/*------------------------------------------------------------------------- * * functions.c * Execution of SQL-language functions * * Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/executor/functions.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/xact.h" #include "catalog/pg_proc.h" #include "catalog/pg_type.h" #include "executor/functions.h" #include "funcapi.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "parser/parse_coerce.h" #include "tcop/utility.h" #include "utils/builtins.h" #include "utils/datum.h" #include "utils/lsyscache.h" #include "utils/snapmgr.h" #include "utils/syscache.h" /* * Specialized DestReceiver for collecting query output in a SQL function */ typedef struct { DestReceiver pub; /* publicly-known function pointers */ Tuplestorestate *tstore; /* where to put result tuples */ MemoryContext cxt; /* context containing tstore */ JunkFilter *filter; /* filter to convert tuple type */ } DR_sqlfunction; /* * We have an execution_state record for each query in a function. Each * record contains a plantree for its query. If the query is currently in * F_EXEC_RUN state then there's a QueryDesc too. * * The "next" fields chain together all the execution_state records generated * from a single original parsetree. (There will only be more than one in * case of rule expansion of the original parsetree.) */ typedef enum { F_EXEC_START, F_EXEC_RUN, F_EXEC_DONE } ExecStatus; typedef struct execution_state { struct execution_state *next; ExecStatus status; bool setsResult; /* true if this query produces func's result */ bool lazyEval; /* true if should fetch one row at a time */ Node *stmt; /* PlannedStmt or utility statement */ QueryDesc *qd; /* null unless status == RUN */ } execution_state; /* * An SQLFunctionCache record is built during the first call, * and linked to from the fn_extra field of the FmgrInfo struct. * * Note that currently this has only the lifespan of the calling query. * Someday we might want to consider caching the parse/plan results longer * than that. */ typedef struct { char *fname; /* function name (for error msgs) */ char *src; /* function body text (for error msgs) */ SQLFunctionParseInfoPtr pinfo; /* data for parser callback hooks */ Oid rettype; /* actual return type */ int16 typlen; /* length of the return type */ bool typbyval; /* true if return type is pass by value */ bool returnsSet; /* true if returning multiple rows */ bool returnsTuple; /* true if returning whole tuple result */ bool shutdown_reg; /* true if registered shutdown callback */ bool readonly_func; /* true to run in "read only" mode */ bool lazyEval; /* true if using lazyEval for result query */ ParamListInfo paramLI; /* Param list representing current args */ Tuplestorestate *tstore; /* where we accumulate result tuples */ JunkFilter *junkFilter; /* will be NULL if function returns VOID */ /* * func_state is a List of execution_state records, each of which is the * first for its original parsetree, with any additional records chained * to it via the "next" fields. This sublist structure is needed to keep * track of where the original query boundaries are. */ List *func_state; } SQLFunctionCache; typedef SQLFunctionCache *SQLFunctionCachePtr; /* * Data structure needed by the parser callback hooks to resolve parameter * references during parsing of a SQL function's body. This is separate from * SQLFunctionCache since we sometimes do parsing separately from execution. */ typedef struct SQLFunctionParseInfo { Oid *argtypes; /* resolved types of input arguments */ int nargs; /* number of input arguments */ Oid collation; /* function's input collation, if known */ } SQLFunctionParseInfo; /* non-export function prototypes */ static Node *sql_fn_param_ref(ParseState *pstate, ParamRef *pref); static List *init_execution_state(List *queryTree_list, SQLFunctionCachePtr fcache, bool lazyEvalOK); static void init_sql_fcache(FmgrInfo *finfo, Oid collation, bool lazyEvalOK); static void postquel_start(execution_state *es, SQLFunctionCachePtr fcache); static bool postquel_getnext(execution_state *es, SQLFunctionCachePtr fcache); static void postquel_end(execution_state *es); static void postquel_sub_params(SQLFunctionCachePtr fcache, FunctionCallInfo fcinfo); static Datum postquel_get_single_result(TupleTableSlot *slot, FunctionCallInfo fcinfo, SQLFunctionCachePtr fcache, MemoryContext resultcontext); static void sql_exec_error_callback(void *arg); static void ShutdownSQLFunction(Datum arg); static void sqlfunction_startup(DestReceiver *self, int operation, TupleDesc typeinfo); static void sqlfunction_receive(TupleTableSlot *slot, DestReceiver *self); static void sqlfunction_shutdown(DestReceiver *self); static void