/*------------------------------------------------------------------------- * nbtsort.c * Build a btree from sorted input by loading leaf pages sequentially. * * NOTES * * We use tuplesort.c to sort the given index tuples into order. * Then we scan the index tuples in order and build the btree pages * for each level. We load source tuples into leaf-level pages. * Whenever we fill a page at one level, we add a link to it to its * parent level (starting a new parent level if necessary). When * done, we write out each final page on each level, adding it to * its parent level. When we have only one page on a level, it must be * the root -- it can be attached to the btree metapage and we are done. * * This code is moderately slow (~10% slower) compared to the regular * btree (insertion) build code on sorted or well-clustered data. On * random data, however, the insertion build code is unusable -- the * difference on a 60MB heap is a factor of 15 because the random * probes into the btree thrash the buffer pool. (NOTE: the above * "10%" estimate is probably obsolete, since it refers to an old and * not very good external sort implementation that used to exist in * this module. tuplesort.c is almost certainly faster.) * * It is not wise to pack the pages entirely full, since then *any* * insertion would cause a split (and not only of the leaf page; the need * for a split would cascade right up the tree). The steady-state load * factor for btrees is usually estimated at 70%. We choose to pack leaf * pages to 90% and upper pages to 70%. This gives us reasonable density * (there aren't many upper pages if the keys are reasonable-size) without * incurring a lot of cascading splits during early insertions. * * * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtsort.c,v 1.65 2002/07/02 05:48:44 momjian Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/nbtree.h" #include "utils/tuplesort.h" /* * Status record for spooling. */ struct BTSpool { Tuplesortstate *sortstate; /* state data for tuplesort.c */ Relation index; bool isunique; }; /* * Status record for a btree page being built. We have one of these * for each active tree level. * * The reason we need to store a copy of the minimum key is that we'll * need to propagate it to the parent node when this page is linked * into its parent. However, if the page is not a leaf page, the first * entry on the page doesn't need to contain a key, so we will not have * stored the key itself on the page. (You might think we could skip * copying the minimum key on leaf pages, but actually we must have a * writable copy anyway because we'll poke the page's address into it * before passing it up to the parent...) */ typedef struct BTPageState { Buffer btps_buf; /* current buffer & page */ Page btps_page; BTItem btps_minkey; /* copy of minimum key (first item) on * page */ OffsetNumber btps_lastoff; /* last item offset loaded */ int btps_level; /* tree level (0 = leaf) */ Size btps_full; /* "full" if less than this much free * space */ struct BTPageState *btps_next; /* link to parent level, if any */ } BTPageState; #define BTITEMSZ(btitem) \ ((btitem) ? \ (IndexTupleDSize((btitem)->bti_itup) + \ (sizeof(BTItemData) - sizeof(IndexTupleData))) : \ 0) static void _bt_blnewpage(Relation index, Buffer *buf, Page *page, int flags); static BTPageState *_bt_pagestate(Relation index, int flags, int level); static void _bt_slideleft(Relation index, Buffer buf, Page page); static void _bt_sortaddtup(Page page, Size itemsize, BTItem btitem, OffsetNumber itup_off); static void _bt_buildadd(Relation index, BTPageState *state, BTItem bti); static void _bt_uppershutdown(Relation index, BTPageState *state); static void _bt_load(Relation index, BTSpool *btspool, BTSpool *btspool2); /* * Interface routines */ /* * create and initialize a spool structure */ BTSpool * _bt_spoolinit(Relation index, bool isunique) { BTSpool *btspool = (BTSpool *) palloc(sizeof(BTSpool)); MemSet((char *) btspool, 0, sizeof(BTSpool)); btspool->index = index; btspool->isunique = isunique; btspool->sortstate = tuplesort_begin_index(index, isunique, false); /* * Currently, tuplesort provides sort functions on IndexTuples. If we * kept anything in a BTItem other than a regular IndexTuple, we'd * need to modify tuplesort to understand BTItems as such. */ Assert(sizeof(BTItemData) == sizeof(IndexTupleData)); return btspool; } /* * clean up a spool structure and its