/*------------------------------------------------------------------------- * * regexp.c * Postgres' interface to the regular expression package. * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/utils/adt/regexp.c,v 1.57 2005/07/10 04:54:30 momjian Exp $ * * Alistair Crooks added the code for the regex caching * agc - cached the regular expressions used - there's a good chance * that we'll get a hit, so this saves a compile step for every * attempted match. I haven't actually measured the speed improvement, * but it `looks' a lot quicker visually when watching regression * test output. * * agc - incorporated Keith Bostic's Berkeley regex code into * the tree for all ports. To distinguish this regex code from any that * is existent on a platform, I've prepended the string "pg_" to * the functions regcomp, regerror, regexec and regfree. * Fixed a bug that was originally a typo by me, where `i' was used * instead of `oldest' when compiling regular expressions - benign * results mostly, although occasionally it bit you... * *------------------------------------------------------------------------- */ #include "postgres.h" #include "regex/regex.h" #include "mb/pg_wchar.h" #include "utils/builtins.h" #include "utils/guc.h" /* GUC-settable flavor parameter */ static int regex_flavor = REG_ADVANCED; /* * We cache precompiled regular expressions using a "self organizing list" * structure, in which recently-used items tend to be near the front. * Whenever we use an entry, it's moved up to the front of the list. * Over time, an item's average position corresponds to its frequency of use. * * When we first create an entry, it's inserted at the front of * the array, dropping the entry at the end of the array if necessary to * make room. (This might seem to be weighting the new entry too heavily, * but if we insert new entries further back, we'll be unable to adjust to * a sudden shift in the query mix where we are presented with MAX_CACHED_RES * never-before-seen items used circularly. We ought to be able to handle * that case, so we have to insert at the front.) * * Knuth mentions a variant strategy in which a used item is moved up just * one place in the list. Although he says this uses fewer comparisons on * average, it seems not to adapt very well to the situation where you have * both some reusable patterns and a steady stream of non-reusable patterns. * A reusable pattern that isn't used at least as often as non-reusable * patterns are seen will "fail to keep up" and will drop off the end of the * cache. With move-to-front, a reusable pattern is guaranteed to stay in * the cache as long as it's used at least once in every MAX_CACHED_RES uses. */ /* this is the maximum number of cached regular expressions */ #ifndef MAX_CACHED_RES #define MAX_CACHED_RES 32 #endif /* this structure describes one cached regular expression */ typedef struct cached_re_str { text *cre_pat; /* original RE (untoasted TEXT form) */ int cre_flags; /* compile flags: extended,icase etc */ regex_t cre_re; /* the compiled regular expression */ } cached_re_str; static int num_res = 0; /* # of cached re's */ static cached_re_str re_array[MAX_CACHED_RES]; /* cached re's */ /* * RE_compile_and_cache - compile a RE, caching if possible * * Returns regex_t * * text_re --- the pattern, expressed as an *untoasted* TEXT object * cflags --- compile options for the pattern * * Pattern is given in the database encoding. We internally convert to * array of pg_wchar which is what Spencer's regex package wants. */ static regex_t RE_compile_and_cache(text *text_re, int cflags) { int text_re_len = VARSIZE(text_re); pg_wchar *pattern; size_t pattern_len; int i; int regcomp_result; cached_re_str re_temp; char errMsg[100]; /* * Look for a match among previously compiled REs. Since the data * structure is self-organizing with most-used entries at the front, * our search strategy can just be to scan from the front. */ for (i = 0; i < num_res; i++) { if (VARSIZE(re_array[i].cre_pat) == text_re_len && memcmp(re_array[i].cre_pat, text_re, text_re_len) == 0 && re_array[i].cre_flags == cflags) { /* * Found a match; move it to front if not there already. */ if (i > 0) { re_temp = re_array[i]; memmove(&re_array[1], &re_array[0], i * sizeof(cached_re_str)); re_array[0] = re_temp; } return re_array[0].cre_re; } } /* * Couldn't find it, so try to compile the new RE. To avoid leaking * resources on failure, we build into the re_temp local. */ /* Convert