return true; byte = (bits + 7) / 8; nbits = bits % 8; mask = 0xff; if (bits != 0) mask >>= nbits; while (byte < maxbytes) { if ((a[byte] & mask) != 0) return false; mask = 0xff; byte++; } return true; } /* * These functions are used by planner to generate indexscan limits * for clauses a << b and a <<= b */ /* return the minimal value for an IP on a given network */ Datum network_scan_first(Datum in) { return DirectFunctionCall1(network_network, in); } /* * return "last" IP on a given network. It's the broadcast address, * however, masklen has to be set to its max btis, since * 192.168.0.255/24 is considered less than 192.168.0.255/32 * * inet_set_masklen() hacked to max out the masklength to 128 for IPv6 * and 32 for IPv4 when given '-1' as argument. */ Datum network_scan_last(Datum in) { return DirectFunctionCall2(inet_set_masklen, DirectFunctionCall1(network_broadcast, in), Int32GetDatum(-1)); }