/*------------------------------------------------------------------------ * * regress.c * Code for various C-language functions defined as part of the * regression tests. * * This code is released under the terms of the PostgreSQL License. * * Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/test/regress/regress.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include "access/detoast.h" #include "access/htup_details.h" #include "access/transam.h" #include "access/xact.h" #include "catalog/namespace.h" #include "catalog/pg_operator.h" #include "catalog/pg_type.h" #include "commands/sequence.h" #include "commands/trigger.h" #include "executor/executor.h" #include "executor/spi.h" #include "funcapi.h" #include "mb/pg_wchar.h" #include "miscadmin.h" #include "nodes/supportnodes.h" #include "optimizer/optimizer.h" #include "optimizer/plancat.h" #include "parser/parse_coerce.h" #include "port/atomics.h" #include "storage/spin.h" #include "utils/array.h" #include "utils/builtins.h" #include "utils/geo_decls.h" #include "utils/memutils.h" #include "utils/rel.h" #include "utils/typcache.h" #define EXPECT_TRUE(expr) \ do { \ if (!(expr)) \ elog(ERROR, \ "%s was unexpectedly false in file \"%s\" line %u", \ #expr, __FILE__, __LINE__); \ } while (0) #define EXPECT_EQ_U32(result_expr, expected_expr) \ do { \ uint32 actual_result = (result_expr); \ uint32 expected_result = (expected_expr); \ if (actual_result != expected_result) \ elog(ERROR, \ "%s yielded %u, expected %s in file \"%s\" line %u", \ #result_expr, actual_result, #expected_expr, __FILE__, __LINE__); \ } while (0) #define EXPECT_EQ_U64(result_expr, expected_expr) \ do { \ uint64 actual_result = (result_expr); \ uint64 expected_result = (expected_expr); \ if (actual_result != expected_result) \ elog(ERROR, \ "%s yielded " UINT64_FORMAT ", expected %s in file \"%s\" line %u", \ #result_expr, actual_result, #expected_expr, __FILE__, __LINE__); \ } while (0) #define LDELIM '(' #define RDELIM ')' #define DELIM ',' static void regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2); PG_MODULE_MAGIC; /* return the point where two paths intersect, or NULL if no intersection. */ PG_FUNCTION_INFO_V1(interpt_pp); Datum interpt_pp(PG_FUNCTION_ARGS) { PATH *p1 = PG_GETARG_PATH_P(0); PATH *p2 = PG_GETARG_PATH_P(1); int i, j; LSEG seg1, seg2; bool found; /* We've found the intersection */ found = false; /* Haven't found it yet */ for (i = 0; i < p1->npts - 1 && !found; i++) { regress_lseg_construct(&seg1, &p1->p[i], &p1->p[i + 1]); for (j = 0; j < p2->npts - 1 && !found; j++) { regress_lseg_construct(&seg2, &p2->p[j], &p2->p[j + 1]); if (DatumGetBool(DirectFunctionCall2(lseg_intersect, LsegPGetDatum(&seg1), LsegPGetDatum(&seg2)))) found = true; } } if (!found) PG_RETURN_NULL(); /* * Note: DirectFunctionCall2 will kick out an error if lseg_interpt() * returns NULL, but that should be impossible since we know the two * segments intersect. */ PG_RETURN_DATUM(DirectFunctionCall2(lseg_interpt, LsegPGetDatum(&seg1), LsegPGetDatum(&seg2))); } /* like lseg_construct, but assume space already allocated */ static void regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2) { lseg->p[0].x = pt1->x; lseg->p[0].y = pt1->y; lseg->p[1].x = pt2->x; lseg->p[1].y = pt2->y; } PG_FUNCTION_INFO_V1(overpaid); Datum overpaid(PG_FUNCTION_ARGS) { HeapTupleHeader tuple = PG_GETARG_HEAPTUPLEHEADER(0); bool isnull; int32 salary; salary = DatumGetInt32(GetAttributeByName(tuple, "salary", &isnull)); if (isnull) PG_RETURN_NULL(); PG_RETURN_BOOL(salary > 699); } /* New type "widget" * This used to be "circle", but I added circle to builtins, * so needed to make sure the names do not collide. - tgl 97/04/21 */ typedef struct { Point center; double