/*------------------------------------------------------------------------- * * rangetypes_typanalyze.c * Functions for gathering statistics from range columns * * For a range type column, histograms of lower and upper bounds, and * the fraction of NULL and empty ranges are collected. * * Both histograms have the same length, and they are combined into a * single array of ranges. This has the same shape as the histogram that * std_typanalyze would collect, but the values are different. Each range * in the array is a valid range, even though the lower and upper bounds * come from different tuples. In theory, the standard scalar selectivity * functions could be used with the combined histogram. * * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/utils/adt/rangetypes_typanalyze.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "catalog/pg_operator.h" #include "commands/vacuum.h" #include "utils/float.h" #include "utils/fmgrprotos.h" #include "utils/lsyscache.h" #include "utils/rangetypes.h" static int float8_qsort_cmp(const void *a1, const void *a2); static int range_bound_qsort_cmp(const void *a1, const void *a2, void *arg); static void compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows); /* * range_typanalyze -- typanalyze function for range columns */ Datum range_typanalyze(PG_FUNCTION_ARGS) { VacAttrStats *stats = (VacAttrStats *) PG_GETARG_POINTER(0); TypeCacheEntry *typcache; Form_pg_attribute attr = stats->attr; /* Get information about range type; note column might be a domain */ typcache = range_get_typcache(fcinfo, getBaseType(stats->attrtypid)); if (attr->attstattarget < 0) attr->attstattarget = default_statistics_target; stats->compute_stats = compute_range_stats; stats->extra_data = typcache; /* same as in std_typanalyze */ stats->minrows = 300 * attr->attstattarget; PG_RETURN_BOOL(true); } /* * Comparison function for sorting float8s, used for range lengths. */ static int float8_qsort_cmp(const void *a1, const void *a2) { const float8 *f1 = (const float8 *) a1; const float8 *f2 = (const float8 *) a2; if (*f1 < *f2) return -1; else if (*f1 == *f2) return 0; else return 1; } /* * Comparison function for sorting RangeBounds. */ static int range_bound_qsort_cmp(const void *a1, const void *a2, void *arg) { RangeBound *b1 = (RangeBound *) a1; RangeBound *b2 = (RangeBound *) a2; TypeCacheEntry *typcache = (TypeCacheEntry *) arg; return range_cmp_bounds(typcache, b1, b2); } /* * compute_range_stats() -- compute statistics for a range column */ static void compute_range_stats(VacAttrStats *stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows) { TypeCacheEntry *typcache = (TypeCacheEntry *) stats->extra_data; bool has_subdiff = OidIsValid(typcache->rng_subdiff_finfo.fn_oid); int null_cnt = 0; int non_null_cnt = 0; int non_empty_cnt = 0; int empty_cnt = 0; int range_no; int slot_idx; int num_bins = stats->attr->attstattarget; int num_hist; float8 *lengths; RangeBound *lowers, *uppers; double total_width = 0; /* Allocate memory to hold range bounds and lengths of the sample ranges. */ lowers = (RangeBound *) palloc(sizeof(RangeBound) * samplerows); uppers = (RangeBound *) palloc(sizeof(RangeBound) * samplerows); lengths = (float8 *) palloc(sizeof(float8) * samplerows); /* Loop over the sample ranges. */ for (range_no = 0; range_no < samplerows; range_no++) { Datum value; bool isnull, empty; RangeType *range; RangeBound lower, upper; float8 length; vacuum_delay_point(); value = fetchfunc(stats, range_no, &isnull); if (isnull) { /* range is null, just count that */ null_cnt++; continue; } /* * XXX: should we ignore wide values, like std_typanalyze does, to * avoid bloating the statistics table? */ total_width += VARSIZE_ANY(DatumGetPointer(value)); /* Get range and deserialize it for further analysis. */ range = DatumGetRangeTypeP(value); range_deserialize(typcache, range, &lower, &upper, &empty); if (!empty) { /* Remember bounds and length for further usage in histograms */ lowers[non_empty_cnt] = lower; uppers[non_empty_cnt] = upper; if (lower.infinite || upper.infinite) { /* Length of any kind of an infinite range is infinite */ length = get_float8_infinity(); } else if (has_subdiff) { /* * For an ordinary range, use subdiff function between upper * and lower bound values. */ length = DatumGetFloat8(FunctionCall2Coll(&typcache->rng_subdiff_finfo, typcache->rng_collation, upper.val, lower.val)); } else { /* Use default value of 1.0 if no subdiff is available. */ length = 1.0; } lengths[non_empty_cnt] = length; non_empty_cnt++; } else empty_cnt++; non_null_cnt++; } slot_idx = 0; /* We can only compute real stats if we found some non-null values. */ if (non_null_cnt > 0) { Datum *bound_hist_values; Datum *length_hist_values; int pos, posfrac, delta, deltafrac, i; MemoryContext old_cxt; float4 *emptyfrac; stats->stats_valid = true; /* Do the simple null-frac and width stats */ stats->stanullfrac = (double) null_cnt / (double) samplerows; stats->stawidth = total_width / (double) non_null_cnt; /* Estimate that non-null values are unique */ stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac); /* Must copy the target values into anl_context */ old_cxt = MemoryContextSwitchTo(stats->anl_context); /* * Generate a bounds histogram slot entry if there are at least two * values. */ if (non_empty_cnt >= 2) { /* Sort bound values */ qsort_arg(lowers, non_empty_cnt, sizeof(RangeBound), range_bound_qsort_cmp, typcache); qsort_arg(uppers, non_empty_cnt, sizeof(RangeBound), range_bound_qsort_cmp, typcache); num_hist = non_empty_cnt; if (num_hist > num_bins) num_hist = num_bins + 1; bound_hist_values = (Datum *) palloc(num_hist * sizeof(Datum)); /* * The object of this loop is to construct ranges from first and * last entries in lowers[] and uppers[] along with evenly-spaced * values in between. So the i'th value is a range of lowers[(i * * (nvals - 1)) / (num_hist - 1)] and uppers[(i * (nvals - 1)) / * (num_hist - 1)]. But computing that subscript directly risks * integer overflow when the stats target is more than a couple * thousand. Instead we add (nvals - 1) / (num_hist - 1) to pos * at each step, tracking the integral and fractional parts of the * sum separately. */ delta = (non_empty_cnt - 1) / (num_hist - 1); deltafrac = (non_empty_cnt - 1) % (num_hist - 1); pos = posfrac = 0; for (i = 0; i < num_hist; i++) { bound_hist_values[i] = PointerGetDatum(range_serialize(typcache, &lowers[pos], &uppers[pos], false)); pos += delta; posfrac += deltafrac; if (posfrac >= (num_hist - 1)) { /* fractional part exceeds 1, carry to integer part */ pos++; posfrac -= (num_hist - 1); } } stats->stakind[slot_idx] = STATISTIC_KIND_BOUNDS_HISTOGRAM; stats->stavalues[slot_idx] = bound_hist_values; stats->numvalues[slot_idx] = num_hist; slot_idx++; } /* * Generate a length histogram slot entry if there are at least two * values. */ if (non_empty_cnt >= 2) { /* * Ascending sort of range lengths for further filling of * histogram */ qsort(lengths, non_empty_cnt, sizeof(float8), float8_qsort_cmp); num_hist = non_empty_cnt; if (num_hist > num_bins) num_hist = num_bins + 1; length_hist_values = (Datum *) palloc(num_hist * sizeof(Datum)); /* * The object of this loop is to copy the first and last lengths[] * entries along with evenly-spaced values in between. So the i'th * value is lengths[(i * (nvals - 1)) / (num_hist - 1)]. But * computing that subscript directly risks integer overflow when * the stats target is more than a couple thousand. Instead we * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking * the integral and fractional parts of the sum separately. */ delta = (non_empty_cnt - 1) / (num_hist - 1); deltafrac = (non_empty_cnt - 1) % (num_hist - 1); pos = posfrac = 0; for (i = 0; i < num_hist; i++) { length_hist_values[i] = Float8GetDatum(lengths[pos]); pos += delta; posfrac += deltafrac; if (posfrac >= (num_hist - 1)) { /* fractional part exceeds 1, carry to integer part */ pos++; posfrac -= (num_hist - 1); } } } else { /* * Even when we don't create the histogram, store an empty array * to mean "no histogram". We can't just leave stavalues NULL, * because get_attstatsslot() errors if you ask for stavalues, and * it's NULL. We'll still store the empty fraction in stanumbers. */ length_hist_values = palloc(0); num_hist = 0; } stats->staop[slot_idx] = Float8LessOperator; stats->stacoll[slot_idx] = InvalidOid; stats->stavalues[slot_idx] = length_hist_values; stats->numvalues[slot_idx] = num_hist; stats->statypid[slot_idx] = FLOAT8OID; stats->statyplen[slot_idx] = sizeof(float8); stats->statypbyval[slot_idx] = FLOAT8PASSBYVAL; stats->statypalign[slot_idx] = 'd'; /* Store the fraction of empty ranges */ emptyfrac = (float4 *) palloc(sizeof(float4)); *emptyfrac = ((double) empty_cnt) / ((double) non_null_cnt); stats->stanumbers[slot_idx] = emptyfrac; stats->numnumbers[slot_idx] = 1; stats->stakind[slot_idx] = STATISTIC_KIND_RANGE_LENGTH_HISTOGRAM; slot_idx++; MemoryContextSwitchTo(old_cxt); } else if (null_cnt > 0) { /* We found only nulls; assume the column is entirely null */ stats->stats_valid = true; stats->stanullfrac = 1.0; stats->stawidth = 0; /* "unknown" */ stats->stadistinct = 0.0; /* "unknown" */ } /* * We don't need to bother cleaning up any of our temporary palloc's. The * hashtable should also go away, as it used a child memory context. */ }