pattern string to wide characters */ pattern = (pg_wchar *) palloc((text_re_len - VARHDRSZ + 1) * sizeof(pg_wchar)); pattern_len = pg_mb2wchar_with_len((unsigned char *) VARDATA(text_re), pattern, text_re_len - VARHDRSZ); regcomp_result = pg_regcomp(&re_temp.cre_re, pattern, pattern_len, cflags); pfree(pattern); if (regcomp_result != REG_OKAY) { /* re didn't compile */ pg_regerror(regcomp_result, &re_temp.cre_re, errMsg, sizeof(errMsg)); /* XXX should we pg_regfree here? */ ereport(ERROR, (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), errmsg("invalid regular expression: %s", errMsg))); } /* * use malloc/free for the cre_pat field because the storage has to * persist across transactions */ re_temp.cre_pat = malloc(text_re_len); if (re_temp.cre_pat == NULL) { pg_regfree(&re_temp.cre_re); ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } memcpy(re_temp.cre_pat, text_re, text_re_len); re_temp.cre_flags = cflags; /* * Okay, we have a valid new item in re_temp; insert it into the * storage array. Discard last entry if needed. */ if (num_res >= MAX_CACHED_RES) { --num_res; Assert(num_res < MAX_CACHED_RES); pg_regfree(&re_array[num_res].cre_re); free(re_array[num_res].cre_pat); } if (num_res > 0) memmove(&re_array[1], &re_array[0], num_res * sizeof(cached_re_str)); re_array[0] = re_temp; num_res++; return re_array[0].cre_re; } /* * RE_compile_and_execute - compile and execute a RE * * Returns TRUE on match, FALSE on no match * * text_re --- the pattern, expressed as an *untoasted* TEXT object * dat --- the data to match against (need not be null-terminated) * dat_len --- the length of the data string * cflags --- compile options for the pattern * nmatch, pmatch --- optional return area for match details * * Both pattern and data are given in the database encoding. We internally * convert to array of pg_wchar which is what Spencer's regex package wants. */ static bool RE_compile_and_execute(text *text_re, unsigned char *dat, int dat_len, int cflags, int nmatch, regmatch_t *pmatch) { pg_wchar *data; size_t data_len; int regexec_result; regex_t re; char errMsg[100]; /* Convert data string to wide characters */ data = (pg_wchar *) palloc((dat_len + 1) * sizeof(pg_wchar)); data_len = pg_mb2wchar_with_len(dat, data, dat_len); /* Compile RE */ re = RE_compile_and_cache(text_re, cflags); /* Perform RE match and return result */ regexec_result = pg_regexec(&re_array[0].cre_re, data, data_len, 0, NULL, /* no details */ nmatch, pmatch, 0); pfree(data); if (regexec_result != REG_OKAY && regexec_result != REG_NOMATCH) { /* re failed??? */ pg_regerror(regexec_result, &re_array[0].cre_re, errMsg, sizeof(errMsg)); ereport(ERROR, (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), errmsg("regular expression failed: %s", errMsg))); } return (regexec_result == REG_OKAY); } /* * assign_regex_flavor - GUC hook to validate and set REGEX_FLAVOR */ const char * assign_regex_flavor(const char *value, bool doit, GucSource source) { if (pg_strcasecmp(value, "advanced") == 0) { if (doit) regex_flavor = REG_ADVANCED; } else if (pg_strcasecmp(value, "extended") == 0) { if (doit) regex_flavor = REG_EXTENDED; } else if (pg_strcasecmp(value, "basic") == 0) { if (doit) regex_flavor = REG_BASIC; } else return NULL; /* fail */ return value; /* OK */ } /* * interface routines called by the function manager */ Datum nameregexeq(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(RE_compile_and_execute(p, (unsigned char *) NameStr(*n), strlen(NameStr(*n)), regex_flavor, 0, NULL)); } Datum nameregexne(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, (unsigned char *) NameStr(*n), strlen(NameStr(*n)), regex_flavor, 0, NULL)); } Datum textregexeq(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(RE_compile_and_execute(p, (unsigned char *) VARDATA(s), VARSIZE(s) - VARHDRSZ, regex_flavor, 0, NULL)); } Datum textregexne(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, (unsigned char *) VARDATA(s), VARSIZE(s) - VARHDRSZ, regex_flavor, 0, NULL)); } /* * routines that use the regexp stuff, but ignore the case. * for this, we use the REG_ICASE flag to pg_regcomp */ Datum nameicregexeq(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(RE_compile_and_execute(p, (unsigned char *) NameStr(*n), strlen(NameStr(*n)), regex_flavor | REG_ICASE, 0, NULL)); } Datum nameicregexne(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, (unsigned char *) NameStr(*n), strlen(NameStr(*n)), regex_flavor | REG_ICASE, 