/*------------------------------------------------------------------------- * * nodeNestloop.c * routines to support nest-loop joins * * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/executor/nodeNestloop.c * *------------------------------------------------------------------------- */ /* * INTERFACE ROUTINES * ExecNestLoop - process a nestloop join of two plans * ExecInitNestLoop - initialize the join * ExecEndNestLoop - shut down the join */ #include "postgres.h" #include "executor/execdebug.h" #include "executor/nodeNestloop.h" #include "miscadmin.h" #include "utils/memutils.h" /* ---------------------------------------------------------------- * ExecNestLoop(node) * * old comments * Returns the tuple joined from inner and outer tuples which * satisfies the qualification clause. * * It scans the inner relation to join with current outer tuple. * * If none is found, next tuple from the outer relation is retrieved * and the inner relation is scanned from the beginning again to join * with the outer tuple. * * NULL is returned if all the remaining outer tuples are tried and * all fail to join with the inner tuples. * * NULL is also returned if there is no tuple from inner relation. * * Conditions: * -- outerTuple contains current tuple from outer relation and * the right son(inner relation) maintains "cursor" at the tuple * returned previously. * This is achieved by maintaining a scan position on the outer * relation. * * Initial States: * -- the outer child and the inner child * are prepared to return the first tuple. * ---------------------------------------------------------------- */ static TupleTableSlot * ExecNestLoop(PlanState *pstate) { NestLoopState *node = castNode(NestLoopState, pstate); NestLoop *nl; PlanState *innerPlan; PlanState *outerPlan; TupleTableSlot *outerTupleSlot; TupleTableSlot *innerTupleSlot; ExprState *joinqual; ExprState *otherqual; ExprContext *econtext; ListCell *lc; CHECK_FOR_INTERRUPTS(); /* * get information from the node */ ENL1_printf("getting info from node"); nl = (NestLoop *) node->js.ps.plan; joinqual = node->js.joinqual; otherqual = node->js.ps.qual; outerPlan = outerPlanState(node); innerPlan = innerPlanState(node); econtext = node->js.ps.ps_ExprContext; /* * Reset per-tuple memory context to free any expression evaluation * storage allocated in the previous tuple cycle. */ ResetExprContext(econtext); /* * Ok, everything is setup for the join so now loop until we return a * qualifying join tuple. */ ENL1_printf("entering main loop"); for (;;) { /* * If we don't have an outer tuple, get the next one and reset the * inner scan. */ if (node->nl_NeedNewOuter) { ENL1_printf("getting new outer tuple"); outerTupleSlot = ExecProcNode(outerPlan); /* * if there are no more outer tuples, then the join is complete.. */ if (TupIsNull(outerTupleSlot)) { ENL1_printf("no outer tuple, ending join"); return NULL; } ENL1_printf("saving new outer tuple information"); econtext->ecxt_outertuple = outerTupleSlot; node->nl_NeedNewOuter = false; node->nl_MatchedOuter = false; /* * fetch the values of any outer Vars that must be passed to the * inner scan, and store them in the appropriate PARAM_EXEC slots. */ foreach(lc, nl->nestParams) { NestLoopParam *nlp = (NestLoopParam *) lfirst(lc); int paramno = nlp->paramno; ParamExecData *prm; prm = &(econtext->ecxt_param_exec_vals[paramno]); /* Param value should be an OUTER_VAR var */ Assert(IsA(nlp->paramval, Var)); Assert(nlp->paramval->varno == OUTER_VAR); Assert(nlp->paramval->varattno > 0); prm->value = slot_getattr(outerTupleSlot, nlp->paramval->varattno, &(prm->isnull)); /* Flag parameter value as changed */ innerPlan->chgParam = bms_add_member(innerPlan->chgParam, paramno); } /* * now rescan the inner plan */ ENL1_printf("rescanning inner plan"); ExecReScan(innerPlan); } /* * we have an outerTuple, try to get the next inner tuple. */ ENL1_printf("getting new inner tuple"); innerTupleSlot = ExecProcNode(innerPlan); econtext->ecxt_innertuple = innerTupleSlot; if (TupIsNull(innerTupleSlot)) { ENL1_printf("no inner tuple, need new outer tuple"); node->nl_NeedNewOuter = true; if (!node->nl_MatchedOuter && (node->js.jointype == JOIN_LEFT || node->js.jointype == JOIN_ANTI)) { /* * We are doing an outer join and there were no join matches * for this outer tuple. Generate a fake join tuple with * nulls for the inner tuple, and return it if it passes the * non-join quals. */ econtext->ecxt_innertuple = node->nl_NullInnerTupleSlot; ENL1_printf("testing qualification for outer-join tuple"); if (otherqual == NULL || ExecQual(otherqual, econtext)) { /* * qualification was satisfied so we project and return * the slot containing the result tuple using * ExecProject(). */ ENL1_printf("qualification succeeded, projecting tuple"); return ExecProject(node->js.ps.ps_ProjInfo); } else InstrCountFiltered2(node, 1); } /* * Otherwise just return to top of loop for a new outer tuple. */ continue; } /* * at