/*------------------------------------------------------------------------- * * plancache.c * Plan cache management. * * The plan cache manager has two principal responsibilities: deciding when * to use a generic plan versus a custom (parameter-value-specific) plan, * and tracking whether cached plans need to be invalidated because of schema * changes in the objects they depend on. * * The logic for choosing generic or custom plans is in choose_custom_plan, * which see for comments. * * Cache invalidation is driven off sinval events. Any CachedPlanSource * that matches the event is marked invalid, as is its generic CachedPlan * if it has one. When (and if) the next demand for a cached plan occurs, * parse analysis and rewrite is repeated to build a new valid query tree, * and then planning is performed as normal. We also force re-analysis and * re-planning if the active search_path is different from the previous time. * * Note that if the sinval was a result of user DDL actions, parse analysis * could throw an error, for example if a column referenced by the query is * no longer present. Another possibility is for the query's output tupdesc * to change (for instance "SELECT *" might expand differently than before). * The creator of a cached plan can specify whether it is allowable for the * query to change output tupdesc on replan --- if so, it's up to the * caller to notice changes and cope with them. * * Currently, we track exactly the dependencies of plans on relations and * user-defined functions. On relcache invalidation events or pg_proc * syscache invalidation events, we invalidate just those plans that depend * on the particular object being modified. (Note: this scheme assumes * that any table modification that requires replanning will generate a * relcache inval event.) We also watch for inval events on certain other * system catalogs, such as pg_namespace; but for them, our response is * just to invalidate all plans. We expect updates on those catalogs to * be infrequent enough that more-detailed tracking is not worth the effort. * * * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/utils/cache/plancache.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "access/transam.h" #include "catalog/namespace.h" #include "executor/executor.h" #include "executor/spi.h" #include "nodes/nodeFuncs.h" #include "optimizer/planmain.h" #include "optimizer/prep.h" #include "parser/analyze.h" #include "parser/parsetree.h" #include "storage/lmgr.h" #include "tcop/pquery.h" #include "tcop/utility.h" #include "utils/inval.h" #include "utils/memutils.h" #include "utils/resowner_private.h" #include "utils/snapmgr.h" #include "utils/syscache.h" /* * This is the head of the backend's list of "saved" CachedPlanSources (i.e., * those that are in long-lived storage and are examined for sinval events). * We thread the structs manually instead of using List cells so that we can * guarantee to save a CachedPlanSource without error. */ static CachedPlanSource *first_saved_plan = NULL; static void ReleaseGenericPlan(CachedPlanSource *plansource); static List *RevalidateCachedQuery(CachedPlanSource *plansource); static bool CheckCachedPlan(CachedPlanSource *plansource); static CachedPlan *BuildCachedPlan(CachedPlanSource *plansource, List *qlist, ParamListInfo boundParams); static bool choose_custom_plan(CachedPlanSource *plansource, ParamListInfo boundParams); static double cached_plan_cost(CachedPlan *plan); static void AcquireExecutorLocks(List *stmt_list, bool acquire); static void AcquirePlannerLocks(List *stmt_list, bool acquire); static void ScanQueryForLocks(Query *parsetree, bool acquire); static bool ScanQueryWalker(Node *node, bool *acquire); static bool plan_list_is_transient(List *stmt_list); static TupleDesc PlanCacheComputeResultDesc(List *stmt_list); static void PlanCacheRelCallback(Datum arg, Oid relid); static void PlanCacheFuncCallback(Datum arg, int cacheid, uint32 hashvalue); static void PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue); /* * InitPlanCache: initialize module during InitPostgres. * * All we need to do is hook into inval.c's callback lists. */ void InitPlanCache(void) { CacheRegisterRelcacheCallback(PlanCacheRelCallback, (Datum) 0); CacheRegisterSyscacheCallback(PROCOID, PlanCacheFuncCallback, (Datum) 0); CacheRegisterSyscacheCallback(NAMESPACEOID, PlanCacheSysCallback, (Datum) 0); CacheRegisterSyscacheCallback(OPEROID, PlanCacheSysCallback, (Datum) 0); CacheRegisterSyscacheCallback(AMOPOPID, PlanCacheSysCallback, (Datum) 0); } /* * CreateCachedPlan: initially create a plan cache entry. * * Creation of a cached plan is divided into two steps, CreateCachedPlan and * CompleteCachedPlan. CreateCachedPlan should be called after running the * query through raw_parser, but before doing parse analysis and rewrite; * CompleteCachedPlan is called after that. The reason for this arrangement * is that it can save one round of copying of the raw parse tree, since * the parser will normally scribble on the raw parse tree. Callers would * otherwise need to make an extra copy of the parse tree to ensure they * still had a clean copy to present at plan cache creation time. * * All arguments presented to CreateCachedPlan are copied into a memory * context created as a child of the call-time CurrentMemoryContext, which * should be a reasonably short-lived working context that will go away in * event of an error. This ensures that the cached plan data structure will * likewise disappear if an error occurs before we have fully constructed it. * Once constructed, the cached plan can be made longer-lived, if needed, * by calling SaveCachedPlan. * * raw_parse_tree: output of raw_parser() * query_string: original query text * commandTag: compile-time-constant tag for query, or NULL if empty query */ CachedPlanSource * CreateCachedPlan(Node *raw_parse_tree, const char *query_string, const char *commandTag) { CachedPlanSource *plansource; MemoryContext source_context; MemoryContext oldcxt; Assert(query_string != NULL); /* required as of 8.4 */ /* * Make a dedicated memory context for the CachedPlanSource and its * permanent subsidiary data. It's probably not going to be large, but * just in case, use the default maxsize parameter. Initially it's a * child of the caller's context (which we assume to be transient), so * that it will be cleaned up on error. */ source_context = AllocSetContextCreate(CurrentMemoryContext, "CachedPlanSource", ALLOCSET_SMALL_MINSIZE, ALLOCSET_SMALL_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); /* * Create and fill the CachedPlanSource struct within the new context. * Most fields are just left empty for the moment. */ oldcxt = MemoryContextSwitchTo(source_context); plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); plansource->magic = CACHEDPLANSOURCE_MAGIC; plansource->raw_parse_tree = copyObject(raw_parse_tree); plansource->query_string = pstrdup(query_string); plansource->commandTag = commandTag; plansource->param_types = NULL; plansource->num_params = 0; plansource->parserSetup = NULL; plansource->parserSetupArg = NULL; plansource->cursor_options = 0; plansource->fixed_result = false; plansource->resultDesc = NULL; plansource->context = source_context; plansource->query_list = NIL; plansource->relationOids = NIL; plansource->invalItems = NIL; plansource->search_path = NULL; plansource->query_context = NULL; plansource->gplan = NULL; plansource->is_oneshot = false; plansource->is_complete = false; plansource->is_saved = false; plansource->is_valid = false; plansource->generation = 0; plansource->next_saved = NULL; plansource->generic_cost = -1; plansource->total_custom_cost = 0; plansource->num_custom_plans = 0; MemoryContextSwitchTo(oldcxt); return plansource; } /* * CreateOneShotCachedPlan: initially create a one-shot plan cache entry. * * This variant of CreateCachedPlan creates a plan cache entry that is meant * to be used only once. No data copying occurs: all data structures remain * in the caller's memory context (which typically should get cleared after * completing execution). The CachedPlanSource struct itself is also created * in that context. * * A one-shot plan cannot be saved or copied, since we make no effort to * preserve the raw parse tree unmodified. There is also no support for * invalidation, so plan use must be completed in the current transaction, * and DDL that might invalidate the querytree_list must be avoided as well. * * raw_parse_tree: output of raw_parser() * query_string: original query text * commandTag: compile-time-constant tag for query, or NULL if empty query */ CachedPlanSource * CreateOneShotCachedPlan(Node *raw_parse_tree, const char *query_string, const char *commandTag) { CachedPlanSource *plansource; Assert(query_string != NULL); /* required as of 8.4 */ /* * Create and fill the CachedPlanSource struct within the caller's memory * context. Most fields are just left empty for the moment. */ plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); plansource->magic = CACHEDPLANSOURCE_MAGIC; plansource->raw_parse_tree = raw_parse_tree; plansource->query_string = query_string; plansource->commandTag = commandTag; plansource->param_types = NULL; plansource->num_params = 0; plansource->parserSetup = NULL; plansource->parserSetupArg = NULL; plansource->cursor_options = 0; plansource->fixed_result = false; plansource->resultDesc = NULL; plansource->context = CurrentMemoryContext; plansource->query_list = NIL; plansource->relationOids = NIL; plansource->invalItems = NIL; plansource->search_path = NULL; plansource->query_context = NULL; plansource->gplan = NULL; plansource->is_oneshot = true; plansource->is_complete = false; plansource->is_saved = false; plansource->is_valid = false; plansource->generation = 0; plansource->next_saved = NULL; plansource->generic_cost = -1; plansource->total_custom_cost = 0; plansource->num_custom_plans = 0; return plansource; } /* * CompleteCachedPlan: second step of creating a plan cache entry. * * Pass in the analyzed-and-rewritten form of the query, as well as the * required subsidiary data about parameters and such. All passed values will * be copied into the CachedPlanSource's memory, except as specified below. * After this is called, GetCachedPlan can be called to obtain a plan, and * optionally the CachedPlanSource can be saved using SaveCachedPlan. * * If querytree_context is not NULL, the querytree_list must be stored in that * context (but the other parameters need not be). The querytree_list is not * copied, rather the given context is kept as the initial query_context of * the CachedPlanSource. (It should have been created as a child of the * caller's working memory context, but it will now be reparented to belong * to the CachedPlanSource.) The querytree_context is normally the context in * which the caller did raw parsing and parse analysis. This approach saves * one tree copying step compared to passing NULL, but leaves lots of extra * cruft in the query_context, namely whatever extraneous stuff parse analysis * created, as well as whatever went unused from the raw parse tree. Using * this option is a space-for-time tradeoff that is appropriate if the * CachedPlanSource is not expected to survive long. * * plancache.c cannot know how to copy the data referenced by parserSetupArg, * and it would often be inappropriate to do so anyway. When using that * option, it is caller's responsibility that the referenced data remains * valid for as long as the CachedPlanSource exists. * * If the CachedPlanSource is a "oneshot" plan, then no querytree copying * occurs at all, and querytree_context is ignored; it is caller's * responsibility that the passed querytree_list is sufficiently long-lived. * * plansource: structure returned by CreateCachedPlan * querytree_list: analyzed-and-rewritten form of query (list of Query nodes) * querytree_context: memory context containing querytree_list, * or NULL to copy querytree_list into a fresh context * param_types: array of fixed parameter type OIDs, or NULL if none * num_params: number of fixed parameters * parserSetup: alternate method for handling query parameters * parserSetupArg: data to pass to parserSetup * cursor_options: options bitmask to pass to planner * fixed_result: TRUE to disallow future changes in query's result tupdesc */ void CompleteCachedPlan(CachedPlanSource *plansource, List *querytree_list, MemoryContext querytree_context, Oid *param_types, int num_params, ParserSetupHook parserSetup, void *parserSetupArg, int cursor_options, bool fixed_result) { MemoryContext source_context = plansource->context; MemoryContext oldcxt = CurrentMemoryContext; /* Assert caller is doing things in a sane order */ Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); Assert(!plansource->is_complete); /* * If caller supplied a querytree_context, reparent it underneath the * CachedPlanSource's context; otherwise, create a suitable context and * copy the querytree_list into it. But no data copying should be done * for one-shot plans; for those, assume the passed querytree_list is * sufficiently long-lived. */ if (plansource->is_oneshot) { querytree_context = CurrentMemoryContext; } else if (querytree_context != NULL) { MemoryContextSetParent(querytree_context, source_context); MemoryContextSwitchTo(querytree_context); } else { /* Again, it's a good bet the querytree_context can be small */ querytree_context = AllocSetContextCreate(source_context, "CachedPlanQuery", ALLOCSET_SMALL_MINSIZE, ALLOCSET_SMALL_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); MemoryContextSwitchTo(querytree_context); querytree_list = (List *) copyObject(querytree_list); } plansource->query_context = querytree_context; plansource->query_list = querytree_list; /* * Use the planner machinery to extract dependencies. Data is saved in * query_context. (We assume that not a lot of extra cruft is created by * this call.) We can skip this for one-shot plans. */ if (!plansource->is_oneshot) extract_query_dependencies((Node *) querytree_list, &plansource->relationOids, &plansource->invalItems); /* * Also save the current search_path in the query_context. (This should * not generate much extra cruft either, since almost certainly the path * is already valid.) Again, don't really need it for one-shot plans. */ if (!plansource->is_oneshot) plansource->search_path = GetOverrideSearchPath(querytree_context); /* * Save the final parameter types (or other parameter specification data) * into the source_context, as well as our other parameters. Also save * the result tuple descriptor. */ MemoryContextSwitchTo(source_context); if (num_params > 0) { plansource->param_types = (Oid *) palloc(num_params * sizeof(Oid)); memcpy(plansource->param_types, param_types, num_params * sizeof(Oid)); } else plansource->param_types = NULL; plansource->num_params = num_params; plansource->parserSetup = parserSetup; plansource->parserSetupArg = parserSetupArg; plansource->cursor_options = cursor_options; plansource->fixed_result = fixed_result; plansource->resultDesc = PlanCacheComputeResultDesc(querytree_list); MemoryContextSwitchTo(oldcxt); plansource->is_complete = true; plansource->is_valid = true; } /* * SaveCachedPlan: save a cached plan permanently * * This function moves the cached plan underneath CacheMemoryContext (making * it live for the life of the backend, unless explicitly dropped), and adds * it to the list of cached plans that are checked for invalidation when an * sinval event occurs. * * This is guaranteed not to throw error, except for the caller-error case * of trying to save a one-shot plan. Callers typically depend on that * since this is called just before or just after adding a pointer to the * CachedPlanSource to some permanent data structure of their own. Up until * this is done, a CachedPlanSource is just transient data that will go away * automatically on transaction abort. */ void SaveCachedPlan(CachedPlanSource *plansource) { /* Assert caller is doing things in a sane order */ Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); Assert(plansource->is_complete); Assert(!plansource->is_saved); /* This seems worth a real test, though */ if (plansource->is_oneshot) elog(ERROR, "cannot save one-shot cached plan"); /* * In typical use, this function would be called before generating any * plans from the CachedPlanSource. If there is a generic plan, moving it * into CacheMemoryContext would be pretty risky since it's unclear * whether the caller has taken suitable care with making references * long-lived. Best thing to do seems to be to discard the plan. */ ReleaseGenericPlan(plansource); /* * Reparent the source memory context under CacheMemoryContext so that it * will live indefinitely. The query_context follows along since it's * already a child of the other one. */ MemoryContextSetParent(plansource->context, CacheMemoryContext); /* * Add the entry to the global list of cached plans. */ plansource->next_saved = first_saved_plan; first_saved_plan = plansource; plansource->is_saved = true; } /* * DropCachedPlan: destroy a cached plan. * * Actually this only destroys the CachedPlanSource: any referenced CachedPlan * is released, but not destroyed until its refcount goes to zero. That * handles the situation where DropCachedPlan is called while the plan is * still in use. */ void DropCachedPlan(CachedPlanSource *plansource) { Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); /* If it's been saved, remove it from the list */ if (plansource->is_saved) { if (first_saved_plan == plansource) first_saved_plan = plansource->next_saved; else { CachedPlanSource *psrc; for (psrc = first_saved_plan; psrc; psrc = psrc->next_saved) { if (psrc->next_saved == plansource) { psrc->next_saved = plansource->next_saved; break; } } } plansource->is_saved = false; } /* Decrement generic CachePlan's refcount and drop if no longer needed */ ReleaseGenericPlan(plansource); /* Mark it no longer valid */ plansource->magic = 0; /* * Remove the CachedPlanSource and all subsidiary data (including the * query_context if any). But if it's a one-shot we can't free anything. */ if (!plansource->is_oneshot) MemoryContextDelete(plansource->context); } /* * ReleaseGenericPlan: release a CachedPlanSource's generic plan, if any. */ static void ReleaseGenericPlan(CachedPlanSource *plansource) { /* Be paranoid about the possibility that ReleaseCachedPlan fails */ if (plansource->gplan) { CachedPlan *plan = plansource->gplan; Assert(plan->magic == CACHEDPLAN_MAGIC); plansource->gplan = NULL; ReleaseCachedPlan(plan, false); } } /* * RevalidateCachedQuery: ensure validity of analyzed-and-rewritten query tree. * * What we do here is re-acquire locks and redo parse analysis if necessary. * On return, the query_list is valid and we have sufficient locks to begin * planning. * * If any parse analysis activity is required, the caller's memory context is * used for that work. * * The result value is the transient analyzed-and-rewritten query tree if we * had to do re-analysis, and NIL otherwise. (This is returned just to save * a tree copying step in a subsequent BuildCachedPlan call.) */ static List * RevalidateCachedQuery(CachedPlanSource *plansource) { bool snapshot_set; Node *rawtree; List *tlist; /* transient query-tree list */ List *qlist; /* permanent query-tree list */ TupleDesc resultDesc; MemoryContext querytree_context; MemoryContext oldcxt; /* * For one-shot plans, we do not support revalidation checking; it's * assumed the query is parsed, planned, and executed in one transaction, * so that no lock re-acquisition is necessary. */ if (plansource->is_oneshot) { Assert(plansource->is_valid); return NIL; } /* * If the query is currently valid, we should have a saved search_path --- * check to see if that matches the current environment. If not, we want * to force replan. */ if (plansource->is_valid) { Assert(plansource->search_path != NULL); if (!OverrideSearchPathMatchesCurrent(plansource->search_path)) { /* Invalidate the querytree and generic plan */ plansource->is_valid = false; if (plansource->gplan) plansource->gplan->is_valid = false; } } /* * If the query is currently valid, acquire locks on the referenced * objects; then check again. We need to do it this way to cover the race * condition that an invalidation message arrives before we get the locks. */ if (plansource->is_valid) { AcquirePlannerLocks(plansource->query_list, true); /* * By now, if any invalidation has happened, the inval callback * functions will have marked the query invalid. */ if (plansource->is_valid) { /* Successfully revalidated and locked the query. */ return NIL; } /* Ooops, the race case happened. Release useless locks. */ AcquirePlannerLocks(plansource->query_list, false); } /* * Discard the no-longer-useful query tree. (Note: we don't want to do * this any earlier, else we'd not have been able to release locks * correctly in the race condition case.) */ plansource->is_valid = false; plansource->query_list = NIL; plansource->relationOids = NIL; plansource->invalItems = NIL; plansource->search_path = NULL; /* * Free the query_context. We don't really expect MemoryContextDelete to * fail, but just in case, make sure the CachedPlanSource is left in a * reasonably sane state. (The generic plan won't get unlinked yet, but * that's acceptable.) */ if (plansource->query_context) { MemoryContext qcxt = plansource->query_context; plansource->query_context = NULL; MemoryContextDelete(qcxt); } /* Drop the generic plan reference if any */ ReleaseGenericPlan(plansource); /* * Now re-do parse analysis and rewrite. This not incidentally acquires * the locks we need to do planning safely. */ Assert(plansource->is_complete); /* * If a snapshot is already set (the normal case), we can just use that * for parsing/planning. But if it isn't, install one. Note: no point in * checking whether parse analysis requires a snapshot; utility commands * don't have invalidatable plans, so we'd not get here for such a * command. */ snapshot_set = false; if (!ActiveSnapshotSet()) { PushActiveSnapshot(GetTransactionSnapshot()); snapshot_set = true; } /* * Run parse analysis and rule rewriting. The parser tends to scribble on * its input, so we must copy the raw parse tree to prevent corruption of * the cache. */ rawtree = copyObject(plansource->raw_parse_tree); if (plansource->parserSetup != NULL) tlist = pg_analyze_and_rewrite_params(rawtree, plansource->query_string, plansource->parserSetup, plansource->parserSetupArg); else tlist = pg_analyze_and_rewrite(rawtree, plansource->query_string, plansource->param_types, plansource->num_params); /* Release snapshot if we got one */ if (snapshot_set) PopActiveSnapshot(); /* * Check or update the result tupdesc. XXX should we use a weaker * condition than equalTupleDescs() here? * * We assume the parameter types didn't change from the first time, so no * need to update that. */ resultDesc = PlanCacheComputeResultDesc(tlist); if (resultDesc == NULL && plansource->resultDesc == NULL) { /* OK, doesn't return tuples */ } else if (resultDesc == NULL || plansource->resultDesc == NULL || !equalTupleDescs(resultDesc, plansource->resultDesc)) { /* can we give a better error message? */ if (plansource->fixed_result) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cached plan must not change result type"))); oldcxt = MemoryContextSwitchTo(plansource->context); if (resultDesc) resultDesc = CreateTupleDescCopy(resultDesc); if (plansource->resultDesc) FreeTupleDesc(plansource->resultDesc); plansource->resultDesc = resultDesc; MemoryContextSwitchTo(oldcxt); } /* * Allocate new query_context and copy the completed querytree into it. * It's transient until we complete the copying and dependency extraction. */ querytree_context = AllocSetContextCreate(CurrentMemoryContext, "CachedPlanQuery", ALLOCSET_SMALL_MINSIZE, ALLOCSET_SMALL_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); oldcxt = MemoryContextSwitchTo(querytree_context); qlist = (List *) copyObject(tlist); /* * Use the planner machinery to extract dependencies. Data is saved in * query_context. (We assume that not a lot of extra cruft is created by * this call.) */ extract_query_dependencies((Node *) qlist, &plansource->relationOids, &plansource->invalItems); /* * Also save the current search_path in the query_context. (This should * not generate much extra cruft either, since almost certainly the path * is already valid.) */ plansource->search_path = GetOverrideSearchPath(querytree_context); MemoryContextSwitchTo(oldcxt); /* Now reparent the finished query_context and save the links */ MemoryContextSetParent(querytree_context, plansource->context); plansource->query_context = querytree_context; plansource->query_list = qlist; /* * Note: we do not reset generic_cost or total_custom_cost, although we * could choose to do so. If the DDL or statistics change that prompted * the invalidation meant a significant change in the cost estimates, it * would be better to reset those variables and start fresh; but often it * doesn't, and we're better retaining our hard-won knowledge about the * relative costs. */ plansource->is_valid = true; /* Return transient copy of querytrees for possible use in planning */ return tlist; } /* * CheckCachedPlan: see if the CachedPlanSource's generic plan is valid. * * Caller must have already called RevalidateCachedQuery to verify that the * querytree is up to date. * * On a "true" return, we have acquired the locks needed to run the plan. * (We must do this for the "true" result to be race-condition-free.) */ static bool CheckCachedPlan(CachedPlanSource *plansource) { CachedPlan *plan = plansource->gplan; /* Assert that caller checked the querytree */ Assert(plansource->is_valid); /* If there's no generic plan, just say "false" */ if (!plan) return false; Assert(plan->magic == CACHEDPLAN_MAGIC); /* Generic plans are never one-shot */ Assert(!plan->is_oneshot); /* * If it appears valid, acquire locks and recheck; this is much the same * logic as in RevalidateCachedQuery, but for a plan. */ if (plan->is_valid) { /* * Plan must have positive refcount because it is referenced by * plansource; so no need to fear it disappears under us here. */ Assert(plan->refcount > 0); AcquireExecutorLocks(plan->stmt_list, true); /* * If plan was transient, check to see if TransactionXmin has * advanced, and if so invalidate it. */ if (plan->is_valid && TransactionIdIsValid(plan->saved_xmin) && !TransactionIdEquals(plan->saved_xmin, TransactionXmin)) plan->is_valid = false; /* * By now, if any invalidation has happened, the inval callback * functions will have marked the plan invalid. */ if (plan->is_valid) { /* Successfully revalidated and locked the query. */ return true; } /* Ooops, the race case happened. Release useless locks. */ AcquireExecutorLocks(plan->stmt_list, false); } /* * Plan