0, NULL)); } Datum texticregexeq(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(RE_compile_and_execute(p, (unsigned char *) VARDATA(s), VARSIZE(s) - VARHDRSZ, regex_flavor | REG_ICASE, 0, NULL)); } Datum texticregexne(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, (unsigned char *) VARDATA(s), VARSIZE(s) - VARHDRSZ, regex_flavor | REG_ICASE, 0, NULL)); } /* * textregexsubstr() * Return a substring matched by a regular expression. */ Datum textregexsubstr(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); bool match; regmatch_t pmatch[2]; /* * We pass two regmatch_t structs to get info about the overall match * and the match for the first parenthesized subexpression (if any). * If there is a parenthesized subexpression, we return what it * matched; else return what the whole regexp matched. */ match = RE_compile_and_execute(p, (unsigned char *) VARDATA(s), VARSIZE(s) - VARHDRSZ, regex_flavor, 2, pmatch); /* match? then return the substring matching the pattern */ if (match) { int so, eo; so = pmatch[1].rm_so; eo = pmatch[1].rm_eo; if (so < 0 || eo < 0) { /* no parenthesized subexpression */ so = pmatch[0].rm_so; eo = pmatch[0].rm_eo; } return DirectFunctionCall3(text_substr, PointerGetDatum(s), Int32GetDatum(so + 1), Int32GetDatum(eo - so)); } PG_RETURN_NULL(); } /* * textregexreplace_noopt() * Return a replace string matched by a regular expression. * This function is a version that doesn't specify the option of * textregexreplace. This is case sensitive, replace the first * instance only. */ Datum textregexreplace_noopt(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); text *r = PG_GETARG_TEXT_P(2); regex_t re; re = RE_compile_and_cache(p, regex_flavor); return DirectFunctionCall4(replace_text_regexp, PointerGetDatum(s), PointerGetDatum(&re), PointerGetDatum(r), BoolGetDatum(false)); } /* * textregexreplace() * Return a replace string matched by a regular expression. */ Datum textregexreplace(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_P(0); text *p = PG_GETARG_TEXT_P(1); text *r = PG_GETARG_TEXT_P(2); text *opt = PG_GETARG_TEXT_P(3); char *opt_p = VARDATA(opt); int opt_len = (VARSIZE(opt) - VARHDRSZ); int i; bool global = false; bool ignorecase = false; regex_t re; /* parse options */ for (i = 0; i < opt_len; i++) { switch (opt_p[i]) { case 'i': ignorecase = true; break; case 'g': global = true; break; default: ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid option of regexp_replace: %c", opt_p[i]))); break; } } if (ignorecase) re = RE_compile_and_cache(p, regex_flavor | REG_ICASE); else re = RE_compile_and_cache(p, regex_flavor); return DirectFunctionCall4(replace_text_regexp, PointerGetDatum(s), PointerGetDatum(&re), PointerGetDatum(r), BoolGetDatum(global)); } /* similar_escape() * Convert a SQL99 regexp pattern to POSIX style, so it can be used by * our regexp engine. */ Datum similar_escape(PG_FUNCTION_ARGS) { text *pat_text; text *esc_text; text *result; unsigned char *p, *e, *r; int plen, elen; bool afterescape = false; int nquotes = 0; /* This function is not strict, so must test explicitly */ if (PG_ARGISNULL(0)) PG_RETURN_NULL(); pat_text = PG_GETARG_TEXT_P(0); p = VARDATA(pat_text); plen = (VARSIZE(pat_text) - VARHDRSZ); if (PG_ARGISNULL(1)) { /* No ESCAPE clause provided; default to backslash as escape */ e = "\\"; elen = 1; } else { esc_text = PG_GETARG_TEXT_P(1); e = VARDATA(esc_text); elen = (VARSIZE(esc_text) - VARHDRSZ); if (elen == 0) e = NULL; /* no escape character */ else if (elen != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_ESCAPE_SEQUENCE), errmsg("invalid escape string"), errhint("Escape string must be empty or one character."))); } /* We need room for ^, $, and up to 2 output bytes per input byte */ result = (text *) palloc(VARHDRSZ + 2 + 2 * plen); r = VARDATA(result); *r++ = '^'; while (plen > 0) { unsigned char pchar = *p; if (afterescape) { if (pchar == '"') /* for SUBSTRING patterns */ *r++ = ((nquotes++ % 2) == 0) ? '(' : ')'; else { *r++ = '\\'; *r++ = pchar; } afterescape = false; } else if (e && pchar == *e) { /* SQL99 escape character; do not send to output */ afterescape = true; } else if (pchar == '%') { *r++ = '.'; *r++ = '*'; } else if (pchar == '_') *r++ = '.'; else if (pchar == '\\' || pchar == '.' || pchar == '?' || pchar == '{') { *r++ = '\\'; *r++ = pchar; } else *r++ = pchar; p++, plen--; } *r++ = '$'; VARATT_SIZEP(result) = r - ((unsigned char *) result); PG_RETURN_TEXT_P(result); }