radius; } WIDGET; PG_FUNCTION_INFO_V1(widget_in); PG_FUNCTION_INFO_V1(widget_out); #define NARGS 3 Datum widget_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); char *p, *coord[NARGS]; int i; WIDGET *result; for (i = 0, p = str; *p && i < NARGS && *p != RDELIM; p++) { if (*p == DELIM || (*p == LDELIM && i == 0)) coord[i++] = p + 1; } /* * Note: DON'T convert this error to "soft" style (errsave/ereturn). We * want this data type to stay permanently in the hard-error world so that * it can be used for testing that such cases still work reasonably. */ if (i < NARGS) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("invalid input syntax for type %s: \"%s\"", "widget", str))); result = (WIDGET *) palloc(sizeof(WIDGET)); result->center.x = atof(coord[0]); result->center.y = atof(coord[1]); result->radius = atof(coord[2]); PG_RETURN_POINTER(result); } Datum widget_out(PG_FUNCTION_ARGS) { WIDGET *widget = (WIDGET *) PG_GETARG_POINTER(0); char *str = psprintf("(%g,%g,%g)", widget->center.x, widget->center.y, widget->radius); PG_RETURN_CSTRING(str); } PG_FUNCTION_INFO_V1(pt_in_widget); Datum pt_in_widget(PG_FUNCTION_ARGS) { Point *point = PG_GETARG_POINT_P(0); WIDGET *widget = (WIDGET *) PG_GETARG_POINTER(1); float8 distance; distance = DatumGetFloat8(DirectFunctionCall2(point_distance, PointPGetDatum(point), PointPGetDatum(&widget->center))); PG_RETURN_BOOL(distance < widget->radius); } PG_FUNCTION_INFO_V1(reverse_name); Datum reverse_name(PG_FUNCTION_ARGS) { char *string = PG_GETARG_CSTRING(0); int i; int len; char *new_string; new_string = palloc0(NAMEDATALEN); for (i = 0; i < NAMEDATALEN && string[i]; ++i) ; if (i == NAMEDATALEN || !string[i]) --i; len = i; for (; i >= 0; --i) new_string[len - i] = string[i]; PG_RETURN_CSTRING(new_string); } PG_FUNCTION_INFO_V1(trigger_return_old); Datum trigger_return_old(PG_FUNCTION_ARGS) { TriggerData *trigdata = (TriggerData *) fcinfo->context; HeapTuple tuple; if (!CALLED_AS_TRIGGER(fcinfo)) elog(ERROR, "trigger_return_old: not fired by trigger manager"); tuple = trigdata->tg_trigtuple; return PointerGetDatum(tuple); } #define TTDUMMY_INFINITY 999999 static SPIPlanPtr splan = NULL; static bool ttoff = false; PG_FUNCTION_INFO_V1(ttdummy); Datum ttdummy(PG_FUNCTION_ARGS) { TriggerData *trigdata = (TriggerData *) fcinfo->context; Trigger *trigger; /* to get trigger name */ char **args; /* arguments */ int attnum[2]; /* fnumbers of start/stop columns */ Datum oldon, oldoff; Datum newon, newoff; Datum *cvals; /* column values */ char *cnulls; /* column nulls */ char *relname; /* triggered relation name */ Relation rel; /* triggered relation */ HeapTuple trigtuple; HeapTuple newtuple = NULL; HeapTuple rettuple; TupleDesc tupdesc; /* tuple description */ int natts; /* # of attributes */ bool isnull; /* to know is some column NULL or not */ int ret; int i; if (!CALLED_AS_TRIGGER(fcinfo)) elog(ERROR, "ttdummy: not fired by trigger manager"); if (!TRIGGER_FIRED_FOR_ROW(trigdata->tg_event)) elog(ERROR, "ttdummy: must be fired for row"); if (!TRIGGER_FIRED_BEFORE(trigdata->tg_event)) elog(ERROR, "ttdummy: must be fired before event"); if (TRIGGER_FIRED_BY_INSERT(trigdata->tg_event)) elog(ERROR, "ttdummy: cannot process INSERT event"); if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event)) newtuple = trigdata->tg_newtuple; trigtuple = trigdata->tg_trigtuple; rel = trigdata->tg_relation; relname = SPI_getrelname(rel); /* check if TT is OFF for this relation */ if (ttoff) /* OFF - nothing to do */ { pfree(relname); return PointerGetDatum((newtuple != NULL) ? newtuple : trigtuple); } trigger = trigdata->tg_trigger; if (trigger->tgnargs != 2) elog(ERROR, "ttdummy (%s): invalid (!