/*------------------------------------------------------------------------- * * nbtutils.c * Utility code for Postgres btree implementation. * * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtutils.c,v 1.55 2003/11/09 21:30:35 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/genam.h" #include "access/nbtree.h" #include "catalog/catalog.h" #include "executor/execdebug.h" #include "utils/lsyscache.h" /* * _bt_mkscankey * Build a scan key that contains comparison data from itup * as well as comparator routines appropriate to the key datatypes. * * The result is intended for use with _bt_compare(). */ ScanKey _bt_mkscankey(Relation rel, IndexTuple itup) { ScanKey skey; TupleDesc itupdesc; int natts; int i; itupdesc = RelationGetDescr(rel); natts = RelationGetNumberOfAttributes(rel); skey = (ScanKey) palloc(natts * sizeof(ScanKeyData)); for (i = 0; i < natts; i++) { FmgrInfo *procinfo; Datum arg; bool null; /* * We can use the cached support procs since no cross-type comparison * can be needed. */ procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC); arg = index_getattr(itup, i + 1, itupdesc, &null); ScanKeyEntryInitializeWithInfo(&skey[i], null ? SK_ISNULL : 0, (AttrNumber) (i + 1), InvalidStrategy, procinfo, arg, itupdesc->attrs[i]->atttypid); } return skey; } /* * _bt_mkscankey_nodata * Build a scan key that contains comparator routines appropriate to * the key datatypes, but no comparison data. The comparison data * ultimately used must match the key datatypes. * * The result cannot be used with _bt_compare(). Currently this * routine is only called by nbtsort.c and tuplesort.c, which have * their own comparison routines. */ ScanKey _bt_mkscankey_nodata(Relation rel) { ScanKey skey; TupleDesc itupdesc; int natts; int i; itupdesc = RelationGetDescr(rel); natts = RelationGetNumberOfAttributes(rel); skey = (ScanKey) palloc(natts * sizeof(ScanKeyData)); for (i = 0; i < natts; i++) { FmgrInfo *procinfo; /* * We can use the cached support procs since no cross-type comparison * can be needed. */ procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC); ScanKeyEntryInitializeWithInfo(&skey[i], SK_ISNULL, (AttrNumber) (i + 1), InvalidStrategy, procinfo, (Datum) 0, itupdesc->attrs[i]->atttypid); } return skey; } /* * free a scan key made by either _bt_mkscankey or _bt_mkscankey_nodata. */ void _bt_freeskey(ScanKey skey) { pfree(skey); } /* * free a retracement stack made by _bt_search. */ void _bt_freestack(BTStack stack) { BTStack ostack; while (stack != (BTStack) NULL) { ostack = stack; stack = stack->bts_parent; pfree(ostack); } } /* * Construct a BTItem from a plain IndexTuple. * * This is now useless code, since a BTItem *is* an index tuple with * no extra stuff. We hang onto it for the moment to preserve the * notational distinction, in case we want to add some extra stuff * again someday. */ BTItem _bt_formitem(IndexTuple itup) { int nbytes_btitem; BTItem btitem; Size tuplen; /* make a copy of the index tuple with room for extra stuff */ tuplen = IndexTupleSize(itup); nbytes_btitem = tuplen + (sizeof(BTItemData) - sizeof(IndexTupleData)); btitem = (BTItem) palloc(nbytes_btitem); memcpy((char *) &(btitem->bti_itup), (char *) itup, tuplen); return btitem; } /*---------- * _bt_orderkeys() -- Put keys in a sensible order for conjunctive quals. * * After this routine runs, the scan keys are ordered by index attribute * (all quals for attr 1, then all for attr 2, etc) and within each attr * the keys are ordered by constraint type: ">", ">=", "=", "<=", "<". * Furthermore, redundant keys are eliminated: we keep only the tightest * >/>= bound and the tightest 2". If we see that, we return so->quals_ok = FALSE, * indicating the scan need not be run at all since no tuples can match. * * Another byproduct is to determine how many quals must be satisfied to * continue the scan. _bt_checkkeys uses this. For example, if the quals * are "x = 1 AND y < 4 AND z < 5", then _bt_checkkeys will reject a tuple * (1,2,7), but we must continue the scan in case there are tuples (1,3,z). * But once we reach tuples like (1,4,z) we can stop scanning because no * later tuples could match. This is reflected by setting * so->numberOfRequiredKeys to the number of leading keys that must be * matched to continue the scan. numberOfRequiredKeys is equal to the * number of leading "=" keys plus the