/*------------------------------------------------------------------------- * * xlogutils.c * * PostgreSQL transaction log manager utility routines * * This file contains support routines that are used by XLOG replay functions. * None of this code is used during normal system operation. * * * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/backend/access/transam/xlogutils.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/xlog.h" #include "access/xlogutils.h" #include "catalog/catalog.h" #include "storage/smgr.h" #include "utils/guc.h" #include "utils/hsearch.h" #include "utils/rel.h" /* * During XLOG replay, we may see XLOG records for incremental updates of * pages that no longer exist, because their relation was later dropped or * truncated. (Note: this is only possible when full_page_writes = OFF, * since when it's ON, the first reference we see to a page should always * be a full-page rewrite not an incremental update.) Rather than simply * ignoring such records, we make a note of the referenced page, and then * complain if we don't actually see a drop or truncate covering the page * later in replay. */ typedef struct xl_invalid_page_key { RelFileNode node; /* the relation */ ForkNumber forkno; /* the fork number */ BlockNumber blkno; /* the page */ } xl_invalid_page_key; typedef struct xl_invalid_page { xl_invalid_page_key key; /* hash key ... must be first */ bool present; /* page existed but contained zeroes */ } xl_invalid_page; static HTAB *invalid_page_tab = NULL; /* Report a reference to an invalid page */ static void report_invalid_page(int elevel, RelFileNode node, ForkNumber forkno, BlockNumber blkno, bool present) { char *path = relpathperm(node, forkno); if (present) elog(elevel, "page %u of relation %s is uninitialized", blkno, path); else elog(elevel, "page %u of relation %s does not exist", blkno, path); pfree(path); } /* Log a reference to an invalid page */ static void log_invalid_page(RelFileNode node, ForkNumber forkno, BlockNumber blkno, bool present) { xl_invalid_page_key key; xl_invalid_page *hentry; bool found; /* * Once recovery has reached a consistent state, the invalid-page table * should be empty and remain so. If a reference to an invalid page is * found after consistency is reached, PANIC immediately. This might * seem aggressive, but it's better than letting the invalid reference * linger in the hash table until the end of recovery and PANIC there, * which might come only much later if this is a standby server. */ if (reachedConsistency) { report_invalid_page(WARNING, node, forkno, blkno, present); elog(PANIC, "WAL contains references to invalid pages"); } /* * Log references to invalid pages at DEBUG1 level. This allows some * tracing of the cause (note the elog context mechanism will tell us * something about the XLOG record that generated the reference). */ if (log_min_messages <= DEBUG1 || client_min_messages <= DEBUG1) report_invalid_page(DEBUG1, node, forkno, blkno, present); if (invalid_page_tab == NULL) { /* create hash table when first needed */ HASHCTL ctl; memset(&ctl, 0, sizeof(ctl)); ctl.keysize = sizeof(xl_invalid_page_key); ctl.entrysize = sizeof(xl_invalid_page); ctl.hash = tag_hash; invalid_page_tab = hash_create("XLOG invalid-page table", 100, &ctl, HASH_ELEM | HASH_FUNCTION); } /* we currently assume xl_invalid_page_key contains no padding */ key.node = node; key.forkno = forkno; key.blkno = blkno; hentry = (xl_invalid_page *) hash_search(invalid_page_tab, (void *) &key, HASH_ENTER, &found); if (!found) { /* hash_search already filled in the key */ hentry->present = present; } else { /* repeat reference ... leave "present" as it was */ } } /* Forget any invalid pages >= minblkno, because they've been dropped */ static void forget_invalid_pages(RelFileNode node, ForkNumber forkno, BlockNumber minblkno) { HASH_SEQ_STATUS status; xl_invalid_page *hentry; if (invalid_page_tab == NULL) return; /* nothing to do */ hash_seq_init(&status, invalid_page_tab); while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL) { if (RelFileNodeEquals(hentry->key.node, node) && hentry->key.forkno == forkno && hentry->key.blkno >= minblkno) { if (log_min_messages <= DEBUG2 || client_min_messages <= DEBUG2) { char *path = relpathperm(hentry->key.node, forkno); elog(DEBUG2, "page %u of relation %s has been dropped", hentry->key.blkno, path); pfree(path); } if (hash_search(invalid_page_tab, (void *) &hentry->key, HASH_REMOVE, NULL) == NULL) elog(ERROR, "hash table corrupted"); } } } /* Forget any invalid pages in a whole database */ static void forget_invalid_pages_db(Oid dbid) { HASH_SEQ_STATUS status; xl_invalid_page *hentry; if (invalid_page_tab == NULL) return; /* nothing to do */ hash_seq_init(&status, invalid_page_tab); while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL) { if (hentry->key.node.dbNode == dbid) { if (log_min_messages <= DEBUG2 || client_min_messages <= DEBUG2) { char *path = relpathperm(hentry->key.node, hentry->key.forkno); elog(DEBUG2, "page %u of relation %s has been dropped", hentry->key.blkno, path); pfree(path); } if (hash_search(invalid_page_tab, (void *) &hentry->key, HASH_REMOVE, NULL) == NULL) elog(ERROR, "hash table corrupted"); } } } /* Are there any unresolved references to invalid pages? */ bool XLogHaveInvalidPages(void) { if (invalid_page_tab != NULL && hash_get_num_entries(invalid_page_tab) > 0) return true; return false; } /* Complain about any remaining invalid-page entries */ void XLogCheckInvalidPages(void) { HASH_SEQ_STATUS status; xl_invalid_page *hentry; bool foundone = false; if (invalid_page_tab == NULL) return; /* nothing to do */ hash_seq_init(&status, invalid_page_tab); /* * Our strategy is to emit WARNING messages for all remaining entries and * only PANIC after we've dumped all the available info. */ while ((hentry = (xl_invalid_page *) hash_seq_search(&status)) != NULL) { report_invalid_page(WARNING, hentry->key.node, hentry->key.forkno, hentry->key.blkno, hentry->present); foundone = true; } if (foundone) elog(PANIC, "WAL contains references to invalid pages"); hash_destroy(invalid_page_tab); invalid_page_tab = NULL; } /* * XLogReadBuffer * Read a page during XLOG replay. * * This is a shorthand of XLogReadBufferExtended() followed by * LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE), for reading from the main * fork. * * (Getting the buffer lock is not really necessary during single-process * crash recovery, but some subroutines such as MarkBufferDirty will complain * if we don't have the lock. In hot standby mode it's definitely necessary.) * * The returned buffer is exclusively-locked. * * For historical reasons, instead of a ReadBufferMode argument, this only * supports RBM_ZERO (init == true) and RBM_NORMAL (init == false) modes. */ Buffer XLogReadBuffer(RelFileNode rnode, BlockNumber blkno, bool init) { Buffer buf; buf = XLogReadBufferExtended(rnode, MAIN_FORKNUM, blkno, init ? RBM_ZERO : RBM_NORMAL); if (BufferIsValid(buf)) LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); return buf; } /* * XLogReadBufferExtended * Read a page during XLOG replay * * This is functionally comparable to ReadBufferExtended. There's some * differences in the behavior wrt. the "mode" argument: * * In RBM_NORMAL mode, if the page doesn't exist, or contains all-zeroes, we * return InvalidBuffer. In this case the caller should silently skip the * update on this page. (In this situation, we expect that the page was later * dropped or truncated. If we don't see evidence of that later in the WAL * sequence, we'll complain at the end of WAL replay.) * * In RBM_ZERO and RBM_ZERO_ON_ERROR modes, if the page doesn't exist, the * relation is extended with all-zeroes pages up to the given block number. */ Buffer XLogReadBufferExtended(RelFileNode rnode, ForkNumber forknum, BlockNumber blkno, ReadBufferMode mode) { BlockNumber lastblock; Buffer buffer; SMgrRelation smgr; Assert(blkno != P_NEW); /* Open the relation at smgr level */ smgr = smgropen(rnode, InvalidBackendId); /* * Create the target file if it doesn't already exist. This lets us cope * if the replay sequence contains writes to a relation that is later * deleted. (The original coding of this routine would instead suppress * the writes, but that seems like it risks losing valuable data if the * filesystem