substructures. */ void _bt_spooldestroy(BTSpool *btspool) { tuplesort_end(btspool->sortstate); pfree((void *) btspool); } /* * spool a btitem into the sort file. */ void _bt_spool(BTItem btitem, BTSpool *btspool) { /* A BTItem is really just an IndexTuple */ tuplesort_puttuple(btspool->sortstate, (void *) btitem); } /* * given a spool loaded by successive calls to _bt_spool, * create an entire btree. */ void _bt_leafbuild(BTSpool *btspool, BTSpool *btspool2) { #ifdef BTREE_BUILD_STATS if (Show_btree_build_stats) { ShowUsage("BTREE BUILD (Spool) STATISTICS"); ResetUsage(); } #endif /* BTREE_BUILD_STATS */ tuplesort_performsort(btspool->sortstate); if (btspool2) tuplesort_performsort(btspool2->sortstate); _bt_load(btspool->index, btspool, btspool2); } /* * Internal routines. */ /* * allocate a new, clean btree page, not linked to any siblings. */ static void _bt_blnewpage(Relation index, Buffer *buf, Page *page, int flags) { BTPageOpaque opaque; *buf = _bt_getbuf(index, P_NEW, BT_WRITE); *page = BufferGetPage(*buf); _bt_pageinit(*page, BufferGetPageSize(*buf)); opaque = (BTPageOpaque) PageGetSpecialPointer(*page); opaque->btpo_prev = opaque->btpo_next = P_NONE; opaque->btpo_flags = flags; } /* * allocate and initialize a new BTPageState. the returned structure * is suitable for immediate use by _bt_buildadd. */ static BTPageState * _bt_pagestate(Relation index, int flags, int level) { BTPageState *state = (BTPageState *) palloc(sizeof(BTPageState)); MemSet((char *) state, 0, sizeof(BTPageState)); /* create initial page */ _bt_blnewpage(index, &(state->btps_buf), &(state->btps_page), flags); state->btps_minkey = (BTItem) NULL; /* initialize lastoff so first item goes into P_FIRSTKEY */ state->btps_lastoff = P_HIKEY; state->btps_level = level; /* set "full" threshold based on level. See notes at head of file. */ if (level > 0) state->btps_full = (PageGetPageSize(state->btps_page) * 3) / 10; else state->btps_full = PageGetPageSize(state->btps_page) / 10; /* no parent level, yet */ state->btps_next = (BTPageState *) NULL; return state; } /* * slide an array of ItemIds back one slot (from P_FIRSTKEY to * P_HIKEY, overwriting P_HIKEY). we need to do this when we discover * that we have built an ItemId array in what has turned out to be a * P_RIGHTMOST page. */ static void _bt_slideleft(Relation index, Buffer buf, Page page) { OffsetNumber off; OffsetNumber maxoff; ItemId previi; ItemId thisii; if (!PageIsEmpty(page)) { maxoff = PageGetMaxOffsetNumber(page); previi = PageGetItemId(page, P_HIKEY); for (off = P_FIRSTKEY; off <= maxoff; off = OffsetNumberNext(off)) { thisii = PageGetItemId(page, off); *previi = *thisii; previi = thisii; } ((PageHeader) page)->pd_lower -= sizeof(ItemIdData); } } /* * Add an item to a page being built. * * The main difference between this routine and a bare PageAddItem call * is that this code knows that the leftmost data item on a non-leaf * btree page doesn't need to have a key. Therefore, it strips such * items down to just the item header. * * This is almost like nbtinsert.c's _bt_pgaddtup(), but we can't use * that because it assumes that P_RIGHTMOST() will return the correct * answer for the page. Here, we don't know yet if the page will be * rightmost. Offset P_FIRSTKEY is always the first data key. */ static void _bt_sortaddtup(Page page, Size itemsize, BTItem btitem, OffsetNumber itup_off) { BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page); BTItemData truncitem; if (!P_ISLEAF(opaque) && itup_off == P_FIRSTKEY) { memcpy(&truncitem, btitem, sizeof(BTItemData)); truncitem.bti_itup.t_info = sizeof(BTItemData); btitem = &truncitem; itemsize = sizeof(BTItemData); } if (PageAddItem(page, (Item) btitem, itemsize, itup_off, LP_USED) == InvalidOffsetNumber) elog(FATAL, "btree: failed to add item to the page in _bt_sort"); } /*---------- * Add an item to a disk page from the sort output. * * We must be careful to observe the page layout conventions of nbtsearch.c: * - rightmost pages start data items at P_HIKEY instead of at P_FIRSTKEY. * - on non-leaf pages, the key portion of the first item need not be * stored, we should store only the link. * * A leaf page being built looks like: * * +----------------+---------------------------------+ * | PageHeaderData | linp0 linp1 linp2 ... | * +-----------+----+---------------------------------+ * | ... linpN | | * +-----------+--------------------------------------+ * | ^ last | * | | * +-------------+------------------------------------+ * | | itemN ... | * +-------------+------------------+-----------------+ * | ... item3 item2 item1 | "special space" | * +--------------------------------+-----------------+ * * Contrast this with the diagram in bufpage.h; note the mismatch * between linps and items. This is because we reserve linp0 as a * placeholder for the pointer to the "high key" item; when we have * filled up the page, we will set linp0 to point to itemN and clear * linpN. On the other hand, if we find this is the last (rightmost) * page, we leave the items alone and slide the linp array over. * * 'last' pointer indicates the last offset added to the page. *---------- */ static void _bt_buildadd(Relation index, BTPageState *state, BTItem bti) { Buffer nbuf; Page npage; OffsetNumber last_off; Size pgspc; Size btisz; nbuf = state->btps_buf; npage = state->btps_page; last_off = state->btps_lastoff; pgspc = PageGetFreeSpace(npage); btisz = BTITEMSZ(bti); btisz = MAXALIGN(btisz); /* * Check whether the item can fit on a btree page at all. (Eventually, * we ought to try to apply TOAST methods if not.) We actually need to * be able to fit three items on every page, so restrict any one item * to 1/3 the per-page available space. Note that at this point, btisz * doesn't include the ItemId. * * NOTE: similar code appears in _bt_insertonpg() to defend against * oversize items being inserted into an already-existing index. But * during creation of an index, we don't go through there. */ if (btisz > BTMaxItemSize(npage)) elog(ERROR, "btree: index item size %lu exceeds maximum %ld", (unsigned long) btisz, BTMaxItemSize(npage)); if (pgspc < btisz || pgspc < state->btps_full) { /* * Item won't fit on this page, or we feel the page is full enough * already. Finish off the page and write it out. */ Buffer obuf = nbuf; Page opage = npage; ItemId ii; ItemId hii; BTItem obti; /* Create new page */ _bt_blnewpage(index, &nbuf, &npage, (state->btps_level > 0) ? 0 : BTP_LEAF); /* * We copy the last item on the page into the new page, and then * rearrange the old page so that the 'last item' becomes its high * key rather than a true data item. There had better be at least * two items on the page already, else the page would be empty of * useful data. (Hence, we must allow pages to be packed at least * 2/3rds full; the 70% figure used above is close to minimum.) */ Assert(last_off > P_FIRSTKEY); ii = PageGetItemId(opage, last_off); obti = (BTItem) PageGetItem(opage, ii); _bt_sortaddtup(npage, ItemIdGetLength(ii), obti, P_FIRSTKEY); /* * Move 'last' into the high key position on opage */ hii = PageGetItemId(opage, P_HIKEY); *hii = *ii; ii->lp_flags &= ~LP_USED; ((PageHeader) opage)->pd_lower -= sizeof(ItemIdData); /* * Link the old buffer into its parent, using its minimum key. If * we don't have a parent, we have to create one; this adds a new * btree level. */ if (state->btps_next == (BTPageState *) NULL) { state->btps_next = _bt_pagestate(index, 0, state->btps_level + 1); } Assert(state->btps_minkey != NULL); ItemPointerSet(&(state->btps_minkey->bti_itup.t_tid), BufferGetBlockNumber(obuf), P_HIKEY); _bt_buildadd(index, state->btps_next, state->btps_minkey); pfree((void *) state->btps_minkey); /* * Save a copy of the minimum key for the new page. We have to * copy it off the old page, not the new one, in case we are not * at leaf level. */ state->btps_minkey = _bt_formitem(&(obti->bti_itup)); /* * Set the sibling links for both pages, and parent links too. * * It's not necessary to set the parent link at all, because it's * only used for handling concurrent root splits, but we may as * well do it as a debugging aid. Note we set new page's link as * well as old's, because if the new page turns out to be the last * of the level, _bt_uppershutdown won't change it. The links may * be out of date by the time the build finishes, but that's OK; * they need only point to a left-sibling of the true parent. See * the README file for more info. */ { BTPageOpaque oopaque = (BTPageOpaque) PageGetSpecialPointer(opage); BTPageOpaque nopaque = (BTPageOpaque) PageGetSpecialPointer(npage); oopaque->btpo_next = BufferGetBlockNumber(nbuf); nopaque->btpo_prev = BufferGetBlockNumber(obuf); nopaque->btpo_next = P_NONE; oopaque->btpo_parent = nopaque->btpo_parent = BufferGetBlockNumber(state->btps_next->btps_buf); } /* * Write out the old page. We never want to see it again, so