/*------------------------------------------------------------------------- * * parse_node.c * various routines that make nodes for querytrees * * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/parser/parse_node.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/heapam.h" #include "catalog/pg_type.h" #include "mb/pg_wchar.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "parser/parsetree.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_relation.h" #include "utils/builtins.h" #include "utils/int8.h" #include "utils/lsyscache.h" #include "utils/syscache.h" #include "utils/varbit.h" static void pcb_error_callback(void *arg); /* * make_parsestate * Allocate and initialize a new ParseState. * * Caller should eventually release the ParseState via free_parsestate(). */ ParseState * make_parsestate(ParseState *parentParseState) { ParseState *pstate; pstate = palloc0(sizeof(ParseState)); pstate->parentParseState = parentParseState; /* Fill in fields that don't start at null/false/zero */ pstate->p_next_resno = 1; if (parentParseState) { pstate->p_sourcetext = parentParseState->p_sourcetext; /* all hooks are copied from parent */ pstate->p_pre_columnref_hook = parentParseState->p_pre_columnref_hook; pstate->p_post_columnref_hook = parentParseState->p_post_columnref_hook; pstate->p_paramref_hook = parentParseState->p_paramref_hook; pstate->p_coerce_param_hook = parentParseState->p_coerce_param_hook; pstate->p_ref_hook_state = parentParseState->p_ref_hook_state; } return pstate; } /* * free_parsestate * Release a ParseState and any subsidiary resources. */ void free_parsestate(ParseState *pstate) { /* * Check that we did not produce too many resnos; at the very least we * cannot allow more than 2^16, since that would exceed the range of a * AttrNumber. It seems safest to use MaxTupleAttributeNumber. */ if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("target lists can have at most %d entries", MaxTupleAttributeNumber))); if (pstate->p_target_relation != NULL) heap_close(pstate->p_target_relation, NoLock); pfree(pstate); } /* * parser_errposition * Report a parse-analysis-time cursor position, if possible. * * This is expected to be used within an ereport() call. The return value * is a dummy (always 0, in fact). * * The locations stored in raw parsetrees are byte offsets into the source * string. We have to convert them to 1-based character indexes for reporting * to clients. (We do things this way to avoid unnecessary overhead in the * normal non-error case: computing character indexes would be much more * expensive than storing token offsets.) */ int parser_errposition(ParseState *pstate, int location) { int pos; /* No-op if location was not provided */ if (location < 0) return 0; /* Can't do anything if source text is not available */ if (pstate == NULL || pstate->p_sourcetext == NULL) return 0; /* Convert offset to character number */ pos = pg_mbstrlen_with_len(pstate->p_sourcetext, location) + 1; /* And pass it to the ereport mechanism */ return errposition(pos); } /* * setup_parser_errposition_callback * Arrange for non-parser errors to report an error position * * Sometimes the parser calls functions that aren't part of the parser * subsystem and can't reasonably be passed a ParseState; yet we would * like any errors thrown in those functions to be tagged with a parse * error location. Use this function to set up an error context stack * entry that will accomplish that. Usage pattern: * * declare a local variable "ParseCallbackState pcbstate" * ... * setup_parser_errposition_callback(&pcbstate, pstate, location); * call function that might throw error; * cancel_parser_errposition_callback(&pcbstate); */ void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location) { /* Setup error traceback support for ereport() */ pcbstate->pstate = pstate; pcbstate->location = location; pcbstate->errcontext.callback = pcb_error_callback; pcbstate->errcontext.arg = (void *) pcbstate; pcbstate->errcontext.previous = error_context_stack; error_context_stack = &pcbstate->errcontext; } /* * Cancel a previously-set-up errposition callback. */ void cancel_parser_errposition_callback(ParseCallbackState *pcbstate) { /* Pop the error context stack */ error_context_stack = pcbstate->errcontext.previous; } /* * Error context callback for inserting parser error location. * * Note that this will be called for *any* error occurring while the * callback is installed. We avoid inserting an irrelevant error location * if the error is a query cancel --- are there any other important cases? */ static void pcb_error_callback(void *arg) { ParseCallbackState *pcbstate = (ParseCallbackState *) arg; if (geterrcode() != ERRCODE_QUERY_CANCELED) (void) parser_errposition(pcbstate->pstate, pcbstate->location); } /* * make_var * Build a Var node for an attribute identified by RTE and attrno */ Var * make_var(ParseState *pstate, RangeTblEntry *rte, int attrno, int location) { Var *result; int vnum, sublevels_up; Oid vartypeid; int32 type_mod; Oid varcollid; vnum = RTERangeTablePosn(pstate, rte, &sublevels_up); get_rte_attribute_type(rte, attrno, &vartypeid, &type_mod, &varcollid); result = makeVar(vnum, attrno, vartypeid, type_mod, varcollid, sublevels_up); result->location = location; return result; } /* * transformArrayType() * Identify the types involved in a subscripting operation * * On entry, arrayType/arrayTypmod identify the type of the input value * to be subscripted (which could be a domain type). These are modified * if necessary to identify the actual array type and typmod, and the * array's element type is returned. An error is thrown if the input isn't * an array type. */ Oid transformArrayType(Oid *arrayType, int32 *arrayTypmod) { Oid origArrayType = *arrayType; Oid elementType; HeapTuple type_tuple_array; Form_pg_type type_struct_array; /* * If the input is a domain, smash to base type, and extract the actual * typmod to be applied to the base type. Subscripting a domain is an * operation that necessarily works on the base array type, not the domain * itself. (Note that we provide no method whereby the creator of a * domain over an array type could hide its ability to be subscripted.) */ *arrayType = getBaseTypeAndTypmod(*arrayType, arrayTypmod); /* Get the type tuple for the array */ type_tuple_array = SearchSysCache1(TYPEOID, ObjectIdGetDatum(*arrayType)); if (!HeapTupleIsValid(type_tuple_array)) elog(ERROR, "cache lookup failed for type %u", *arrayType); type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple_array); /* needn't check typisdefined since this will fail anyway */ elementType = type_struct_array->typelem; if (elementType == InvalidOid) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot subscript type %s because it is not an array", format_type_be(origArrayType)))); ReleaseSysCache(type_tuple_array); return elementType; } /* * transformArraySubscripts() * Transform array subscripting. This is used for both * array fetch and array assignment. * * In an array fetch, we are given a source array value and we produce an * expression that represents the result of extracting a single array element * or an array slice. * * In an array assignment, we are given a destination array value plus a * source value that is to be assigned to a single element or a slice of * that array. We produce an expression that represents the new array value * with the source data inserted into the right part of the array. * * For both cases, if the source array is of a domain-over-array type, * the result is of the base array type or its element type; essentially, * we must fold a domain to its base type before applying subscripting. * * pstate Parse state * arrayBase Already-transformed expression for the array as a whole * arrayType OID of array's datatype (should match type of arrayBase, * or be the base type of arrayBase's domain type) * elementType OID of array's element type (fetch with transformArrayType, * or pass InvalidOid to do it here) * arrayTypMod typmod for the array (which is also typmod for the elements) * indirection Untransformed list of subscripts (must not be NIL) * assignFrom NULL for array fetch, else transformed expression for source. */ ArrayRef * transformArraySubscripts(ParseState *pstate, Node *arrayBase, Oid arrayType, Oid elementType, int32 arrayTypMod, List *indirection, Node *assignFrom) { bool isSlice = false; List *upperIndexpr = NIL; List *lowerIndexpr = NIL; ListCell *idx; ArrayRef *aref; /* * Caller may or may not have bothered to determine elementType. Note * that if the caller did do so, arrayType/arrayTypMod must be as modified * by transformArrayType, ie, smash domain to base type. */ if (!OidIsValid(elementType)) elementType = transformArrayType(&arrayType, &arrayTypMod); /* * A list containing only single subscripts refers to a single array * element. If any of the items are double subscripts (lower:upper), then * the subscript expression means an array slice operation. In this case, * we supply a default lower bound of 1 for any items that contain only a * single subscript. We have to prescan the indirection list to see if * there are any double subscripts. */ foreach(idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); if (ai->lidx != NULL) { isSlice = true; break; } } /* * Transform the subscript expressions. */ foreach(idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); Node *subexpr; Assert(IsA(ai, A_Indices)); if (isSlice) { if (ai->lidx) { subexpr = transformExpr(pstate, ai->lidx); /* If it's not int4 already, try to coerce */ subexpr = coerce_to_target_type(pstate, subexpr, exprType(subexpr), INT4OID, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1); if (subexpr == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("array subscript must have type