key(s) for the first non "=" * attribute, which can be seen to be correct by considering the above * example. * * Furthermore, we detect the case where the index is unique and we have * equality quals for all columns. In this case there can be at most one * (visible) matching tuple. index_getnext uses this to avoid uselessly * continuing the scan after finding one match. * * The initial ordering of the keys is expected to be by attribute already * (see group_clauses_by_indexkey() in indxpath.c). The task here is to * standardize the appearance of multiple keys for the same attribute. *---------- */ void _bt_orderkeys(IndexScanDesc scan) { Relation relation = scan->indexRelation; BTScanOpaque so = (BTScanOpaque) scan->opaque; ScanKeyData xform[BTMaxStrategyNumber]; bool init[BTMaxStrategyNumber]; int numberOfKeys = so->numberOfKeys; ScanKey key; ScanKey cur; Datum test; int i, j; AttrNumber attno; int new_numberOfKeys; bool allEqualSoFar; so->qual_ok = true; so->numberOfRequiredKeys = 0; scan->keys_are_unique = false; if (numberOfKeys < 1) return; /* done if qual-less scan */ key = so->keyData; cur = &key[0]; /* check input keys are correctly ordered */ if (cur->sk_attno != 1) elog(ERROR, "key(s) for attribute 1 missed"); #if 0 /* XXX verify that operator strategy info is correct */ /* XXX this is temporary for debugging; it's pretty expensive */ /* XXX can't do it during bootstrap, else will recurse infinitely */ { extern bool criticalRelcachesBuilt; static bool inRecursion = false; if (criticalRelcachesBuilt && !inRecursion) { inRecursion = true; for (i = 0; i < numberOfKeys; i++) { AttrNumber attno = key[i].sk_attno; Oid opclass; Oid chk_oper; opclass = relation->rd_index->indclass[attno-1]; chk_oper = get_opclass_member(opclass, key[i].sk_strategy); Assert(key[i].sk_func.fn_oid == get_opcode(chk_oper)); } inRecursion = false; } } #endif /* We can short-circuit most of the work if there's just one key */ if (numberOfKeys == 1) { /* * We don't use indices for 'A is null' and 'A is not null' * currently and 'A < = > <> NULL' will always fail - so qual is * not Ok if comparison value is NULL. - vadim 03/21/97 */ if (cur->sk_flags & SK_ISNULL) so->qual_ok = false; else if (relation->rd_index->indisunique && relation->rd_rel->relnatts == 1) { /* it's a unique index, do we have an equality qual? */ if (cur->sk_strategy == BTEqualStrategyNumber) scan->keys_are_unique = true; } so->numberOfRequiredKeys = 1; return; } /* * Otherwise, do the full set of pushups. */ new_numberOfKeys = 0; allEqualSoFar = true; /* * Initialize for processing of keys for attr 1. * * xform[i] holds a copy of the current scan key of strategy type i+1, if * any; init[i] is TRUE if we have found such a key for this attr. */ attno = 1; MemSet(xform, 0, sizeof(xform)); /* not really necessary */ MemSet(init, 0, sizeof(init)); /* * Loop iterates from 0 to numberOfKeys inclusive; we use the last * pass to handle after-last-key processing. Actual exit from the * loop is at the "break" statement below. */ for (i = 0;; cur++, i++) { if (i < numberOfKeys) { /* See comments above: any NULL implies cannot match qual */ if (cur->sk_flags & SK_ISNULL) { so->qual_ok = false; /* * Quit processing so we don't try to invoke comparison * routines on NULLs. */ return; } } /* * If we are at the end of the keys for a particular attr, finish * up processing and emit the cleaned-up keys. */ if (i == numberOfKeys || cur->sk_attno != attno) { bool priorAllEqualSoFar = allEqualSoFar; /* check input keys are correctly ordered */ if (i < numberOfKeys && cur->sk_attno != attno + 1) elog(ERROR, "key(s) for attribute %d missed", attno + 1); /* * If = has been specified, no other key will be used. In case * of key > 2 && key == 1 and so on we have to set qual_ok to * false before discarding the other keys. */ if (init[BTEqualStrategyNumber - 1]) { ScanKeyData *eq, *chk; eq = &xform[BTEqualStrategyNumber - 1]; for (j = BTMaxStrategyNumber; --j >= 0;) { if (!init[j] || j == (BTEqualStrategyNumber - 1)) continue; chk = &xform[j]; test = FunctionCall2(&chk->sk_func, eq->sk_argument, chk->sk_argument); if (!DatumGetBool(test)) so->qual_ok = false; } init[BTLessStrategyNumber - 1] = false; init[BTLessEqualStrategyNumber - 1] = false; init[BTGreaterEqualStrategyNumber - 1] = false; init[BTGreaterStrategyNumber - 1] = false; } else { /* * No "=" for this