we * can give up our lock (if we had one; most likely BuildingBtree * is set, so we aren't locking). */ _bt_wrtbuf(index, obuf); /* * Reset last_off to point to new page */ last_off = P_FIRSTKEY; } /* * If the new item is the first for its page, stash a copy for later. * Note this will only happen for the first item on a level; on later * pages, the first item for a page is copied from the prior page in * the code above. */ if (last_off == P_HIKEY) { Assert(state->btps_minkey == NULL); state->btps_minkey = _bt_formitem(&(bti->bti_itup)); } /* * Add the new item into the current page. */ last_off = OffsetNumberNext(last_off); _bt_sortaddtup(npage, btisz, bti, last_off); state->btps_buf = nbuf; state->btps_page = npage; state->btps_lastoff = last_off; } /* * Finish writing out the completed btree. */ static void _bt_uppershutdown(Relation index, BTPageState *state) { BTPageState *s; /* * Each iteration of this loop completes one more level of the tree. */ for (s = state; s != (BTPageState *) NULL; s = s->btps_next) { BlockNumber blkno; BTPageOpaque opaque; blkno = BufferGetBlockNumber(s->btps_buf); opaque = (BTPageOpaque) PageGetSpecialPointer(s->btps_page); /* * We have to link the last page on this level to somewhere. * * If we're at the top, it's the root, so attach it to the metapage. * Otherwise, add an entry for it to its parent using its minimum * key. This may cause the last page of the parent level to * split, but that's not a problem -- we haven't gotten to it yet. */ if (s->btps_next == (BTPageState *) NULL) { opaque->btpo_flags |= BTP_ROOT; _bt_metaproot(index, blkno, s->btps_level + 1); } else { Assert(s->btps_minkey != NULL); ItemPointerSet(&(s->btps_minkey->bti_itup.t_tid), blkno, P_HIKEY); _bt_buildadd(index, s->btps_next, s->btps_minkey); pfree((void *) s->btps_minkey); s->btps_minkey = NULL; } /* * This is the rightmost page, so the ItemId array needs to be * slid back one slot. Then we can dump out the page. */ _bt_slideleft(index, s->btps_buf, s->btps_page); _bt_wrtbuf(index, s->btps_buf); } } /* * Read tuples in correct sort order from tuplesort, and load them into * btree leaves. */ static void _bt_load(Relation index, BTSpool *btspool, BTSpool *btspool2) { BTPageState *state = NULL; bool merge = (btspool2 != NULL); BTItem bti, bti2 = NULL; bool should_free, should_free2, load1; TupleDesc tupdes = RelationGetDescr(index); int i, keysz = RelationGetNumberOfAttributes(index); ScanKey indexScanKey = NULL; if (merge) { /* * Another BTSpool for dead tuples exists. Now we have to merge * btspool and btspool2. */ ScanKey entry; Datum attrDatum1, attrDatum2; bool isFirstNull, isSecondNull; int32 compare; /* the preparation of merge */ bti = (BTItem) tuplesort_getindextuple(btspool->sortstate, true, &should_free); bti2 = (BTItem) tuplesort_getindextuple(btspool2->sortstate, true, &should_free2); indexScanKey = _bt_mkscankey_nodata(index); for (;;) { load1 = true; /* load BTSpool next ? */ if (NULL == bti2) { if (NULL == bti) break; } else if (NULL != bti) { for (i = 1; i <= keysz; i++) { entry = indexScanKey + i - 1; attrDatum1 = index_getattr((IndexTuple) bti, i, tupdes, &isFirstNull); attrDatum2 = index_getattr((IndexTuple) bti2, i, tupdes, &isSecondNull); if (isFirstNull) { if (!isSecondNull) { load1 = false; break; } } else if (isSecondNull) break; else { compare = DatumGetInt32(FunctionCall2(&entry->sk_func, attrDatum1, attrDatum2)); if (compare > 0) { load1 = false; break; } else if (compare < 0) break; } } } else load1 = false; /* When we see first tuple, create first index page */ if (state == NULL) state = _bt_pagestate(index, BTP_LEAF, 0); if (load1) { _bt_buildadd(index, state, bti); if (should_free) pfree((void *) bti); bti = (BTItem) tuplesort_getindextuple(btspool->sortstate, true, &should_free); } else { _bt_buildadd(index, state, bti2); if (should_free2) pfree((void *) bti2); bti2 = (BTItem) tuplesort_getindextuple(btspool2->sortstate, true, &should_free2); } } _bt_freeskey(indexScanKey); } else /* merge is unnecessary */ { while (bti = (BTItem) tuplesort_getindextuple(btspool->sortstate, true, &should_free), bti != (BTItem) NULL) { /* When we see first tuple, create first index page */ if (state == NULL) state = _bt_pagestate(index, BTP_LEAF, 0); _bt_buildadd(index, state, bti); if (should_free) pfree((void *) bti); } } /* Close down final pages, if we had any data at all */ if (state != NULL) _bt_uppershutdown(index, state); }