= 2) number of arguments %d", relname, trigger->tgnargs); args = trigger->tgargs; tupdesc = rel->rd_att; natts = tupdesc->natts; for (i = 0; i < 2; i++) { attnum[i] = SPI_fnumber(tupdesc, args[i]); if (attnum[i] <= 0) elog(ERROR, "ttdummy (%s): there is no attribute %s", relname, args[i]); if (SPI_gettypeid(tupdesc, attnum[i]) != INT4OID) elog(ERROR, "ttdummy (%s): attribute %s must be of integer type", relname, args[i]); } oldon = SPI_getbinval(trigtuple, tupdesc, attnum[0], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]); oldoff = SPI_getbinval(trigtuple, tupdesc, attnum[1], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]); if (newtuple != NULL) /* UPDATE */ { newon = SPI_getbinval(newtuple, tupdesc, attnum[0], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]); newoff = SPI_getbinval(newtuple, tupdesc, attnum[1], &isnull); if (isnull) elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]); if (oldon != newon || oldoff != newoff) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("ttdummy (%s): you cannot change %s and/or %s columns (use set_ttdummy)", relname, args[0], args[1]))); if (newoff != TTDUMMY_INFINITY) { pfree(relname); /* allocated in upper executor context */ return PointerGetDatum(NULL); } } else if (oldoff != TTDUMMY_INFINITY) /* DELETE */ { pfree(relname); return PointerGetDatum(NULL); } newoff = DirectFunctionCall1(nextval, CStringGetTextDatum("ttdummy_seq")); /* nextval now returns int64; coerce down to int32 */ newoff = Int32GetDatum((int32) DatumGetInt64(newoff)); /* Connect to SPI manager */ if ((ret = SPI_connect()) < 0) elog(ERROR, "ttdummy (%s): SPI_connect returned %d", relname, ret); /* Fetch tuple values and nulls */ cvals = (Datum *) palloc(natts * sizeof(Datum)); cnulls = (char *) palloc(natts * sizeof(char)); for (i = 0; i < natts; i++) { cvals[i] = SPI_getbinval((newtuple != NULL) ? newtuple : trigtuple, tupdesc, i + 1, &isnull); cnulls[i] = (isnull) ? 'n' : ' '; } /* change date column(s) */ if (newtuple) /* UPDATE */ { cvals[attnum[0] - 1] = newoff; /* start_date eq current date */ cnulls[attnum[0] - 1] = ' '; cvals[attnum[1] - 1] = TTDUMMY_INFINITY; /* stop_date eq INFINITY */ cnulls[attnum[1] - 1] = ' '; } else /* DELETE */ { cvals[attnum[1] - 1] = newoff; /* stop_date eq current date */ cnulls[attnum[1] - 1] = ' '; } /* if there is no plan ... */ if (splan == NULL) { SPIPlanPtr pplan; Oid *ctypes; char *query; /* allocate space in preparation */ ctypes = (Oid *) palloc(natts * sizeof(Oid)); query = (char *) palloc(100 + 16 * natts); /* * Construct query: INSERT INTO _relation_ VALUES ($1, ...) */ sprintf(query, "INSERT INTO %s VALUES (", relname); for (i = 1; i <= natts; i++) { sprintf(query + strlen(query), "$%d%s", i, (i < natts) ? ", " : ")"); ctypes[i - 1] = SPI_gettypeid(tupdesc, i); } /* Prepare plan for query */ pplan = SPI_prepare(query, natts, ctypes); if (pplan == NULL) elog(ERROR, "ttdummy (%s): SPI_prepare returned %s", relname, SPI_result_code_string(SPI_result)); if (SPI_keepplan(pplan)) elog(ERROR, "ttdummy (%s): SPI_keepplan failed", relname); splan = pplan; } ret = SPI_execp(splan, cvals, cnulls, 0); if (ret < 0) elog(ERROR, "ttdummy (%s): SPI_execp returned %d", relname, ret); /* Tuple to return to upper Executor ... */ if (newtuple) /* UPDATE */ rettuple = SPI_modifytuple(rel, trigtuple, 1, &(attnum[1]), &newoff, NULL); else /* DELETE */ rettuple = trigtuple; SPI_finish(); /* don't forget say Bye to SPI mgr */ pfree(relname); return PointerGetDatum(rettuple); } PG_FUNCTION_INFO_V1(set_ttdummy); Datum set_ttdummy(PG_FUNCTION_ARGS) { int32 on = PG_GETARG_INT32(0); if (ttoff) /* OFF currently */ { if (on == 0) PG_RETURN_INT32(0); /* turn ON */ ttoff = false; PG_RETURN_INT32(0); } /* ON currently */ if (on != 0) PG_RETURN_INT32(1); /* turn OFF */ ttoff = true; PG_RETURN_INT32(1); } /* * Type int44 has no real-world