integer"), parser_errposition(pstate, exprLocation(ai->lidx)))); } else { /* Make a constant 1 */ subexpr = (Node *) makeConst(INT4OID, -1, InvalidOid, sizeof(int32), Int32GetDatum(1), false, true); /* pass by value */ } lowerIndexpr = lappend(lowerIndexpr, subexpr); } subexpr = transformExpr(pstate, ai->uidx); /* If it's not int4 already, try to coerce */ subexpr = coerce_to_target_type(pstate, subexpr, exprType(subexpr), INT4OID, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1); if (subexpr == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("array subscript must have type integer"), parser_errposition(pstate, exprLocation(ai->uidx)))); upperIndexpr = lappend(upperIndexpr, subexpr); } /* * If doing an array store, coerce the source value to the right type. * (This should agree with the coercion done by transformAssignedExpr.) */ if (assignFrom != NULL) { Oid typesource = exprType(assignFrom); Oid typeneeded = isSlice ? arrayType : elementType; Node *newFrom; newFrom = coerce_to_target_type(pstate, assignFrom, typesource, typeneeded, arrayTypMod, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1); if (newFrom == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("array assignment requires type %s" " but expression is of type %s", format_type_be(typeneeded), format_type_be(typesource)), errhint("You will need to rewrite or cast the expression."), parser_errposition(pstate, exprLocation(assignFrom)))); assignFrom = newFrom; } /* * Ready to build the ArrayRef node. */ aref = makeNode(ArrayRef); aref->refarraytype = arrayType; aref->refelemtype = elementType; aref->reftypmod = arrayTypMod; /* refcollid will be set by parse_collate.c */ aref->refupperindexpr = upperIndexpr; aref->reflowerindexpr = lowerIndexpr; aref->refexpr = (Expr *) arrayBase; aref->refassgnexpr = (Expr *) assignFrom; return aref; } /* * make_const * * Convert a Value node (as returned by the grammar) to a Const node * of the "natural" type for the constant. Note that this routine is * only used when there is no explicit cast for the constant, so we * have to guess what type is wanted. * * For string literals we produce a constant of type UNKNOWN ---- whose * representation is the same as cstring, but it indicates to later type * resolution that we're not sure yet what type it should be considered. * Explicit "NULL" constants are also typed as UNKNOWN. * * For integers and floats we produce int4, int8, or numeric depending * on the value of the number. XXX We should produce int2 as well, * but additional cleanup is needed before we can do that; there are * too many examples that fail if we try. */ Const * make_const(ParseState *pstate, Value *value, int location) { Const *con; Datum val; int64 val64; Oid typeid; int typelen; bool typebyval; ParseCallbackState pcbstate; switch (nodeTag(value)) { case T_Integer: val = Int32GetDatum(intVal(value)); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; break; case T_Float: /* could be an oversize integer as well as a float ... */ if (scanint8(strVal(value), true, &val64)) { /* * It might actually fit in int32. Probably only INT_MIN can * occur, but we'll code the test generally just to be sure. */ int32 val32 = (int32) val64; if (val64 == (int64) val32) { val = Int32GetDatum(val32); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; } else { val = Int64GetDatum(val64); typeid = INT8OID; typelen = sizeof(int64); typebyval = FLOAT8PASSBYVAL; /* int8 and float8 alike */ } } else { /* arrange to report location if numeric_in() fails */ setup_parser_errposition_callback(&pcbstate, pstate, location); val = DirectFunctionCall3(numeric_in, CStringGetDatum(strVal(value)), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); cancel_parser_errposition_callback(&pcbstate); typeid = NUMERICOID; typelen = -1; /* variable len */ typebyval = false; } break; case T_String: /* * We assume here that UNKNOWN's internal representation is the * same as CSTRING */ val = CStringGetDatum(strVal(value)); typeid = UNKNOWNOID; /* will be coerced later */ typelen = -2; /* cstring-style varwidth type */ typebyval = false; break; case T_BitString: /* arrange to report location if bit_in() fails */ setup_parser_errposition_callback(&pcbstate, pstate, location); val = DirectFunctionCall3(bit_in, CStringGetDatum(strVal(value)), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); cancel_parser_errposition_callback(&pcbstate); typeid = BITOID; typelen = -1; typebyval = false; break; case T_Null: /* return a null const */ con = makeConst(UNKNOWNOID, -1, InvalidOid, -2, (Datum) 0, true, false); con->location = location; return con; default: elog(ERROR, "unrecognized node type: %d", (int) nodeTag(value)); return NULL; /* keep compiler quiet */ } con = makeConst(typeid, -1, /* typmod -1 is OK for all cases */ InvalidOid, /* all cases are uncollatable types */ typelen, val, false, typebyval); con->location = location; return con; }