key, so we're done with required keys */ allEqualSoFar = false; } /* keep only one of <, <= */ if (init[BTLessStrategyNumber - 1] && init[BTLessEqualStrategyNumber - 1]) { ScanKeyData *lt = &xform[BTLessStrategyNumber - 1]; ScanKeyData *le = &xform[BTLessEqualStrategyNumber - 1]; test = FunctionCall2(&le->sk_func, lt->sk_argument, le->sk_argument); if (DatumGetBool(test)) init[BTLessEqualStrategyNumber - 1] = false; else init[BTLessStrategyNumber - 1] = false; } /* keep only one of >, >= */ if (init[BTGreaterStrategyNumber - 1] && init[BTGreaterEqualStrategyNumber - 1]) { ScanKeyData *gt = &xform[BTGreaterStrategyNumber - 1]; ScanKeyData *ge = &xform[BTGreaterEqualStrategyNumber - 1]; test = FunctionCall2(&ge->sk_func, gt->sk_argument, ge->sk_argument); if (DatumGetBool(test)) init[BTGreaterEqualStrategyNumber - 1] = false; else init[BTGreaterStrategyNumber - 1] = false; } /* * Emit the cleaned-up keys back into the key[] array in the * correct order. Note we are overwriting our input here! * It's OK because (a) xform[] is a physical copy of the keys * we want, (b) we cannot emit more keys than we input, so we * won't overwrite as-yet-unprocessed keys. */ for (j = BTMaxStrategyNumber; --j >= 0;) { if (init[j]) memcpy(&key[new_numberOfKeys++], &xform[j], sizeof(ScanKeyData)); } /* * If all attrs before this one had "=", include these keys * into the required-keys count. */ if (priorAllEqualSoFar) so->numberOfRequiredKeys = new_numberOfKeys; /* * Exit loop here if done. */ if (i == numberOfKeys) break; /* Re-initialize for new attno */ attno = cur->sk_attno; MemSet(xform, 0, sizeof(xform)); /* not really necessary */ MemSet(init, 0, sizeof(init)); } /* figure out which strategy this key's operator corresponds to */ j = cur->sk_strategy - 1; /* have we seen one of these before? */ if (init[j]) { /* yup, keep the more restrictive value */ test = FunctionCall2(&cur->sk_func, cur->sk_argument, xform[j].sk_argument); if (DatumGetBool(test)) xform[j].sk_argument = cur->sk_argument; else if (j == (BTEqualStrategyNumber - 1)) so->qual_ok = false; /* key == a && key == b, but a != b */ } else { /* nope, so remember this scankey */ memcpy(&xform[j], cur, sizeof(ScanKeyData)); init[j] = true; } } so->numberOfKeys = new_numberOfKeys; /* * If unique index and we have equality keys for all columns, set * keys_are_unique flag for higher levels. */ if (allEqualSoFar && relation->rd_index->indisunique && relation->rd_rel->relnatts == new_numberOfKeys) scan->keys_are_unique = true; } /* * Test whether an indextuple satisfies all the scankey conditions. * * If the tuple fails to pass the qual, we also determine whether there's * any need to continue the scan beyond this tuple, and set *continuescan * accordingly. See comments for _bt_orderkeys(), above, about how this is * done. */ bool _bt_checkkeys(IndexScanDesc scan, IndexTuple tuple, ScanDirection dir, bool *continuescan) { BTScanOpaque so = (BTScanOpaque) scan->opaque; int keysz = so->numberOfKeys; int keysok; TupleDesc tupdesc; ScanKey key; *continuescan = true; /* If no keys, always scan the whole index */ if (keysz == 0) return true; tupdesc = RelationGetDescr(scan->indexRelation); key = so->keyData; keysok = 0; IncrIndexProcessed(); while (keysz > 0) { Datum datum; bool isNull; Datum test; datum = index_getattr(tuple, key->sk_attno, tupdesc, &isNull); /* btree doesn't support 'A is null' clauses, yet */ if (key->sk_flags & SK_ISNULL) { /* we shouldn't get here, really; see _bt_orderkeys() */ *continuescan = false; return false; } if (isNull) { /* * Since NULLs are sorted after non-NULLs, we know we have * reached the upper limit of the range of values for this * index attr. On a forward scan, we can stop if this qual is * one of the "must match" subset. On a backward scan, * however, we should keep going. */ if (keysok < so->numberOfRequiredKeys && ScanDirectionIsForward(dir)) *continuescan = false; /* * In any case, this indextuple doesn't match the qual. */ return false; } test = FunctionCall2(&key->sk_func, datum, key->sk_argument); if (!DatumGetBool(test)) { /* * Tuple fails this qual. If it's a required qual, then we * can conclude no further tuples will pass, either. */ if (keysok < so->numberOfRequiredKeys) *continuescan = false; return false; } keysok++; key++; keysz--; } /* If we get here, the tuple passes all quals. */ return true; }