sqlfunction_destroy(DestReceiver *self); /* * Prepare the SQLFunctionParseInfo struct for parsing a SQL function body * * This includes resolving actual types of polymorphic arguments. * * call_expr can be passed as NULL, but then we will fail if there are any * polymorphic arguments. */ SQLFunctionParseInfoPtr prepare_sql_fn_parse_info(HeapTuple procedureTuple, Node *call_expr, Oid inputCollation) { SQLFunctionParseInfoPtr pinfo; Form_pg_proc procedureStruct = (Form_pg_proc) GETSTRUCT(procedureTuple); int nargs; pinfo = (SQLFunctionParseInfoPtr) palloc0(sizeof(SQLFunctionParseInfo)); /* Save the function's input collation */ pinfo->collation = inputCollation; /* * Copy input argument types from the pg_proc entry, then resolve any * polymorphic types. */ pinfo->nargs = nargs = procedureStruct->pronargs; if (nargs > 0) { Oid *argOidVect; int argnum; argOidVect = (Oid *) palloc(nargs * sizeof(Oid)); memcpy(argOidVect, procedureStruct->proargtypes.values, nargs * sizeof(Oid)); for (argnum = 0; argnum < nargs; argnum++) { Oid argtype = argOidVect[argnum]; if (IsPolymorphicType(argtype)) { argtype = get_call_expr_argtype(call_expr, argnum); if (argtype == InvalidOid) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("could not determine actual type of argument declared %s", format_type_be(argOidVect[argnum])))); argOidVect[argnum] = argtype; } } pinfo->argtypes = argOidVect; } return pinfo; } /* * Parser setup hook for parsing a SQL function body. */ void sql_fn_parser_setup(struct ParseState *pstate, SQLFunctionParseInfoPtr pinfo) { /* Later we might use these hooks to support parameter names */ pstate->p_pre_columnref_hook = NULL; pstate->p_post_columnref_hook = NULL; pstate->p_paramref_hook = sql_fn_param_ref; /* no need to use p_coerce_param_hook */ pstate->p_ref_hook_state = (void *) pinfo; } /* * sql_fn_param_ref parser callback for ParamRefs ($n symbols) */ static Node * sql_fn_param_ref(ParseState *pstate, ParamRef *pref) { SQLFunctionParseInfoPtr pinfo = (SQLFunctionParseInfoPtr) pstate->p_ref_hook_state; int paramno = pref->number; Param *param; /* Check parameter number is valid */ if (paramno <= 0 || paramno > pinfo->nargs) return NULL; /* unknown parameter number */ param = makeNode(Param); param->paramkind = PARAM_EXTERN; param->paramid = paramno; param->paramtype = pinfo->argtypes[paramno - 1]; param->paramtypmod = -1; param->paramcollid = get_typcollation(param->paramtype); param->location = pref->location; /* * If we have a function input collation, allow it to override the * type-derived collation for parameter symbols. (XXX perhaps this should * not happen if the type collation is not default?) */ if (OidIsValid(pinfo->collation) && OidIsValid(param->paramcollid)) param->paramcollid = pinfo->collation; return (Node *) param; } /* * Set up the per-query execution_state records for a SQL function. * * The input is a List of Lists of parsed and rewritten, but not planned, * querytrees. The sublist structure denotes the original query boundaries. */ static List * init_execution_state(List *queryTree_list, SQLFunctionCachePtr fcache, bool lazyEvalOK) { List *eslist = NIL; execution_state *lasttages = NULL; ListCell *lc1; foreach(lc1, queryTree_list) { List *qtlist = (List *) lfirst(lc1); execution_state *firstes = NULL; execution_state *preves = NULL; ListCell *lc2; foreach(lc2, qtlist) { Query *queryTree = (Query *) lfirst(lc2); Node *stmt; execution_state *newes; Assert(IsA(queryTree, Query)); /* Plan the query if needed */ if (queryTree->commandType == CMD_UTILITY) stmt = queryTree->utilityStmt; else stmt = (Node *) pg_plan_query(queryTree, 0, NULL); /* Precheck all commands for validity in a function */ if (IsA(stmt, TransactionStmt)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), /* translator: %s is a SQL statement name */ errmsg("%s is not allowed in a SQL function", CreateCommandTag(stmt)))); if (fcache->readonly_func && !CommandIsReadOnly(stmt)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), /* translator: %s is a SQL statement name */ errmsg("%s is not allowed in a non-volatile function", CreateCommandTag(stmt)))); /* OK, build the execution_state for this query */ newes = (execution_state *) palloc(sizeof(execution_state)); if (preves) preves->next = newes; else firstes = newes; newes->next = NULL; newes->status = F_EXEC_START; newes->setsResult = false; /* might change below */ newes->lazyEval = false; /* might change below */ newes->stmt = stmt; newes->qd = NULL; if (queryTree->canSetTag) lasttages = newes; preves = newes; } eslist = lappend(eslist, firstes); } /* * Mark the last canSetTag query as delivering the function result; then, * if it is a plain SELECT, mark it for lazy evaluation. If it's not a * SELECT