has been invalidated, so unlink it from the parent and release it. */ ReleaseGenericPlan(plansource); return false; } /* * BuildCachedPlan: construct a new CachedPlan from a CachedPlanSource. * * qlist should be the result value from a previous RevalidateCachedQuery, * or it can be set to NIL if we need to re-copy the plansource's query_list. * * To build a generic, parameter-value-independent plan, pass NULL for * boundParams. To build a custom plan, pass the actual parameter values via * boundParams. For best effect, the PARAM_FLAG_CONST flag should be set on * each parameter value; otherwise the planner will treat the value as a * hint rather than a hard constant. * * Planning work is done in the caller's memory context. The finished plan * is in a child memory context, which typically should get reparented * (unless this is a one-shot plan, in which case we don't copy the plan). */ static CachedPlan * BuildCachedPlan(CachedPlanSource *plansource, List *qlist, ParamListInfo boundParams) { CachedPlan *plan; List *plist; bool snapshot_set; bool spi_pushed; MemoryContext plan_context; MemoryContext oldcxt = CurrentMemoryContext; /* * Normally the querytree should be valid already, but if it's not, * rebuild it. * * NOTE: GetCachedPlan should have called RevalidateCachedQuery first, so * we ought to be holding sufficient locks to prevent any invalidation. * However, if we're building a custom plan after having built and * rejected a generic plan, it's possible to reach here with is_valid * false due to an invalidation while making the generic plan. In theory * the invalidation must be a false positive, perhaps a consequence of an * sinval reset event or the CLOBBER_CACHE_ALWAYS debug code. But for * safety, let's treat it as real and redo the RevalidateCachedQuery call. */ if (!plansource->is_valid) qlist = RevalidateCachedQuery(plansource); /* * If we don't already have a copy of the querytree list that can be * scribbled on by the planner, make one. For a one-shot plan, we assume * it's okay to scribble on the original query_list. */ if (qlist == NIL) { if (!plansource->is_oneshot) qlist = (List *) copyObject(plansource->query_list); else qlist = plansource->query_list; } /* * If a snapshot is already set (the normal case), we can just use that * for planning. But if it isn't, and we need one, install one. */ snapshot_set = false; if (!ActiveSnapshotSet() && analyze_requires_snapshot(plansource->raw_parse_tree)) { PushActiveSnapshot(GetTransactionSnapshot()); snapshot_set = true; } /* * The planner may try to call SPI-using functions, which causes a problem * if we're already inside one. Rather than expect all SPI-using code to * do SPI_push whenever a replan could happen, it seems best to take care * of the case here. */ spi_pushed = SPI_push_conditional(); /* * Generate the plan. */ plist = pg_plan_queries(qlist, plansource->cursor_options, boundParams); /* Clean up SPI state */ SPI_pop_conditional(spi_pushed); /* Release snapshot if we got one */ if (snapshot_set) PopActiveSnapshot(); /* * Normally we make a dedicated memory context for the CachedPlan and its * subsidiary data. (It's probably not going to be large, but just in * case, use the default maxsize parameter. It's transient for the * moment.) But for a one-shot plan, we just leave it in the caller's * memory context. */ if (!plansource->is_oneshot) { plan_context = AllocSetContextCreate(CurrentMemoryContext, "CachedPlan", ALLOCSET_SMALL_MINSIZE, ALLOCSET_SMALL_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); /* * Copy plan into the new context. */ MemoryContextSwitchTo(plan_context); plist = (List *) copyObject(plist); } else plan_context = CurrentMemoryContext; /* * Create and fill the CachedPlan struct within the new context. */ plan = (CachedPlan *) palloc(sizeof(CachedPlan)); plan->magic = CACHEDPLAN_MAGIC; plan->stmt_list = plist; if (plan_list_is_transient(plist)) { Assert(TransactionIdIsNormal(TransactionXmin)); plan->saved_xmin = TransactionXmin; } else plan->saved_xmin = InvalidTransactionId; plan->refcount = 0; plan->context = plan_context; plan->is_oneshot = plansource->is_oneshot; plan->is_saved = false; plan->is_valid = true; /* assign generation number to new plan */ plan->generation = ++(plansource->generation); MemoryContextSwitchTo(oldcxt); return plan; } /* * choose_custom_plan: choose whether to use custom or generic plan * * This defines the policy followed by GetCachedPlan. */ static bool choose_custom_plan(CachedPlanSource *plansource, ParamListInfo boundParams) { double avg_custom_cost; /* One-shot plans will always be considered custom */ if (plansource->is_oneshot) return true; /* Otherwise, never any point in a custom plan if there's no parameters */ if (boundParams == NULL) return false; /* See if caller wants to force the decision */ if (plansource->cursor_options & CURSOR_OPT_GENERIC_PLAN) return false; if (plansource->cursor_options & CURSOR_OPT_CUSTOM_PLAN) return true; /* Generate custom plans until we have done at least 5 (arbitrary) */ if (plansource->num_custom_plans < 5) return true; avg_custom_cost = plansource->total_custom_cost / plansource->num_custom_plans; /* * Prefer generic plan if it's less than 10% more expensive than average * custom plan. This threshold is a bit arbitrary; it'd be better if we * had some means of comparing planning time to the estimated runtime cost * differential. * * Note that if generic_cost is -1 (indicating we've not yet determined * the generic plan cost), we'll always prefer generic at this point. */ if (plansource->generic_cost < avg_custom_cost * 1.1) return false; return true; } /* * cached_plan_cost: calculate estimated cost of a plan */ static double cached_plan_cost(CachedPlan *plan) { double result = 0; ListCell *lc; foreach(lc, plan->stmt_list) { PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc); if (!IsA(plannedstmt, PlannedStmt)) continue; /* Ignore utility statements */ result += plannedstmt->planTree->total_cost; } return result; } /* * GetCachedPlan: get a cached plan from a CachedPlanSource. * * This function hides the logic that decides whether to use a generic * plan or a custom plan for the given parameters: the caller does not know * which it will get. * * On return, the plan is valid and we have sufficient locks to begin * execution. * * On return, the refcount of the plan has been incremented; a later * ReleaseCachedPlan() call is expected. The refcount has been reported * to the CurrentResourceOwner if useResOwner is true (note that that must * only be true if it's a "saved" CachedPlanSource). * * Note: if any replanning activity is required, the caller's memory context * is used for that