loses an inode during a crash. Better to write the data * until we are actually told to delete the file.) */ smgrcreate(smgr, forknum, true); lastblock = smgrnblocks(smgr, forknum); if (blkno < lastblock) { /* page exists in file */ buffer = ReadBufferWithoutRelcache(rnode, forknum, blkno, mode, NULL); } else { /* hm, page doesn't exist in file */ if (mode == RBM_NORMAL) { log_invalid_page(rnode, forknum, blkno, false); return InvalidBuffer; } /* OK to extend the file */ /* we do this in recovery only - no rel-extension lock needed */ Assert(InRecovery); buffer = InvalidBuffer; while (blkno >= lastblock) { if (buffer != InvalidBuffer) ReleaseBuffer(buffer); buffer = ReadBufferWithoutRelcache(rnode, forknum, P_NEW, mode, NULL); lastblock++; } Assert(BufferGetBlockNumber(buffer) == blkno); } if (mode == RBM_NORMAL) { /* check that page has been initialized */ Page page = (Page) BufferGetPage(buffer); /* * We assume that PageIsNew is safe without a lock. During recovery, * there should be no other backends that could modify the buffer at * the same time. */ if (PageIsNew(page)) { ReleaseBuffer(buffer); log_invalid_page(rnode, forknum, blkno, true); return InvalidBuffer; } } return buffer; } /* * Struct actually returned by XLogFakeRelcacheEntry, though the declared * return type is Relation. */ typedef struct { RelationData reldata; /* Note: this must be first */ FormData_pg_class pgc; } FakeRelCacheEntryData; typedef FakeRelCacheEntryData *FakeRelCacheEntry; /* * Create a fake relation cache entry for a physical relation * * It's often convenient to use the same functions in XLOG replay as in the * main codepath, but those functions typically work with a relcache entry. * We don't have a working relation cache during XLOG replay, but this * function can be used to create a fake relcache entry instead. Only the * fields related to physical storage, like rd_rel, are initialized, so the * fake entry is only usable in low-level operations like ReadBuffer(). * * Caller must free the returned entry with FreeFakeRelcacheEntry(). */ Relation CreateFakeRelcacheEntry(RelFileNode rnode) { FakeRelCacheEntry fakeentry; Relation rel; /* Allocate the Relation struct and all related space in one block. */ fakeentry = palloc0(sizeof(FakeRelCacheEntryData)); rel = (Relation) fakeentry; rel->rd_rel = &fakeentry->pgc; rel->rd_node = rnode; /* We will never be working with temp rels during recovery */ rel->rd_backend = InvalidBackendId; /* We don't know the name of the relation; use relfilenode instead */ sprintf(RelationGetRelationName(rel), "%u", rnode.relNode); /* * We set up the lockRelId in case anything tries to lock the dummy * relation. Note that this is fairly bogus since relNode may be * different from the relation's OID. It shouldn't really matter though, * since we are presumably running by ourselves and can't have any lock * conflicts ... */ rel->rd_lockInfo.lockRelId.dbId = rnode.dbNode; rel->rd_lockInfo.lockRelId.relId = rnode.relNode; rel->rd_smgr = NULL; return rel; } /* * Free a fake relation cache entry. */ void FreeFakeRelcacheEntry(Relation fakerel) { pfree(fakerel); } /* * Drop a relation during XLOG replay * * This is called when the relation is about to be deleted; we need to remove * any open "invalid-page" records for the relation. */ void XLogDropRelation(RelFileNode rnode, ForkNumber forknum) { forget_invalid_pages(rnode, forknum, 0); } /* * Drop a whole database during XLOG replay * * As above, but for DROP DATABASE instead of dropping a single rel */ void XLogDropDatabase(Oid dbid) { /* * This is unnecessarily heavy-handed, as it will close SMgrRelation * objects for other databases as well. DROP DATABASE occurs seldom enough * that it's not worth introducing a variant of smgrclose for just this * purpose. XXX: Or should we rather leave the smgr entries dangling? */ smgrcloseall(); forget_invalid_pages_db(dbid); } /* * Truncate a relation during XLOG replay * * We need to clean up any open "invalid-page" records for the dropped pages. */ void XLogTruncateRelation(RelFileNode rnode, ForkNumber forkNum, BlockNumber nblocks) { forget_invalid_pages(rnode, forkNum, nblocks); }