/*------------------------------------------------------------------------- * * allpaths.c * Routines to find possible search paths for processing a query * * Portions Copyright (c) 1996-2000, PostgreSQL, Inc * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/optimizer/path/allpaths.c,v 1.60 2000/04/12 17:15:19 momjian Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "optimizer/cost.h" #include "optimizer/geqo.h" #include "optimizer/internal.h" #include "optimizer/pathnode.h" #include "optimizer/paths.h" #ifdef GEQO bool enable_geqo = true; #else bool enable_geqo = false; #endif int geqo_rels = GEQO_RELS; static void set_base_rel_pathlist(Query *root); static RelOptInfo *make_one_rel_by_joins(Query *root, int levels_needed); #ifdef OPTIMIZER_DEBUG static void debug_print_rel(Query *root, RelOptInfo *rel); #endif /* * make_one_rel * Finds all possible access paths for executing a query, returning a * single rel that represents the join of all base rels in the query. */ RelOptInfo * make_one_rel(Query *root) { int levels_needed; /* * Set the number of join (not nesting) levels yet to be processed. */ levels_needed = length(root->base_rel_list); if (levels_needed <= 0) return NULL; /* * Generate access paths for the base rels. */ set_base_rel_pathlist(root); if (levels_needed == 1) { /* * Single relation, no more processing is required. */ return (RelOptInfo *) lfirst(root->base_rel_list); } else { /* * Generate join tree. */ return make_one_rel_by_joins(root, levels_needed); } } /* * set_base_rel_pathlist * Finds all paths available for scanning each base-relation entry. * Sequential scan and any available indices are considered. * Each useful path is attached to its relation's 'pathlist' field. */ static void set_base_rel_pathlist(Query *root) { List *rellist; foreach(rellist, root->base_rel_list) { RelOptInfo *rel = (RelOptInfo *) lfirst(rellist); List *indices = find_relation_indices(root, rel); /* Mark rel with estimated output rows, width, etc */ set_baserel_size_estimates(root, rel); /* * Generate paths and add them to the rel's pathlist. * * Note: add_path() will discard any paths that are dominated by * another available path, keeping only those paths that are * superior along at least one dimension of cost or sortedness. */ /* Consider sequential scan */ add_path(rel, create_seqscan_path(rel)); /* Consider TID scans */ create_tidscan_paths(root, rel); /* Consider index paths for both simple and OR index clauses */ create_index_paths(root, rel, indices, rel->baserestrictinfo, rel->joininfo); /* * Note: create_or_index_paths depends on create_index_paths to * have marked OR restriction clauses with relevant indices; this * is why it doesn't need to be given the list of indices. */ create_or_index_paths(root, rel, rel->baserestrictinfo); /* Now find the cheapest of the paths for this rel */ set_cheapest(rel); } } /* * make_one_rel_by_joins * Find all possible joinpaths for a query by successively finding ways * to join component relations into join relations. * * 'levels_needed' is the number of iterations needed, ie, the number of * base relations present in the query * * Returns the final level of join relations, i.e., the relation that is * the result of joining all the original relations together. */ static RelOptInfo * make_one_rel_by_joins(Query *root, int levels_needed) { int lev; RelOptInfo *rel; /******************************************* * genetic query optimizer entry point * * * * rest will be skipped in case of GEQO * *******************************************/ if (enable_geqo && levels_needed >= geqo_rels) return geqo(root); /* * We employ a simple "dynamic programming" algorithm: we first find * all ways to build joins of two base relations, then all ways to * build joins of three base relations (from two-base-rel joins and * other base rels), then four-base-rel joins, and so on until we have * considered all ways to join