use, but the regression tests use it * (under the alias "city_budget"). It's a four-element vector of int4's. */ /* * int44in - converts "num, num, ..." to internal form * * Note: Fills any missing positions with zeroes. */ PG_FUNCTION_INFO_V1(int44in); Datum int44in(PG_FUNCTION_ARGS) { char *input_string = PG_GETARG_CSTRING(0); int32 *result = (int32 *) palloc(4 * sizeof(int32)); int i; i = sscanf(input_string, "%d, %d, %d, %d", &result[0], &result[1], &result[2], &result[3]); while (i < 4) result[i++] = 0; PG_RETURN_POINTER(result); } /* * int44out - converts internal form to "num, num, ..." */ PG_FUNCTION_INFO_V1(int44out); Datum int44out(PG_FUNCTION_ARGS) { int32 *an_array = (int32 *) PG_GETARG_POINTER(0); char *result = (char *) palloc(16 * 4); snprintf(result, 16 * 4, "%d,%d,%d,%d", an_array[0], an_array[1], an_array[2], an_array[3]); PG_RETURN_CSTRING(result); } PG_FUNCTION_INFO_V1(test_canonicalize_path); Datum test_canonicalize_path(PG_FUNCTION_ARGS) { char *path = text_to_cstring(PG_GETARG_TEXT_PP(0)); canonicalize_path(path); PG_RETURN_TEXT_P(cstring_to_text(path)); } PG_FUNCTION_INFO_V1(make_tuple_indirect); Datum make_tuple_indirect(PG_FUNCTION_ARGS) { HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0); HeapTupleData tuple; int ncolumns; Datum *values; bool *nulls; Oid tupType; int32 tupTypmod; TupleDesc tupdesc; HeapTuple newtup; int i; MemoryContext old_context; /* Extract type info from the tuple itself */ tupType = HeapTupleHeaderGetTypeId(rec); tupTypmod = HeapTupleHeaderGetTypMod(rec); tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod); ncolumns = tupdesc->natts; /* Build a temporary HeapTuple control structure */ tuple.t_len = HeapTupleHeaderGetDatumLength(rec); ItemPointerSetInvalid(&(tuple.t_self)); tuple.t_tableOid = InvalidOid; tuple.t_data = rec; values = (Datum *) palloc(ncolumns * sizeof(Datum)); nulls = (bool *) palloc(ncolumns * sizeof(bool)); heap_deform_tuple(&tuple, tupdesc, values, nulls); old_context = MemoryContextSwitchTo(TopTransactionContext); for (i = 0; i < ncolumns; i++) { struct varlena *attr; struct varlena *new_attr; struct varatt_indirect redirect_pointer; /* only work on existing, not-null varlenas */ if (TupleDescAttr(tupdesc, i)->attisdropped || nulls[i] || TupleDescAttr(tupdesc, i)->attlen != -1) continue; attr = (struct varlena *) DatumGetPointer(values[i]); /* don't recursively indirect */ if (VARATT_IS_EXTERNAL_INDIRECT(attr)) continue; /* copy datum, so it still lives later */ if (VARATT_IS_EXTERNAL_ONDISK(attr)) attr = detoast_external_attr(attr); else { struct varlena *oldattr = attr; attr = palloc0(VARSIZE_ANY(oldattr)); memcpy(attr, oldattr, VARSIZE_ANY(oldattr)); } /* build indirection Datum */ new_attr = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE); redirect_pointer.pointer = attr; SET_VARTAG_EXTERNAL(new_attr, VARTAG_INDIRECT); memcpy(VARDATA_EXTERNAL(new_attr), &redirect_pointer, sizeof(redirect_pointer)); values[i] = PointerGetDatum(new_attr); } newtup = heap_form_tuple(tupdesc, values, nulls); pfree(values); pfree(nulls); ReleaseTupleDesc(tupdesc); MemoryContextSwitchTo(old_context); /* * We intentionally don't use PG_RETURN_HEAPTUPLEHEADER here, because that * would cause the indirect toast pointers to be flattened out of the * tuple immediately, rendering subsequent testing irrelevant. So just * return the HeapTupleHeader pointer as-is. This violates the general * rule that composite Datums shouldn't contain toast pointers, but so * long as the regression test scripts don't insert the result of this * function into a container type (record, array, etc) it should be OK. */ PG_RETURN_POINTER(newtup->t_data); } PG_FUNCTION_INFO_V1(regress_setenv); Datum regress_setenv(PG_FUNCTION_ARGS) { char *envvar = text_to_cstring(PG_GETARG_TEXT_PP(0)); char *envval = text_to_cstring(PG_GETARG_TEXT_PP(1)); if (!superuser()) elog(ERROR, "must be superuser to change environment variables"); if (setenv(envvar, envval, 1) != 0) elog(ERROR, "could not set environment variable: %m"); PG_RETURN_VOID(); } /* Sleep until no process has a given PID. */ PG_FUNCTION_INFO_V1(wait_pid); Datum wait_pid(PG_FUNCTION_ARGS) { int pid = PG_GETARG_INT32(0); if (!superuser()) elog(ERROR, "must be superuser to check PID liveness"); while (kill(pid, 0) == 0) { CHECK_FOR_INTERRUPTS(); pg_usleep(50000); } if (errno != ESRCH) elog(ERROR, "could not check PID %d liveness: %m", pid); PG_RETURN_VOID(); } static void test_atomic_flag(void) { pg_atomic_flag flag; pg_atomic_init_flag(&flag); EXPECT_TRUE(pg_atomic_unlocked_test_flag(&flag)); EXPECT_TRUE(pg_atomic_test_set_flag(&flag)); EXPECT_TRUE(!pg_atomic_unlocked_test_flag(&flag)); EXPECT_TRUE(!pg_atomic_test_set_flag(&flag)); pg_atomic_clear_flag(&flag); EXPECT_TRUE(pg_atomic_unlocked_test_flag(&flag)); EXPECT_TRUE(pg_atomic_test_set_flag(&flag)); pg_atomic_clear_flag(&flag); } static void test_atomic_uint32(void) { pg_atomic_uint32 var; uint32 expected; int i; pg_atomic_init_u32(&var, 0); EXPECT_EQ_U32(pg_atomic_read_u32(&var), 0); pg_atomic_write_u32(&var, 3); EXPECT_EQ_U32(pg_atomic_read_u32(&var), 3); EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, pg_atomic_read_u32(&var) - 2), 3); EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&var, 1), 4); EXPECT_EQ_U32(pg_atomic_sub_fetch_u32(&var, 3), 0); EXPECT_EQ_U32(pg_atomic_add_fetch_u32(&var, 10), 10); EXPECT_EQ_U32(pg_atomic_exchange_u32(&var, 5), 10); EXPECT_EQ_U32(pg_atomic_exchange_u32(&var, 0), 5); /* test around numerical limits */ EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, INT_MAX), 0); EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, INT_MAX), INT_MAX); pg_atomic_fetch_add_u32(&var, 2); /* wrap to 0 */ EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MAX), 0); EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MAX + 1), PG_INT16_MAX); EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MIN), 2 * PG_INT16_MAX + 1); EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MIN - 1), PG_INT16_MAX); pg_atomic_fetch_add_u32(&var, 1); /* top up to UINT_MAX */ EXPECT_EQ_U32(pg_atomic_read_u32(&var), UINT_MAX); EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&var, INT_MAX), UINT_MAX); EXPECT_EQ_U32(pg_atomic_read_u32(&var), (uint32) INT_MAX + 1); EXPECT_EQ_U32(pg_atomic_sub_fetch_u32(&var, INT_MAX), 1); pg_atomic_sub_fetch_u32(&var, 1); expected = PG_INT16_MAX; EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1)); expected = PG_INT16_MAX + 1; EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1)); expected = PG_INT16_MIN; EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1)); expected = PG_INT16_MIN - 1; EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1)); /* fail exchange because of old expected */ expected = 10; EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1)); /* CAS is allowed to fail due to interrupts, try a couple of times */ for (i = 0; i < 1000; i++) { expected = 0; if (!pg_atomic_compare_exchange_u32(&var, &expected, 1)) break; } if (i == 1000) elog(ERROR, "atomic_compare_exchange_u32() never succeeded"); EXPECT_EQ_U32(pg_atomic_read_u32(&var), 1); pg_atomic_write_u32(&var, 0); /* try setting flagbits */ EXPECT_TRUE(!