/*------------------------------------------------------------------------- * * testint128.c * Testbed for roll-our-own 128-bit integer arithmetic. * * This is a standalone test program that compares the behavior of an * implementation in int128.h to an (assumed correct) int128 native type. * * Copyright (c) 2017, PostgreSQL Global Development Group * * * IDENTIFICATION * src/tools/testint128.c * *------------------------------------------------------------------------- */ #include "postgres_fe.h" /* * By default, we test the non-native implementation in int128.h; but * by predefining USE_NATIVE_INT128 to 1, you can test the native * implementation, just to be sure. */ #ifndef USE_NATIVE_INT128 #define USE_NATIVE_INT128 0 #endif #include "common/int128.h" /* * We assume the parts of this union are laid out compatibly. */ typedef union { int128 i128; INT128 I128; union { #ifdef WORDS_BIGENDIAN int64 hi; uint64 lo; #else uint64 lo; int64 hi; #endif } hl; } test128; /* * Control version of comparator. */ static inline int my_int128_compare(int128 x, int128 y) { if (x < y) return -1; if (x > y) return 1; return 0; } /* * Get a random uint64 value. * We don't assume random() is good for more than 16 bits. */ static uint64 get_random_uint64(void) { uint64 x; x = (uint64) (random() & 0xFFFF) << 48; x |= (uint64) (random() & 0xFFFF) << 32; x |= (uint64) (random() & 0xFFFF) << 16; x |= (uint64) (random() & 0xFFFF); return x; } /* * Main program. * * Generates a lot of random numbers and tests the implementation for each. * The results should be reproducible, since we don't call srandom(). * * You can give a loop count if you don't like the default 1B iterations. */ int main(int argc, char **argv) { long count; if (argc >= 2) count = strtol(argv[1], NULL, 0); else count = 1000000000; while (count-- > 0) { int64 x = get_random_uint64(); int64 y = get_random_uint64(); int64 z = get_random_uint64(); test128 t1; test128 t2; /* check unsigned addition */ t1.hl.hi = x; t1.hl.lo = y; t2 = t1; t1.i128 += (int128) (uint64) z; int128_add_uint64(&t2.I128, (uint64) z); if (t1.hl.hi != t2.hl.hi || t1.hl.lo != t2.hl.lo) { printf("%016lX%016lX + unsigned %lX\n", x, y, z); printf("native = %016lX%016lX\n", t1.hl.hi, t1.hl.lo); printf("result = %016lX%016lX\n", t2.hl.hi, t2.hl.lo); return 1; } /* check signed addition */ t1.hl.hi = x; t1.hl.lo = y; t2 = t1; t1.i128 += (int128) z; int128_add_int64(&t2.I128, z); if (t1.hl.hi != t2.hl.hi || t1.hl.lo != t2.hl.lo) { printf("%016lX%016lX + signed %lX\n", x, y, z); printf("native = %016lX%016lX\n", t1.hl.hi, t1.hl.lo); printf("result = %016lX%016lX\n", t2.hl.hi, t2.hl.lo); return 1; } /* check multiplication */ t1.i128 = (int128) x * (int128) y; t2.hl.hi = t2.hl.lo = 0; int128_add_int64_mul_int64(&t2.I128, x, y); if (t1.hl.hi != t2.hl.hi || t1.hl.lo != t2.hl.lo) { printf("%lX * %lX\n", x, y); printf("native = %016lX%016lX\n", t1.hl.hi, t1.hl.lo); printf("result = %016lX%016lX\n", t2.hl.hi, t2.hl.lo); return 1; } /* check comparison */ t1.hl.hi = x; t1.hl.lo = y; t2.hl.hi = z; t2.hl.lo = get_random_uint64(); if (my_int128_compare(t1.i128, t2.i128) != int128_compare(t1.I128, t2.I128)) { printf("comparison failure: %d vs %d\n", my_int128_compare(t1.i128, t2.i128), int128_compare(t1.I128, t2.I128)); printf("arg1 = %016lX%016lX\n", t1.hl.hi, t1.hl.lo); printf("arg2 = %016lX%016lX\n", t2.hl.hi, t2.hl.lo); return 1; } /* check case with identical hi parts; above will hardly ever hit it */ t2.hl.hi = x; if (my_int128_compare(t1.i128, t2.i128) != int128_compare(t1.I128, t2.I128)) { printf("comparison failure: %d vs %d\n", my_int128_compare(t1.i128, t2.i128), int128_compare(t1.I128, t2.I128)); printf("arg1 = %016lX%016lX\n", t1.hl.hi, t1.hl.lo); printf("arg2 = %016lX%016lX\n", t2.hl.hi, t2.hl.lo); return 1; } } return 0; }