all N relations into one rel. */ for (lev = 2; lev <= levels_needed; lev++) { List *first_old_rel = root->join_rel_list; List *x; /* * Determine all possible pairs of relations to be joined at this * level, and build paths for making each one from every available * pair of lower-level relations. Results are prepended to * root->join_rel_list. */ make_rels_by_joins(root, lev); /* * The relations created at the current level will appear at the * front of root->join_rel_list. */ foreach(x, root->join_rel_list) { if (x == first_old_rel) break; /* no more rels added at this level */ rel = (RelOptInfo *) lfirst(x); #ifdef NOT_USED /* * * for each expensive predicate in each path in each * distinct rel, * consider doing pullup -- JMH */ if (XfuncMode != XFUNC_NOPULL && XfuncMode != XFUNC_OFF) xfunc_trypullup(rel); #endif /* Find and save the cheapest paths for this rel */ set_cheapest(rel); #ifdef OPTIMIZER_DEBUG debug_print_rel(root, rel); #endif } } /* * Now, the front of the join_rel_list should be the single rel * representing the join of all the base rels. */ Assert(length(root->join_rel_list) > 0); rel = (RelOptInfo *) lfirst(root->join_rel_list); Assert(length(rel->relids) == levels_needed); Assert(length(root->join_rel_list) == 1 || length(((RelOptInfo *) lsecond(root->join_rel_list))->relids) < levels_needed); return rel; } /***************************************************************************** * *****************************************************************************/ #ifdef OPTIMIZER_DEBUG static void print_joinclauses(Query *root, List *clauses) { List *l; extern void print_expr(Node *expr, List *rtable); /* in print.c */ foreach(l, clauses) { RestrictInfo *c = lfirst(l); print_expr((Node *) c->clause, root->rtable); if (lnext(l)) printf(" "); } } static void print_path(Query *root, Path *path, int indent) { char *ptype = NULL; JoinPath *jp; bool join = false; int i; for (i = 0; i < indent; i++) printf("\t"); switch (nodeTag(path)) { case T_Path: ptype = "SeqScan"; join = false; break; case T_IndexPath: ptype = "IdxScan"; join = false; break; case T_NestPath: ptype = "Nestloop"; join = true; break; case T_MergePath: ptype = "MergeJoin"; join = true; break; case T_HashPath: ptype = "HashJoin"; join = true; break; default: break; } if (join) { jp = (JoinPath *) path; printf("%s rows=%.0f cost=%.2f..%.2f\n", ptype, path->parent->rows, path->startup_cost, path->total_cost); if (path->pathkeys) { for (i = 0; i < indent; i++) printf("\t"); printf(" pathkeys="); print_pathkeys(path->pathkeys, root->rtable); } switch (nodeTag(path)) { case T_MergePath: case T_HashPath: for (i = 0; i < indent; i++) printf("\t"); printf(" clauses=("); print_joinclauses(root, jp->joinrestrictinfo); printf(")\n"); if (nodeTag(path) == T_MergePath) { MergePath *mp = (MergePath *) path; if (mp->outersortkeys || mp->innersortkeys) { for (i = 0; i < indent; i++) printf("\t"); printf(" sortouter=%d sortinner=%d\n", ((mp->outersortkeys) ? 1 : 0), ((mp->innersortkeys) ? 1 : 0)); } } break; default: break; } print_path(root, jp->outerjoinpath, indent + 1); print_path(root, jp->innerjoinpath, indent + 1); } else { int relid = lfirsti(path->parent->relids); printf("%s(%d) rows=%.0f cost=%.2f..%.2f\n", ptype, relid, path->parent->rows, path->startup_cost, path->total_cost); if (path->pathkeys) { for (i = 0; i < indent; i++) printf("\t"); printf(" pathkeys="); print_pathkeys(path->pathkeys, root->rtable); } } } static void debug_print_rel(Query *root, RelOptInfo *rel) { List *l; printf("("); foreach(l, rel->relids) printf("%d ", lfirsti(l)); printf("): rows=%.0f width=%d\n", rel->rows, rel->width); printf("\tpath list:\n"); foreach(l, rel->pathlist) print_path(root, lfirst(l), 1); printf("\tcheapest startup path:\n"); print_path(root, rel->cheapest_startup_path, 1); printf("\tcheapest total path:\n"); print_path(root, rel->cheapest_total_path, 1); } #endif /* OPTIMIZER_DEBUG */