we must always run it to completion. * * Note: at some point we might add additional criteria for whether to use * lazy eval. However, we should prefer to use it whenever the function * doesn't return set, since fetching more than one row is useless in that * case. * * Note: don't set setsResult if the function returns VOID, as evidenced * by not having made a junkfilter. This ensures we'll throw away any * output from a utility statement that check_sql_fn_retval deemed to not * have output. */ if (lasttages && fcache->junkFilter) { lasttages->setsResult = true; if (lazyEvalOK && IsA(lasttages->stmt, PlannedStmt)) { PlannedStmt *ps = (PlannedStmt *) lasttages->stmt; if (ps->commandType == CMD_SELECT && ps->utilityStmt == NULL && ps->intoClause == NULL && !ps->hasModifyingCTE) fcache->lazyEval = lasttages->lazyEval = true; } } return eslist; } /* * Initialize the SQLFunctionCache for a SQL function */ static void init_sql_fcache(FmgrInfo *finfo, Oid collation, bool lazyEvalOK) { Oid foid = finfo->fn_oid; Oid rettype; HeapTuple procedureTuple; Form_pg_proc procedureStruct; SQLFunctionCachePtr fcache; List *raw_parsetree_list; List *queryTree_list; List *flat_query_list; ListCell *lc; Datum tmp; bool isNull; fcache = (SQLFunctionCachePtr) palloc0(sizeof(SQLFunctionCache)); finfo->fn_extra = (void *) fcache; /* * get the procedure tuple corresponding to the given function Oid */ procedureTuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(foid)); if (!HeapTupleIsValid(procedureTuple)) elog(ERROR, "cache lookup failed for function %u", foid); procedureStruct = (Form_pg_proc) GETSTRUCT(procedureTuple); /* * copy function name immediately for use by error reporting callback */ fcache->fname = pstrdup(NameStr(procedureStruct->proname)); /* * get the result type from the procedure tuple, and check for polymorphic * result type; if so, find out the actual result type. */ rettype = procedureStruct->prorettype; if (IsPolymorphicType(rettype)) { rettype = get_fn_expr_rettype(finfo); if (rettype == InvalidOid) /* this probably should not happen */ ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("could not determine actual result type for function declared to return type %s", format_type_be(procedureStruct->prorettype)))); } fcache->rettype = rettype; /* Fetch the typlen and byval info for the result type */ get_typlenbyval(rettype, &fcache->typlen, &fcache->typbyval); /* Remember whether we're returning setof something */ fcache->returnsSet = procedureStruct->proretset; /* Remember if function is STABLE/IMMUTABLE */ fcache->readonly_func = (procedureStruct->provolatile != PROVOLATILE_VOLATILE); /* * We need the actual argument types to pass to the parser. Also make * sure that parameter symbols are considered to have the function's * resolved input collation. */ fcache->pinfo = prepare_sql_fn_parse_info(procedureTuple, finfo->fn_expr, collation); /* * And of course we need the function body text. */ tmp = SysCacheGetAttr(PROCOID, procedureTuple, Anum_pg_proc_prosrc, &isNull); if (isNull) elog(ERROR, "null prosrc for function %u", foid); fcache->src = TextDatumGetCString(tmp); /* * Parse and rewrite the queries in the function text. Use sublists to * keep track of the original query boundaries. But we also build a * "flat" list of the rewritten queries to pass to check_sql_fn_retval. * This is because the last canSetTag query determines the result type * independently of query boundaries --- and it might not be in the last * sublist, for example if the last query rewrites to DO INSTEAD NOTHING. * (It might not be unreasonable to throw an error in such a case, but * this is the historical behavior and it doesn't seem worth changing.) */ raw_parsetree_list = pg_parse_query(fcache->src); queryTree_list = NIL; flat_query_list = NIL; foreach(lc, raw_parsetree_list) { Node *parsetree = (Node *) lfirst(lc); List *queryTree_sublist; queryTree_sublist = pg_analyze_and_rewrite_params(parsetree, fcache->src, (ParserSetupHook) sql_fn_parser_setup, fcache->pinfo); queryTree_list = lappend(queryTree_list, queryTree_sublist); flat_query_list = list_concat(flat_query_list, list_copy(queryTree_sublist)); } /* * Check that the function returns the type it claims to. Although in * simple cases this was already done when the function was defined, we * have to recheck because database objects used in the function's queries * might have changed type. We'd have to do it anyway if the function had * any polymorphic arguments. * * Note: we set fcache->returnsTuple according to whether we are returning * the whole tuple result or just a single column. In the latter case we * clear returnsTuple because we need not act different from the scalar * result case, even if