work. */ CachedPlan * GetCachedPlan(CachedPlanSource *plansource, ParamListInfo boundParams, bool useResOwner) { CachedPlan *plan; List *qlist; bool customplan; /* Assert caller is doing things in a sane order */ Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); Assert(plansource->is_complete); /* This seems worth a real test, though */ if (useResOwner && !plansource->is_saved) elog(ERROR, "cannot apply ResourceOwner to non-saved cached plan"); /* Make sure the querytree list is valid and we have parse-time locks */ qlist = RevalidateCachedQuery(plansource); /* Decide whether to use a custom plan */ customplan = choose_custom_plan(plansource, boundParams); if (!customplan) { if (CheckCachedPlan(plansource)) { /* We want a generic plan, and we already have a valid one */ plan = plansource->gplan; Assert(plan->magic == CACHEDPLAN_MAGIC); } else { /* Build a new generic plan */ plan = BuildCachedPlan(plansource, qlist, NULL); /* Just make real sure plansource->gplan is clear */ ReleaseGenericPlan(plansource); /* Link the new generic plan into the plansource */ plansource->gplan = plan; plan->refcount++; /* Immediately reparent into appropriate context */ if (plansource->is_saved) { /* saved plans all live under CacheMemoryContext */ MemoryContextSetParent(plan->context, CacheMemoryContext); plan->is_saved = true; } else { /* otherwise, it should be a sibling of the plansource */ MemoryContextSetParent(plan->context, MemoryContextGetParent(plansource->context)); } /* Update generic_cost whenever we make a new generic plan */ plansource->generic_cost = cached_plan_cost(plan); /* * If, based on the now-known value of generic_cost, we'd not have * chosen to use a generic plan, then forget it and make a custom * plan. This is a bit of a wart but is necessary to avoid a * glitch in behavior when the custom plans are consistently big * winners; at some point we'll experiment with a generic plan and * find it's a loser, but we don't want to actually execute that * plan. */ customplan = choose_custom_plan(plansource, boundParams); /* * If we choose to plan again, we need to re-copy the query_list, * since the planner probably scribbled on it. We can force * BuildCachedPlan to do that by passing NIL. */ qlist = NIL; } } if (customplan) { /* Build a custom plan */ plan = BuildCachedPlan(plansource, qlist, boundParams); /* Accumulate total costs of custom plans, but 'ware overflow */ if (plansource->num_custom_plans < INT_MAX) { plansource->total_custom_cost += cached_plan_cost(plan); plansource->num_custom_plans++; } } /* Flag the plan as in use by caller */ if (useResOwner) ResourceOwnerEnlargePlanCacheRefs(CurrentResourceOwner); plan->refcount++; if (useResOwner) ResourceOwnerRememberPlanCacheRef(CurrentResourceOwner, plan); /* * Saved plans should be under CacheMemoryContext so they will not go away * until their reference count goes to zero. In the generic-plan cases we * already took care of that, but for a custom plan, do it as soon as we * have created a reference-counted link. */ if (customplan && plansource->is_saved) { MemoryContextSetParent(plan->context, CacheMemoryContext); plan->is_saved = true; } return plan; } /* * ReleaseCachedPlan: release active use of a cached plan. * * This decrements the reference count, and frees the plan if the count * has thereby gone to zero. If useResOwner is true, it is assumed that * the reference count is managed by the CurrentResourceOwner. * * Note: useResOwner = false is used for releasing references that are in * persistent data structures, such as the parent CachedPlanSource or a * Portal. Transient references should be protected by a resource owner. */ void ReleaseCachedPlan(CachedPlan *plan, bool useResOwner) { Assert(plan->magic == CACHEDPLAN_MAGIC); if (useResOwner) { Assert(plan->is_saved); ResourceOwnerForgetPlanCacheRef(CurrentResourceOwner, plan); } Assert(plan->refcount > 0); plan->refcount--; if (plan->refcount == 0) { /* Mark it no longer valid */ plan->magic = 0; /* One-shot plans do not own their context, so we can't free them */ if (!plan->is_oneshot) MemoryContextDelete(plan->context); } } /* * CachedPlanSetParentContext: move a CachedPlanSource to a new memory context * * This can only be applied to unsaved plans; once saved, a plan always * lives underneath CacheMemoryContext. */ void CachedPlanSetParentContext(CachedPlanSource *plansource, MemoryContext newcontext) { /* Assert caller is doing things in a sane order */ Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); Assert(plansource->is_complete); /* These seem worth real tests, though */ if (plansource->is_saved) elog(ERROR, "cannot move a saved cached plan to another context"); if (plansource->is_oneshot) elog(ERROR, "cannot move a one-shot cached plan to another context"); /* OK, let the caller keep the plan where he wishes */ MemoryContextSetParent(plansource->context, newcontext); /* * The query_context needs no special handling, since it's a child of * plansource->context. But if there's a generic plan, it should be * maintained as a sibling of plansource->context. */ if (plansource->gplan) { Assert(plansource->gplan->magic == CACHEDPLAN_MAGIC); MemoryContextSetParent(plansource->gplan->context, newcontext); } } /* * CopyCachedPlan: make a copy of a CachedPlanSource * * This is a convenience routine that does the equivalent of * CreateCachedPlan + CompleteCachedPlan, using the data stored in the * input CachedPlanSource. The result is therefore "unsaved" (regardless * of the state of the source), and we don't copy any generic plan either. * The result will be currently valid, or not, the same as the source. */ CachedPlanSource * CopyCachedPlan(CachedPlanSource *plansource) { CachedPlanSource *newsource; MemoryContext source_context; MemoryContext querytree_context; MemoryContext oldcxt; Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); Assert(plansource->is_complete); /* * One-shot plans can't be copied, because we haven't taken care that * parsing/planning didn't scribble on the raw parse tree or querytrees. */ if (plansource->is_oneshot) elog(ERROR, "cannot copy a one-shot cached plan"); source_context = AllocSetContextCreate(CurrentMemoryContext, "CachedPlanSource", ALLOCSET_SMALL_MINSIZE, ALLOCSET_SMALL_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); oldcxt = MemoryContextSwitchTo(source_context); newsource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource)); newsource->magic = CACHEDPLANSOURCE_MAGIC; newsource->raw_parse_tree = copyObject(plansource->raw_parse_tree); newsource->query_string = pstrdup(plansource->query_string); newsource->commandTag = plansource->commandTag; if (plansource->num_params > 0) { newsource->param_types = (Oid *) palloc(plansource->num_params * sizeof(Oid)); memcpy(newsource->param_types, plansource->param_types, plansource->num_params * sizeof(Oid)); } else newsource->param_types = NULL; newsource->num_params = plansource->num_params; newsource->parserSetup = plansource->parserSetup; newsource->parserSetupArg = plansource->parserSetupArg; newsource->cursor_options = plansource->cursor_options; newsource->fixed_result = plansource->fixed_result; if (plansource->resultDesc) newsource->resultDesc = CreateTupleDescCopy(plansource->resultDesc); else newsource->resultDesc = NULL; newsource->context = source_context; querytree_context = AllocSetContextCreate(source_context, "CachedPlanQuery", ALLOCSET_SMALL_MINSIZE, ALLOCSET_SMALL_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); MemoryContextSwitchTo(querytree_context); newsource->query_list = (List *) copyObject(plansource->query_list); newsource->relationOids = (List *) copyObject(plansource->relationOids); newsource->invalItems = (List *) copyObject(plansource->invalItems); if (plansource->search_path) newsource->search_path = CopyOverrideSearchPath(plansource->search_path); newsource->query_context = querytree_context; newsource->gplan = NULL; newsource->is_oneshot = false; newsource->is_complete = true; newsource->is_saved = false; newsource->is_valid = plansource->is_valid; newsource->generation = plansource->generation; newsource->next_saved = NULL; /* We may as well copy any acquired cost knowledge */ newsource->generic_cost = plansource->generic_cost; newsource->total_custom_cost = plansource->total_custom_cost; newsource->num_custom_plans = plansource->num_custom_plans; MemoryContextSwitchTo(oldcxt); return newsource; } /* * CachedPlanIsValid: test whether the rewritten querytree within a * CachedPlanSource is currently valid (that is, not marked as being in need * of revalidation). * * This result is only trustworthy (ie, free from race conditions) if * the caller has acquired locks on all the relations used in the plan. */ bool CachedPlanIsValid(CachedPlanSource *plansource) { Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); return plansource->is_valid; } /* * CachedPlanGetTargetList: return tlist, if any, describing plan's output * * The result is guaranteed up-to-date. However, it is local storage * within the cached plan, and may disappear next time the plan is updated. */ List * CachedPlanGetTargetList(CachedPlanSource *plansource) { Node *pstmt; /* Assert caller is doing things in a sane order */ Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); Assert(plansource->is_complete); /* * No work needed if statement doesn't return tuples (we assume this * feature cannot be changed by an invalidation) */ if (plansource->resultDesc == NULL) return NIL; /* Make sure the querytree list is valid and we have parse-time locks */ RevalidateCachedQuery(plansource); /* Get the primary statement and find out what it returns */ pstmt = PortalListGetPrimaryStmt(plansource->query_list); return FetchStatementTargetList(pstmt); } /* * AcquireExecutorLocks: acquire locks needed for execution of a cached plan; * or release them if acquire is false. */ static void AcquireExecutorLocks(List *stmt_list, bool acquire) { ListCell *lc1; foreach(lc1, stmt_list) { PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc1); int rt_index; ListCell *lc2; Assert(!IsA(plannedstmt, Query)); if (!IsA(plannedstmt, PlannedStmt)) { /* * Ignore utility statements, except those (such as EXPLAIN) that * contain a parsed-but-not-planned query. Note: it's okay to use * ScanQueryForLocks, even though the query hasn't been through * rule rewriting, because rewriting doesn't change the query * representation. */ Query *query = UtilityContainsQuery((Node *) plannedstmt); if (query) ScanQueryForLocks(query, acquire); continue; } rt_index = 0; foreach(lc2, plannedstmt->rtable) { RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2); LOCKMODE lockmode; PlanRowMark *rc; rt_index++; if (rte->rtekind != RTE_RELATION) continue; /* * Acquire the appropriate type of lock on each relation OID. Note * that we don't actually try to open the rel, and hence will not * fail if it's been dropped entirely --- we'll just transiently * acquire a non-conflicting lock. */ if (list_member_int(plannedstmt->resultRelations, rt_index)) lockmode = RowExclusiveLock; else if ((rc = get_plan_rowmark(plannedstmt->rowMarks, rt_index)) != NULL && RowMarkRequiresRowShareLock(rc->markType)) lockmode = RowShareLock; else lockmode = AccessShareLock; if (acquire) LockRelationOid(rte->relid, lockmode); else UnlockRelationOid(rte->relid, lockmode); } } } /* * AcquirePlannerLocks: acquire locks needed for planning of a querytree list; * or release them if acquire is false. * * Note that we don't actually try to open the relations, and hence will not * fail if one has been dropped entirely --- we'll just transiently acquire * a non-conflicting lock. */ static void AcquirePlannerLocks(List *stmt_list, bool acquire) { ListCell *lc; foreach(lc, stmt_list) { Query *query = (Query *) lfirst(lc); Assert(IsA(query, Query)); if (query->commandType == CMD_UTILITY) { /* Ignore utility statements, unless they contain a Query */ query = UtilityContainsQuery(query->utilityStmt); if (query) ScanQueryForLocks(query, acquire); continue; } ScanQueryForLocks(query, acquire); } } /* * ScanQueryForLocks: recursively scan one Query for AcquirePlannerLocks. */ static void ScanQueryForLocks(Query *parsetree, bool acquire) { ListCell *lc; int rt_index; /* Shouldn't get called on utility commands */ Assert(parsetree->commandType != CMD_UTILITY); /* * First, process RTEs of the current query level. */ rt_index = 0; foreach(lc, parsetree->rtable) { RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); LOCKMODE lockmode; rt_index++; switch (rte->rtekind) { case RTE_RELATION: /* Acquire or release the appropriate type of lock */ if (rt_index == parsetree->resultRelation) lockmode = RowExclusiveLock; else if (get_parse_rowmark(parsetree, rt_index) != NULL) lockmode = RowShareLock; else lockmode = AccessShareLock; if (acquire) LockRelationOid(rte->relid, lockmode); else UnlockRelationOid(rte->relid, lockmode); break; case RTE_SUBQUERY: /* Recurse into subquery-in-FROM */ ScanQueryForLocks(rte->subquery, acquire); break; default: /* ignore other types of RTEs */ break; } } /* Recurse into subquery-in-WITH */ foreach(lc, parsetree->cteList) { CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc); ScanQueryForLocks((Query *) cte->ctequery, acquire); } /* * Recurse into sublink subqueries, too. But we already did the ones in * the rtable and cteList. */ if (parsetree->hasSubLinks) { query_tree_walker(parsetree, ScanQueryWalker, (void *) &acquire, QTW_IGNORE_RC_SUBQUERIES); } } /* * Walker to find sublink subqueries for ScanQueryForLocks */ static bool ScanQueryWalker(Node *node, bool *acquire) { if (node == NULL) return false; if (IsA(node, SubLink)) { SubLink *sub = (SubLink *) node; /* Do what we came for */ ScanQueryForLocks((Query *) sub->subselect, *acquire); /* Fall through to process lefthand args of SubLink */ } /* * Do NOT recurse into Query nodes, because ScanQueryForLocks already * processed subselects of subselects for us. */ return expression_tree_walker(node, ScanQueryWalker, (void *) acquire); } /* * plan_list_is_transient: check if any of the plans in the list are transient. */ static bool plan_list_is_transient(List *stmt_list) { ListCell *lc; foreach(lc, stmt_list) { PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc); if (!IsA(plannedstmt, PlannedStmt)) continue; /* Ignore utility statements */ if (plannedstmt->transientPlan) return true; } return false; } /* * PlanCacheComputeResultDesc: given a list of analyzed-and-rewritten Queries, * determine the result tupledesc it will produce. Returns NULL if the * execution will not return tuples. * * Note: the result is created or copied into current memory context. */ static TupleDesc PlanCacheComputeResultDesc(List *stmt_list) { Query *query; switch (ChoosePortalStrategy(stmt_list)) { case PORTAL_ONE_SELECT: case PORTAL_ONE_MOD_WITH: query = (Query *) linitial(stmt_list); Assert(IsA(query, Query)); return ExecCleanTypeFromTL(query->targetList, false); case PORTAL_ONE_RETURNING: query = (Query *) PortalListGetPrimaryStmt(stmt_list); Assert(IsA(query, Query)); Assert(query->returningList); return ExecCleanTypeFromTL(query->returningList, false); case PORTAL_UTIL_SELECT: query = (Query *) linitial(stmt_list); Assert(IsA(query, Query)); Assert(query->utilityStmt); return UtilityTupleDescriptor(query->utilityStmt); case PORTAL_MULTI_QUERY: /* will not return tuples */ break; } return NULL; } /* * PlanCacheRelCallback * Relcache inval callback function * * Invalidate all plans mentioning the given rel, or all plans mentioning * any rel at all if relid == InvalidOid. */ static void PlanCacheRelCallback(Datum arg, Oid relid) { CachedPlanSource *plansource; for (plansource = first_saved_plan; plansource; plansource = plansource->next_saved) { Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); /* No work if it's already invalidated */ if (!plansource->is_valid) continue; /* * Check the dependency list for the rewritten querytree. */ if ((relid == InvalidOid) ? plansource->relationOids != NIL : list_member_oid(plansource->relationOids, relid)) { /* Invalidate the querytree and generic plan */ plansource->is_valid = false; if (plansource->gplan) plansource->gplan->is_valid = false; } /* * The generic plan, if any, could have more dependencies than the * querytree does, so we have to check it too. */ if (plansource->gplan && plansource->gplan->is_valid) { ListCell *lc; foreach(lc, plansource->gplan->stmt_list) { PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc); Assert(!IsA(plannedstmt, Query)); if (!IsA(plannedstmt, PlannedStmt)) continue; /* Ignore utility statements */ if ((relid == InvalidOid) ? plannedstmt->relationOids != NIL : list_member_oid(plannedstmt->relationOids, relid)) { /* Invalidate the generic plan only */ plansource->gplan->is_valid = false; break; /* out of stmt_list scan */ } } } } } /* * PlanCacheFuncCallback * Syscache inval callback function for PROCOID cache * * Invalidate all plans mentioning the object with the specified hash value, * or all plans mentioning any member of this cache if hashvalue == 0. * * Note that the coding would support use for multiple caches, but right * now only user-defined functions are tracked this way. */ static void PlanCacheFuncCallback(Datum arg, int cacheid, uint32 hashvalue) { CachedPlanSource *plansource; for (plansource = first_saved_plan; plansource; plansource = plansource->next_saved) { ListCell *lc; Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); /* No work if it's already invalidated */ if (!plansource->is_valid) continue; /* * Check the dependency list for the rewritten querytree. */ foreach(lc, plansource->invalItems) { PlanInvalItem *item = (PlanInvalItem *) lfirst(lc); if (item->cacheId != cacheid) continue; if (hashvalue == 0 || item->hashValue == hashvalue) { /* Invalidate the querytree and generic plan */ plansource->is_valid = false; if (plansource->gplan) plansource->gplan->is_valid = false; break; } } /* * The generic plan, if any, could have more dependencies than the * querytree does, so we have to check it too. */ if (plansource->gplan && plansource->gplan->is_valid) { foreach(lc, plansource->gplan->stmt_list) { PlannedStmt *plannedstmt = (PlannedStmt *) lfirst(lc); ListCell *lc3; Assert(!IsA(plannedstmt, Query)); if (!IsA(plannedstmt, PlannedStmt)) continue; /* Ignore utility statements */ foreach(lc3, plannedstmt->invalItems) { PlanInvalItem *item = (PlanInvalItem *) lfirst(lc3); if (item->cacheId != cacheid) continue; if (hashvalue == 0 || item->hashValue == hashvalue) { /* Invalidate the generic plan only */ plansource->gplan->is_valid = false; break; /* out of invalItems scan */ } } if (!plansource->gplan->is_valid) break; /* out of stmt_list scan */ } } } } /* * PlanCacheSysCallback * Syscache inval callback function for other caches * * Just invalidate everything... */ static void PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue) { ResetPlanCache(); } /* * ResetPlanCache: invalidate all cached plans. */ void ResetPlanCache(void) { CachedPlanSource *plansource; for (plansource = first_saved_plan; plansource; plansource = plansource->next_saved) { ListCell *lc; Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC); /* No work if it's already invalidated */ if (!plansource->is_valid) continue; /* * We *must not* mark transaction control statements as invalid, * particularly not ROLLBACK, because they may need to be executed in * aborted transactions when we can't revalidate them (cf bug #5269). * In general there is no point in invalidating utility statements * since they have no plans anyway. So invalidate it only if it * contains at least one non-utility statement, or contains a utility * statement that contains a pre-analyzed query (which could have * dependencies.) */ foreach(lc, plansource->query_list) { Query *query = (Query *) lfirst(lc); Assert(IsA(query, Query)); if (query->commandType != CMD_UTILITY || UtilityContainsQuery(query->utilityStmt)) { /* non-utility statement, so invalidate */ plansource->is_valid = false; if (plansource->gplan) plansource->gplan->is_valid = false; /* no need to look further */ break; } } } }