(pg_atomic_fetch_or_u32(&var, 1) & 1)); EXPECT_TRUE(pg_atomic_fetch_or_u32(&var, 2) & 1); EXPECT_EQ_U32(pg_atomic_read_u32(&var), 3); /* try clearing flagbits */ EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~2) & 3, 3); EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~1), 1); /* no bits set anymore */ EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~0), 0); } static void test_atomic_uint64(void) { pg_atomic_uint64 var; uint64 expected; int i; pg_atomic_init_u64(&var, 0); EXPECT_EQ_U64(pg_atomic_read_u64(&var), 0); pg_atomic_write_u64(&var, 3); EXPECT_EQ_U64(pg_atomic_read_u64(&var), 3); EXPECT_EQ_U64(pg_atomic_fetch_add_u64(&var, pg_atomic_read_u64(&var) - 2), 3); EXPECT_EQ_U64(pg_atomic_fetch_sub_u64(&var, 1), 4); EXPECT_EQ_U64(pg_atomic_sub_fetch_u64(&var, 3), 0); EXPECT_EQ_U64(pg_atomic_add_fetch_u64(&var, 10), 10); EXPECT_EQ_U64(pg_atomic_exchange_u64(&var, 5), 10); EXPECT_EQ_U64(pg_atomic_exchange_u64(&var, 0), 5); /* fail exchange because of old expected */ expected = 10; EXPECT_TRUE(!pg_atomic_compare_exchange_u64(&var, &expected, 1)); /* CAS is allowed to fail due to interrupts, try a couple of times */ for (i = 0; i < 100; i++) { expected = 0; if (!pg_atomic_compare_exchange_u64(&var, &expected, 1)) break; } if (i == 100) elog(ERROR, "atomic_compare_exchange_u64() never succeeded"); EXPECT_EQ_U64(pg_atomic_read_u64(&var), 1); pg_atomic_write_u64(&var, 0); /* try setting flagbits */ EXPECT_TRUE(!(pg_atomic_fetch_or_u64(&var, 1) & 1)); EXPECT_TRUE(pg_atomic_fetch_or_u64(&var, 2) & 1); EXPECT_EQ_U64(pg_atomic_read_u64(&var), 3); /* try clearing flagbits */ EXPECT_EQ_U64((pg_atomic_fetch_and_u64(&var, ~2) & 3), 3); EXPECT_EQ_U64(pg_atomic_fetch_and_u64(&var, ~1), 1); /* no bits set anymore */ EXPECT_EQ_U64(pg_atomic_fetch_and_u64(&var, ~0), 0); } /* * Perform, fairly minimal, testing of the spinlock implementation. * * It's likely worth expanding these to actually test concurrency etc, but * having some regularly run tests is better than none. */ static void test_spinlock(void) { /* * Basic tests for spinlocks, as well as the underlying operations. * * We embed the spinlock in a struct with other members to test that the * spinlock operations don't perform too wide writes. */ { struct test_lock_struct { char data_before[4]; slock_t lock; char data_after[4]; } struct_w_lock; memcpy(struct_w_lock.data_before, "abcd", 4); memcpy(struct_w_lock.data_after, "ef12", 4); /* test basic operations via the SpinLock* API */ SpinLockInit(&struct_w_lock.lock); SpinLockAcquire(&struct_w_lock.lock); SpinLockRelease(&struct_w_lock.lock); /* test basic operations via underlying S_* API */ S_INIT_LOCK(&struct_w_lock.lock); S_LOCK(&struct_w_lock.lock); S_UNLOCK(&struct_w_lock.lock); /* and that "contended" acquisition works */ s_lock(&struct_w_lock.lock, "testfile", 17, "testfunc"); S_UNLOCK(&struct_w_lock.lock); /* * Check, using TAS directly, that a single spin cycle doesn't block * when acquiring an already acquired lock. */ #ifdef TAS S_LOCK(&struct_w_lock.lock); if (!TAS(&struct_w_lock.lock)) elog(ERROR, "acquired already held spinlock"); #ifdef TAS_SPIN if (!TAS_SPIN(&struct_w_lock.lock)) elog(ERROR, "acquired already held spinlock"); #endif /* defined(TAS_SPIN) */ S_UNLOCK(&struct_w_lock.lock); #endif /* defined(TAS) */ /* * Verify that after all of this the non-lock contents are still * correct. */ if (memcmp(struct_w_lock.data_before, "abcd", 4) != 0) elog(ERROR, "padding before spinlock modified"); if (memcmp(struct_w_lock.data_after, "ef12", 4) != 0) elog(ERROR, "padding after spinlock modified"); } /* * Ensure that allocating more than INT32_MAX emulated spinlocks works. * That's interesting because the spinlock emulation uses a 32bit integer * to map spinlocks onto semaphores. There've been bugs... */ #ifndef HAVE_SPINLOCKS { /* * Initialize enough spinlocks to advance counter close to wraparound. * It's too expensive to perform acquire/release for each, as those * may be syscalls when the spinlock emulation is used (and even just * atomic TAS would be expensive). */ for (uint32 i = 0; i < INT32_MAX - 100000; i++) { slock_t lock; SpinLockInit(&lock); } for (uint32 i = 0; i < 200000; i++) { slock_t lock; SpinLockInit(&lock); SpinLockAcquire(&lock); SpinLockRelease(&lock); SpinLockAcquire(&lock); SpinLockRelease(&lock); } } #endif } /* * Verify that performing atomic ops inside a spinlock isn't a * problem. Realistically that's only going to be a problem when both * --disable-spinlocks and --disable-atomics are used, but it's cheap enough * to just always test. * * The test works by initializing enough atomics that we'd conflict if there * were an overlap between a spinlock and an atomic by holding a spinlock * while manipulating more than NUM_SPINLOCK_SEMAPHORES atomics. * * NUM_TEST_ATOMICS doesn't really need to be more than * NUM_SPINLOCK_SEMAPHORES, but it seems better to test a bit more * extensively. */ static void test_atomic_spin_nest(void) { slock_t lock; #define NUM_TEST_ATOMICS (NUM_SPINLOCK_SEMAPHORES + NUM_ATOMICS_SEMAPHORES + 27) pg_atomic_uint32 atomics32[NUM_TEST_ATOMICS]; pg_atomic_uint64 atomics64[NUM_TEST_ATOMICS]; SpinLockInit(&lock); for (int i = 0; i < NUM_TEST_ATOMICS; i++) { pg_atomic_init_u32(&atomics32[i], 0); pg_atomic_init_u64(&atomics64[i], 0); } /* just so it's not all zeroes */ for (int i = 0; i < NUM_TEST_ATOMICS; i++) { EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&atomics32[i], i), 0); EXPECT_EQ_U64(pg_atomic_fetch_add_u64(&atomics64[i], i), 0); } /* test whether we can do atomic op with lock held */ SpinLockAcquire(&lock); for (int i = 0; i < NUM_TEST_ATOMICS; i++) { EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&atomics32[i], i), i); EXPECT_EQ_U32(pg_atomic_read_u32(&atomics32[i]), 0); EXPECT_EQ_U64(pg_atomic_fetch_sub_u64(&atomics64[i], i), i); EXPECT_EQ_U64(pg_atomic_read_u64(&atomics64[i]), 0); } SpinLockRelease(&lock); } #undef NUM_TEST_ATOMICS PG_FUNCTION_INFO_V1(test_atomic_ops); Datum test_atomic_ops(PG_FUNCTION_ARGS) { test_atomic_flag(); test_atomic_uint32(); test_atomic_uint64(); /* * Arguably this shouldn't be tested as part of this function, but it's * closely enough related that that seems ok for now. */ test_spinlock(); test_atomic_spin_nest(); PG_RETURN_BOOL(true); } PG_FUNCTION_INFO_V1(test_fdw_handler); Datum test_fdw_handler(PG_FUNCTION_ARGS) { elog(ERROR, "test_fdw_handler is not implemented"); PG_RETURN_NULL(); } PG_FUNCTION_INFO_V1(test_support_func); Datum test_support_func(PG_FUNCTION_ARGS) { Node *rawreq = (Node *) PG_GETARG_POINTER(0); Node *ret = NULL; if (IsA(rawreq, SupportRequestSelectivity)) { /* * Assume that the target is int4eq; that's safe as long as we don't * attach this to any other boolean-returning function. */ SupportRequestSelectivity *req = (SupportRequestSelectivity *) rawreq; Selectivity s1; if (req->is_join) s1 = join_selectivity(req->root, Int4EqualOperator, req->args, req->inputcollid, req->jointype, req->sjinfo); else s1 = restriction_selectivity(req->root, Int4EqualOperator, req->args, req->inputcollid, req->varRelid); req->selectivity = s1; ret = (Node *) req; } if (IsA(rawreq, SupportRequestCost)) { /* Provide some generic estimate */ SupportRequestCost *req = (SupportRequestCost *) rawreq; req->startup = 0; req->per_tuple = 2 * cpu_operator_cost; ret = (Node *) req; } if (IsA(rawreq, SupportRequestRows)) { /* * Assume that the target is generate_series_int4; that's safe as long * as we don't attach this to any other set-returning function. */ SupportRequestRows *req = (SupportRequestRows *) rawreq; if (req->node && IsA(req->node, FuncExpr)) /* be paranoid */ { List *args = ((FuncExpr *) req->node)->args; Node *arg1 = linitial(args); Node *arg2 = lsecond(args); if (IsA(arg1, Const) && !((Const *) arg1)->constisnull && IsA(arg2, Const) && !