this point we have a new pair of inner and outer tuples so we * test the inner and outer tuples to see if they satisfy the node's * qualification. * * Only the joinquals determine MatchedOuter status, but all quals * must pass to actually return the tuple. */ ENL1_printf("testing qualification"); if (ExecQual(joinqual, econtext)) { node->nl_MatchedOuter = true; /* In an antijoin, we never return a matched tuple */ if (node->js.jointype == JOIN_ANTI) { node->nl_NeedNewOuter = true; continue; /* return to top of loop */ } /* * If we only need to join to the first matching inner tuple, then * consider returning this one, but after that continue with next * outer tuple. */ if (node->js.single_match) node->nl_NeedNewOuter = true; if (otherqual == NULL || ExecQual(otherqual, econtext)) { /* * qualification was satisfied so we project and return the * slot containing the result tuple using ExecProject(). */ ENL1_printf("qualification succeeded, projecting tuple"); return ExecProject(node->js.ps.ps_ProjInfo); } else InstrCountFiltered2(node, 1); } else InstrCountFiltered1(node, 1); /* * Tuple fails qual, so free per-tuple memory and try again. */ ResetExprContext(econtext); ENL1_printf("qualification failed, looping"); } } /* ---------------------------------------------------------------- * ExecInitNestLoop * ---------------------------------------------------------------- */ NestLoopState * ExecInitNestLoop(NestLoop *node, EState *estate, int eflags) { NestLoopState *nlstate; /* check for unsupported flags */ Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); NL1_printf("ExecInitNestLoop: %s\n", "initializing node"); /* * create state structure */ nlstate = makeNode(NestLoopState); nlstate->js.ps.plan = (Plan *) node; nlstate->js.ps.state = estate; nlstate->js.ps.ExecProcNode = ExecNestLoop; /* * Miscellaneous initialization * * create expression context for node */ ExecAssignExprContext(estate, &nlstate->js.ps); /* * initialize child nodes * * If we have no parameters to pass into the inner rel from the outer, * tell the inner child that cheap rescans would be good. If we do have * such parameters, then there is no point in REWIND support at all in the * inner child, because it will always be rescanned with fresh parameter * values. */ outerPlanState(nlstate) = ExecInitNode(outerPlan(node), estate, eflags); if (node->nestParams == NIL) eflags |= EXEC_FLAG_REWIND; else eflags &= ~EXEC_FLAG_REWIND; innerPlanState(nlstate) = ExecInitNode(innerPlan(node), estate, eflags); /* * Initialize result slot, type and projection. */ ExecInitResultTupleSlotTL(&nlstate->js.ps, &TTSOpsVirtual); ExecAssignProjectionInfo(&nlstate->js.ps, NULL); /* * initialize child expressions */ nlstate->js.ps.qual = ExecInitQual(node->join.plan.qual, (PlanState *) nlstate); nlstate->js.jointype = node->join.jointype; nlstate->js.joinqual = ExecInitQual(node->join.joinqual, (PlanState *) nlstate); /* * detect whether we need only consider the first matching inner tuple */ nlstate->js.single_match = (node->join.inner_unique || node->join.jointype == JOIN_SEMI); /* set up null tuples for outer joins, if needed */ switch (node->join.jointype) { case JOIN_INNER: case JOIN_SEMI: break; case JOIN_LEFT: case JOIN_ANTI: nlstate->nl_NullInnerTupleSlot = ExecInitNullTupleSlot(estate, ExecGetResultType(innerPlanState(nlstate)), &TTSOpsVirtual); break; default: elog(ERROR, "unrecognized join type: %d", (int) node->join.jointype); } /* * finally, wipe the current outer tuple clean. */ nlstate->nl_NeedNewOuter = true; nlstate->nl_MatchedOuter = false; NL1_printf("ExecInitNestLoop: %s\n", "node initialized"); return nlstate; } /* ---------------------------------------------------------------- * ExecEndNestLoop * * closes down scans and frees allocated storage * ---------------------------------------------------------------- */ void ExecEndNestLoop(NestLoopState *node) { NL1_printf("ExecEndNestLoop: %s\n", "ending node processing"); /* * Free the exprcontext */ ExecFreeExprContext(&node->js.ps); /* * clean out the tuple table */ ExecClearTuple(node->js.ps.ps_ResultTupleSlot); /* * close down subplans */ ExecEndNode(outerPlanState(node)); ExecEndNode(innerPlanState(node)); NL1_printf("ExecEndNestLoop: %s\n", "node processing ended"); } /* ---------------------------------------------------------------- * ExecReScanNestLoop * ---------------------------------------------------------------- */ void ExecReScanNestLoop(NestLoopState *node) { PlanState *outerPlan = outerPlanState(node); /* * If outerPlan->chgParam is not null then plan will be automatically * re-scanned by first ExecProcNode. */ if (outerPlan->chgParam == NULL) ExecReScan(outerPlan); /* * innerPlan is re-scanned for each new outer tuple and MUST NOT be * re-scanned from here or you'll get troubles from inner index scans when * outer Vars are used as run-time keys... */ node->nl_NeedNewOuter = true; node->nl_MatchedOuter = false; }