it's a rowtype column. (However, we have to force * lazy eval mode in that case; otherwise we'd need extra code to expand * the rowtype column into multiple columns, since we have no way to * notify the caller that it should do that.) * * check_sql_fn_retval will also construct a JunkFilter we can use to * coerce the returned rowtype to the desired form (unless the result type * is VOID, in which case there's nothing to coerce to). */ fcache->returnsTuple = check_sql_fn_retval(foid, rettype, flat_query_list, NULL, &fcache->junkFilter); if (fcache->returnsTuple) { /* Make sure output rowtype is properly blessed */ BlessTupleDesc(fcache->junkFilter->jf_resultSlot->tts_tupleDescriptor); } else if (fcache->returnsSet && type_is_rowtype(fcache->rettype)) { /* * Returning rowtype as if it were scalar --- materialize won't work. * Right now it's sufficient to override any caller preference for * materialize mode, but to add more smarts in init_execution_state * about this, we'd probably need a three-way flag instead of bool. */ lazyEvalOK = true; } /* Finally, plan the queries */ fcache->func_state = init_execution_state(queryTree_list, fcache, lazyEvalOK); ReleaseSysCache(procedureTuple); } /* Start up execution of one execution_state node */ static void postquel_start(execution_state *es, SQLFunctionCachePtr fcache) { DestReceiver *dest; Assert(es->qd == NULL); /* Caller should have ensured a suitable snapshot is active */ Assert(ActiveSnapshotSet()); /* * If this query produces the function result, send its output to the * tuplestore; else discard any output. */ if (es->setsResult) { DR_sqlfunction *myState; dest = CreateDestReceiver(DestSQLFunction); /* pass down the needed info to the dest receiver routines */ myState = (DR_sqlfunction *) dest; Assert(myState->pub.mydest == DestSQLFunction); myState->tstore = fcache->tstore; myState->cxt = CurrentMemoryContext; myState->filter = fcache->junkFilter; } else dest = None_Receiver; if (IsA(es->stmt, PlannedStmt)) es->qd = CreateQueryDesc((PlannedStmt *) es->stmt, fcache->src, GetActiveSnapshot(), InvalidSnapshot, dest, fcache->paramLI, 0); else es->qd = CreateUtilityQueryDesc(es->stmt, fcache->src, GetActiveSnapshot(), dest, fcache->paramLI); /* Utility commands don't need Executor. */ if (es->qd->utilitystmt == NULL) { /* * In lazyEval mode, do not let the executor set up an AfterTrigger * context. This is necessary not just an optimization, because we * mustn't exit from the function execution with a stacked * AfterTrigger level still active. We are careful not to select * lazyEval mode for any statement that could possibly queue triggers. */ int eflags; if (es->lazyEval) eflags = EXEC_FLAG_SKIP_TRIGGERS; else eflags = 0; /* default run-to-completion flags */ ExecutorStart(es->qd, eflags); } es->status = F_EXEC_RUN; } /* Run one execution_state; either to completion or to first result row */ /* Returns true if we ran to completion */ static bool postquel_getnext(execution_state *es, SQLFunctionCachePtr fcache) { bool result; if (es->qd->utilitystmt) { /* ProcessUtility needs the PlannedStmt for DECLARE CURSOR */ ProcessUtility((es->qd->plannedstmt ? (Node *) es->qd->plannedstmt : es->qd->utilitystmt), fcache->src, es->qd->params, false, /* not top level */ es->qd->dest, NULL); result = true; /* never stops early */ } else { /* Run regular commands to completion unless lazyEval */ long count = (es->lazyEval) ? 1L : 0L; ExecutorRun(es->qd, ForwardScanDirection, count); /* * If we requested run to completion OR there was no tuple returned, * command must be complete. */ result = (count == 0L || es->qd->estate->es_processed == 0); } return result; } /* Shut down execution of one execution_state node */ static void postquel_end(execution_state *es) { /* mark status done to ensure we don't do ExecutorEnd twice */ es->status = F_EXEC_DONE; /* Utility commands don't need Executor. */ if (es->qd->utilitystmt == NULL) { ExecutorFinish(es->qd); ExecutorEnd(es->qd); } (*es->qd->dest->rDestroy) (es->qd->dest); FreeQueryDesc(es->qd); es->qd = NULL; } /* Build ParamListInfo array representing current arguments */ static void postquel_sub_params(SQLFunctionCachePtr fcache, FunctionCallInfo fcinfo) { int nargs = fcinfo->nargs; if (nargs > 0) { ParamListInfo paramLI; int i; if (fcache->paramLI == NULL) { /* sizeof(ParamListInfoData) includes the first array element */ paramLI = (ParamListInfo) palloc(sizeof(ParamListInfoData) + (nargs - 1) * sizeof(ParamExternData)); /* we have static list of params, so no hooks needed */ paramLI->paramFetch = NULL; paramLI->paramFetchArg = NULL; paramLI->parserSetup = NULL; paramLI->parserSetupArg = NULL; paramLI->numParams = nargs; fcache->paramLI = paramLI; } else { paramLI = fcache->paramLI; Assert(paramLI->numParams == nargs); } for (i = 0; i < nargs; i++) { ParamExternData *prm = ¶mLI->params[i]; prm->value = fcinfo->arg[i]; prm->isnull = fcinfo->argnull[i]; prm->pflags = 0; prm->ptype = fcache->pinfo->argtypes[i]; } } else fcache->paramLI = NULL; } /* * Extract the SQL function's value from a single result row. This is used * both for scalar (non-set) functions and for each row of a lazy-eval set * result. */ static Datum postquel_get_single_result(TupleTableSlot *slot, FunctionCallInfo fcinfo, SQLFunctionCachePtr fcache, MemoryContext resultcontext) { Datum value; MemoryContext oldcontext; /* * Set up to return the function value. For pass-by-reference datatypes, * be sure to allocate the result in resultcontext, not the current memory * context (which has query lifespan). We can't leave the data in the * TupleTableSlot because we intend to clear the slot before returning. */ oldcontext = MemoryContextSwitchTo(resultcontext); if (fcache->returnsTuple) { /* We must return the whole tuple as a Datum. */ fcinfo->isnull = false; value = ExecFetchSlotTupleDatum(slot); value = datumCopy(value, fcache->typbyval, fcache->typlen); } else { /* * Returning a scalar, which we have to extract from the first column * of the SELECT result, and then copy into result context if needed. */ value = slot_getattr(slot, 1, &(fcinfo->isnull)); if (!fcinfo->isnull) value = datumCopy(value, fcache->typbyval, fcache->typlen); } MemoryContextSwitchTo(oldcontext); return value; } /* * fmgr_sql: function call manager for SQL functions */ Datum fmgr_sql(PG_FUNCTION_ARGS) { MemoryContext oldcontext; SQLFunctionCachePtr fcache; ErrorContextCallback sqlerrcontext; bool randomAccess; bool lazyEvalOK; bool is_first; bool pushed_snapshot; execution_state *es; TupleTableSlot *slot; Datum result; List *eslist; ListCell *eslc; /* * Switch to context in which the fcache lives. This ensures that * parsetrees, plans, etc, will have sufficient lifetime. The * sub-executor is responsible for deleting per-tuple information. */ oldcontext = MemoryContextSwitchTo(fcinfo->flinfo->fn_mcxt); /* * Setup error traceback support for ereport() */ sqlerrcontext.callback = sql_exec_error_callback; sqlerrcontext.arg = fcinfo->flinfo; sqlerrcontext.previous = error_context_stack; error_context_stack = &sqlerrcontext; /* Check call context */ if (fcinfo->flinfo->fn_retset) { ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo; /* * For simplicity, we require callers to support both set eval modes. * There are cases where we must use one or must use the other, and * it's not really worthwhile to postpone the check till we know. But * note we do not require caller to provide an expectedDesc. */ if (!rsi || !IsA(rsi, ReturnSetInfo) || (rsi->allowedModes & SFRM_ValuePerCall) == 0 || (rsi->allowedModes & SFRM_Materialize) == 0) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("set-valued function called in context that cannot accept a set"))); randomAccess = rsi->allowedModes & SFRM_Materialize_Random; lazyEvalOK = !(rsi->allowedModes & SFRM_Materialize_Preferred); } else { randomAccess = false; lazyEvalOK = true; } /* * Initialize fcache (build plans) if first time through. */ fcache = (SQLFunctionCachePtr) fcinfo->flinfo->fn_extra; if (fcache == NULL) { init_sql_fcache(fcinfo->flinfo, PG_GET_COLLATION(), lazyEvalOK); fcache = (SQLFunctionCachePtr) fcinfo->flinfo->fn_extra; } eslist = fcache->func_state; /* * Find first unfinished query in function, and note whether it's the * first query. */ es = NULL; is_first = true; foreach(eslc, eslist) { es = (execution_state *) lfirst(eslc); while (es && es->status == F_EXEC_DONE) { is_first = false; es = es->next; } if (es) break; } /* * Convert params to appropriate format if starting a fresh execution. (If * continuing execution, we can re-use prior params.) */ if (is_first && es && es->status == F_EXEC_START) postquel_sub_params(fcache, fcinfo); /* * Build tuplestore to hold results, if we don't have one already. Note * it's in the query-lifespan context. */ if (!fcache->tstore) fcache->tstore = tuplestore_begin_heap(randomAccess, false, work_mem); /* * Execute each command in the function one after another until we either * run out of commands or get a result row from a lazily-evaluated SELECT. * * Notes about snapshot management: * * In a read-only function, we just use the surrounding query's snapshot. * * In a non-read-only function, we rely on the fact that we'll never * suspend execution between queries of the function: the only reason to * suspend execution before completion is if we are returning a row from a * lazily-evaluated SELECT. So, when first entering this loop, we'll * either start a new query (and push a fresh snapshot) or re-establish * the active snapshot from the existing query descriptor. If we need to * start a new query in a subsequent execution of the loop, either we need * a fresh snapshot (and pushed_snapshot is false) or the existing * snapshot is on the active stack and we can just bump its command ID. */ pushed_snapshot = false; while (es) { bool completed; if (es->status == F_EXEC_START) { /* * If not read-only, be sure to advance the command counter for * each command, so that all work to date in this transaction is * visible. Take a new snapshot if we don't have one yet, * otherwise just bump the command ID in the existing snapshot. */ if (!fcache->readonly_func) { CommandCounterIncrement(); if (!pushed_snapshot) { PushActiveSnapshot(GetTransactionSnapshot()); pushed_snapshot = true; } else UpdateActiveSnapshotCommandId(); } postquel_start(es, fcache); } else if (!fcache->readonly_func && !pushed_snapshot) { /* Re-establish active snapshot when re-entering function */ PushActiveSnapshot(es->qd->snapshot); pushed_snapshot = true; } completed = postquel_getnext(es, fcache); /* * If we ran the command to completion, we can shut it down now. Any * row(s) we need to return are safely stashed in the tuplestore, and * we want to be sure that, for example, AFTER triggers get fired * before we return anything. Also, if the function doesn't return * set, we can shut it down anyway because it must be a SELECT and we * don't care about fetching any more result rows. */ if (completed || !fcache->returnsSet) postquel_end(es); /* * Break from loop if we didn't shut down (implying we got a * lazily-evaluated row). Otherwise we'll press on till the whole * function is done, relying on the tuplestore to keep hold of the * data to eventually be returned. This is necessary since an * INSERT/UPDATE/DELETE RETURNING that sets the result might be * followed by additional rule-inserted commands, and we want to * finish doing all those commands before we return anything. */ if (es->status != F_EXEC_DONE) break; /* * Advance to next execution_state, which might be in the next list. */ es = es->next; while (!es) { eslc = lnext(eslc); if (!eslc) break; /* end of function */ es = (execution_state *) lfirst(eslc); /* * Flush the current snapshot so that we will take a new one for * the new query list. This ensures that new snaps are taken at * original-query boundaries, matching the behavior of interactive * execution. */ if (pushed_snapshot) { PopActiveSnapshot(); pushed_snapshot = false; } } } /* * The tuplestore now contains whatever row(s) we are supposed to return. */ if (fcache->returnsSet) { ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo; if (es) { /* * If we stopped short of being done, we must have a lazy-eval * row. */ Assert(es->lazyEval); /* Re-use the junkfilter's output slot to fetch back the tuple */ Assert(fcache->junkFilter); slot = fcache->junkFilter->jf_resultSlot; if (!tuplestore_gettupleslot(fcache->tstore, true, false, slot)) elog(ERROR, "failed to fetch lazy-eval tuple"); /* Extract the result as a datum, and copy out from the slot */ result = postquel_get_single_result(slot, fcinfo, fcache, oldcontext); /* Clear the tuplestore, but keep it for next time */ /* NB: this might delete the slot's content, but we don't care */ tuplestore_clear(fcache->tstore); /* * Let caller know we're not finished. */ rsi->isDone = ExprMultipleResult; /* * Ensure we will get shut down cleanly if the exprcontext is not * run to completion. */ if (!fcache->shutdown_reg) { RegisterExprContextCallback(rsi->econtext, ShutdownSQLFunction, PointerGetDatum(fcache)); fcache->shutdown_reg = true; } } else if (fcache->lazyEval) { /* * We are done with a lazy evaluation. Clean up. */ tuplestore_clear(fcache->tstore); /* * Let caller know we're finished. */ rsi->isDone = ExprEndResult; fcinfo->isnull = true; result = (Datum) 0; /* Deregister shutdown callback, if we made one */ if (fcache->shutdown_reg) { UnregisterExprContextCallback(rsi->econtext, ShutdownSQLFunction, PointerGetDatum(fcache)); fcache->shutdown_reg = false; } } else { /* * We are done with a non-lazy evaluation. Return whatever is in * the tuplestore. (It is now caller's responsibility to free the * tuplestore when done.) */ rsi->returnMode = SFRM_Materialize; rsi->setResult = fcache->tstore; fcache->tstore = NULL; /* must copy desc because execQual will free it */ if (fcache->junkFilter) rsi->setDesc = CreateTupleDescCopy(fcache->junkFilter->jf_cleanTupType); fcinfo->isnull = true; result = (Datum) 0; /* Deregister shutdown callback, if we made one */ if (fcache->shutdown_reg) { UnregisterExprContextCallback(rsi->econtext, ShutdownSQLFunction, PointerGetDatum(fcache)); fcache->shutdown_reg = false; } } } else { /* * Non-set function. If we got a row, return it; else return NULL. */ if (fcache->junkFilter) { /* Re-use the junkfilter's output slot to fetch back the tuple */ slot = fcache->junkFilter->jf_resultSlot; if (tuplestore_gettupleslot(fcache->tstore, true, false, slot)) result = postquel_get_single_result(slot, fcinfo, fcache, oldcontext); else { fcinfo->isnull = true; result = (Datum) 0; } } else { /* Should only get here for VOID functions */ Assert(fcache->rettype == VOIDOID); fcinfo->isnull = true; result = (Datum) 0; } /* Clear the tuplestore, but keep it for next time */ tuplestore_clear(fcache->tstore); } /* Pop snapshot if we have pushed one */ if (pushed_snapshot) PopActiveSnapshot(); /* * If we've gone through every command in the function, we are done. Reset * the execution states to start over again on next call. */ if (es == NULL) { foreach(eslc, fcache->func_state) { es = (execution_state *) lfirst(eslc); while (es) { es->status = F_EXEC_START; es = es->next; } } } error_context_stack = sqlerrcontext.previous; MemoryContextSwitchTo(oldcontext); return result; } /* * error context callback to let us supply a call-stack traceback */ static void sql_exec_error_callback(void *arg) { FmgrInfo *flinfo = (FmgrInfo *) arg; SQLFunctionCachePtr fcache = (SQLFunctionCachePtr) flinfo->fn_extra; int syntaxerrposition; /* * We can do nothing useful if init_sql_fcache() didn't get as far as * saving the function name */ if (fcache == NULL || fcache->fname == NULL) return; /* * If there is a syntax error position, convert to internal syntax error */ syntaxerrposition = geterrposition(); if (syntaxerrposition > 0 && fcache->src != NULL) { errposition(0); internalerrposition(syntaxerrposition); internalerrquery(fcache->src); } /* * Try to determine where in the function we failed. If there is a query * with non-null QueryDesc, finger it. (We check this rather than looking * for F_EXEC_RUN state, so that errors during ExecutorStart or * ExecutorEnd are blamed on the appropriate query; see postquel_start and * postquel_end.) */ if (fcache->func_state) { execution_state *es; int query_num; ListCell *lc; es = NULL; query_num = 1; foreach(lc, fcache->func_state) { es = (execution_state *) lfirst(lc); while (es) { if (es->qd) { errcontext("SQL function \"%s\" statement %d", fcache->fname, query_num); break; } es = es->next; } if (es) break; query_num++; } if (es == NULL) { /* * couldn't identify a running query; might be function entry, * function exit, or between queries. */ errcontext("SQL function \"%s\"", fcache->fname); } } else { /* * Assume we failed during init_sql_fcache(). (It's possible that the * function actually has an empty body, but in that case we may as * well report all errors as being "during startup".) */ errcontext("SQL function \"%s\" during startup", fcache->fname); } } /* * callback function in case a function-returning-set needs to be shut down * before it has been run to completion */ static void ShutdownSQLFunction(Datum arg) { SQLFunctionCachePtr fcache = (SQLFunctionCachePtr) DatumGetPointer(arg); execution_state *es; ListCell *lc; foreach(lc, fcache->func_state) { es = (execution_state *) lfirst(lc); while (es) { /* Shut down anything still running */ if (es->status == F_EXEC_RUN) { /* Re-establish active snapshot for any called functions */ if (!fcache->readonly_func) PushActiveSnapshot(es->qd->snapshot); postquel_end(es); if (!fcache->readonly_func) PopActiveSnapshot(); } /* Reset states to START in case we're called again */ es->status = F_EXEC_START; es = es->next; } } /* Release tuplestore if we have one */ if (fcache->tstore) tuplestore_end(fcache->tstore); fcache->tstore = NULL; /* execUtils will deregister the callback... */ fcache->shutdown_reg = false; } /* * check_sql_fn_retval() -- check return value of a list of sql parse trees. * * The return value of a sql function is the value returned by the last * canSetTag query in the function. We do some ad-hoc type checking here * to be sure that the user is returning the type he claims. There are * also a couple of strange-looking features to assist callers in dealing * with allowed special cases, such as binary-compatible result types. * * For a polymorphic function the passed rettype must be the actual resolved * output type of the function; we should never see a polymorphic pseudotype * such as ANYELEMENT as rettype. (This means we can't check the type during * function definition of a polymorphic function.) * * This function returns true if the sql function returns the entire tuple * result of its final statement, or false if it returns just the first column * result of that statement. It throws an error if the final