((Const *) arg2)->constisnull) { int32 val1 = DatumGetInt32(((Const *) arg1)->constvalue); int32 val2 = DatumGetInt32(((Const *) arg2)->constvalue); req->rows = val2 - val1 + 1; ret = (Node *) req; } } } PG_RETURN_POINTER(ret); } PG_FUNCTION_INFO_V1(test_opclass_options_func); Datum test_opclass_options_func(PG_FUNCTION_ARGS) { PG_RETURN_NULL(); } /* * Call an encoding conversion or verification function. * * Arguments: * string bytea -- string to convert * src_enc name -- source encoding * dest_enc name -- destination encoding * noError bool -- if set, don't ereport() on invalid or untranslatable * input * * Result is a tuple with two attributes: * int4 -- number of input bytes successfully converted * bytea -- converted string */ PG_FUNCTION_INFO_V1(test_enc_conversion); Datum test_enc_conversion(PG_FUNCTION_ARGS) { bytea *string = PG_GETARG_BYTEA_PP(0); char *src_encoding_name = NameStr(*PG_GETARG_NAME(1)); int src_encoding = pg_char_to_encoding(src_encoding_name); char *dest_encoding_name = NameStr(*PG_GETARG_NAME(2)); int dest_encoding = pg_char_to_encoding(dest_encoding_name); bool noError = PG_GETARG_BOOL(3); TupleDesc tupdesc; char *src; char *dst; bytea *retval; Size srclen; Size dstsize; Oid proc; int convertedbytes; int dstlen; Datum values[2]; bool nulls[2] = {0}; HeapTuple tuple; if (src_encoding < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid source encoding name \"%s\"", src_encoding_name))); if (dest_encoding < 0) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid destination encoding name \"%s\"", dest_encoding_name))); /* Build a tuple descriptor for our result type */ if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) elog(ERROR, "return type must be a row type"); tupdesc = BlessTupleDesc(tupdesc); srclen = VARSIZE_ANY_EXHDR(string); src = VARDATA_ANY(string); if (src_encoding == dest_encoding) { /* just check that the source string is valid */ int oklen; oklen = pg_encoding_verifymbstr(src_encoding, src, srclen); if (oklen == srclen) { convertedbytes = oklen; retval = string; } else if (!noError) { report_invalid_encoding(src_encoding, src + oklen, srclen - oklen); } else { /* * build bytea data type structure. */ Assert(oklen < srclen); convertedbytes = oklen; retval = (bytea *) palloc(oklen + VARHDRSZ); SET_VARSIZE(retval, oklen + VARHDRSZ); memcpy(VARDATA(retval), src, oklen); } } else { proc = FindDefaultConversionProc(src_encoding, dest_encoding); if (!OidIsValid(proc)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("default conversion function for encoding \"%s\" to \"%s\" does not exist", pg_encoding_to_char(src_encoding), pg_encoding_to_char(dest_encoding)))); if (srclen >= (MaxAllocSize / (Size) MAX_CONVERSION_GROWTH)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("out of memory"), errdetail("String of %d bytes is too long for encoding conversion.", (int) srclen))); dstsize = (Size) srclen * MAX_CONVERSION_GROWTH + 1; dst = MemoryContextAlloc(CurrentMemoryContext, dstsize); /* perform conversion */ convertedbytes = pg_do_encoding_conversion_buf(proc, src_encoding, dest_encoding, (unsigned char *) src, srclen, (unsigned char *) dst, dstsize, noError); dstlen = strlen(dst); /* * build bytea data type structure. */ retval = (bytea *) palloc(dstlen + VARHDRSZ); SET_VARSIZE(retval, dstlen + VARHDRSZ); memcpy(VARDATA(retval), dst, dstlen); pfree(dst); } values[0] = Int32GetDatum(convertedbytes); values[1] = PointerGetDatum(retval); tuple = heap_form_tuple(tupdesc, values, nulls); PG_RETURN_DATUM(HeapTupleGetDatum(tuple)); } /* Provide SQL access to IsBinaryCoercible() */ PG_FUNCTION_INFO_V1(binary_coercible); Datum binary_coercible(PG_FUNCTION_ARGS) { Oid srctype = PG_GETARG_OID(0); Oid targettype = PG_GETARG_OID(1); PG_RETURN_BOOL(IsBinaryCoercible(srctype, targettype)); }