statement doesn't * return the right type at all. * * Note that because we allow "SELECT rowtype_expression", the result can be * false even when the declared function return type is a rowtype. * * If modifyTargetList isn't NULL, the function will modify the final * statement's targetlist in two cases: * (1) if the tlist returns values that are binary-coercible to the expected * type rather than being exactly the expected type. RelabelType nodes will * be inserted to make the result types match exactly. * (2) if there are dropped columns in the declared result rowtype. NULL * output columns will be inserted in the tlist to match them. * (Obviously the caller must pass a parsetree that is okay to modify when * using this flag.) Note that this flag does not affect whether the tlist is * considered to be a legal match to the result type, only how we react to * allowed not-exact-match cases. *modifyTargetList will be set true iff * we had to make any "dangerous" changes that could modify the semantics of * the statement. If it is set true, the caller should not use the modified * statement, but for simplicity we apply the changes anyway. * * If junkFilter isn't NULL, then *junkFilter is set to a JunkFilter defined * to convert the function's tuple result to the correct output tuple type. * Exception: if the function is defined to return VOID then *junkFilter is * set to NULL. */ bool check_sql_fn_retval(Oid func_id, Oid rettype, List *queryTreeList, bool *modifyTargetList, JunkFilter **junkFilter) { Query *parse; List **tlist_ptr; List *tlist; int tlistlen; char fn_typtype; Oid restype; ListCell *lc; AssertArg(!IsPolymorphicType(rettype)); if (modifyTargetList) *modifyTargetList = false; /* initialize for no change */ if (junkFilter) *junkFilter = NULL; /* initialize in case of VOID result */ /* * Find the last canSetTag query in the list. This isn't necessarily the * last parsetree, because rule rewriting can insert queries after what * the user wrote. */ parse = NULL; foreach(lc, queryTreeList) { Query *q = (Query *) lfirst(lc); if (q->canSetTag) parse = q; } /* * If it's a plain SELECT, it returns whatever the targetlist says. * Otherwise, if it's INSERT/UPDATE/DELETE with RETURNING, it returns * that. Otherwise, the function return type must be VOID. * * Note: eventually replace this test with QueryReturnsTuples? We'd need * a more general method of determining the output type, though. Also, it * seems too dangerous to consider FETCH or EXECUTE as returning a * determinable rowtype, since they depend on relatively short-lived * entities. */ if (parse && parse->commandType == CMD_SELECT && parse->utilityStmt == NULL && parse->intoClause == NULL) { tlist_ptr = &parse->targetList; tlist = parse->targetList; } else if (parse && (parse->commandType == CMD_INSERT || parse->commandType == CMD_UPDATE || parse->commandType == CMD_DELETE) && parse->returningList) { tlist_ptr = &parse->returningList; tlist = parse->returningList; } else { /* Empty function body, or last statement is a utility command */ if (rettype != VOIDOID) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type mismatch in function declared to return %s", format_type_be(rettype)), errdetail("Function's final statement must be SELECT or INSERT/UPDATE/DELETE RETURNING."))); return false; } /* * OK, check that the targetlist returns something matching the declared * type. (We used to insist that the declared type not be VOID in this * case, but that makes it hard to write a void function that exits after * calling another void function. Instead, we insist that the tlist * return void ... so void is treated as if it were a scalar type below.) */ /* * Count the non-junk entries in the result targetlist. */ tlistlen = ExecCleanTargetListLength(tlist); fn_typtype = get_typtype(rettype); if (fn_typtype == TYPTYPE_BASE || fn_typtype == TYPTYPE_DOMAIN || fn_typtype == TYPTYPE_ENUM || fn_typtype == TYPTYPE_RANGE || rettype == VOIDOID) { /* * For scalar-type returns, the target list must have exactly one * non-junk entry, and its type must agree with what the user * declared; except we allow binary-compatible types too. */ TargetEntry *tle; if (tlistlen != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type mismatch in function declared to return %s", format_type_be(rettype)), errdetail("Final statement must return exactly one column."))); /* We assume here that non-junk TLEs must come first in tlists */ tle = (TargetEntry *) linitial(tlist); Assert(!tle->resjunk); restype = exprType((Node *) tle->expr); if (!IsBinaryCoercible(restype, rettype)) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type mismatch in function declared to return %s", format_type_be(rettype)), errdetail("Actual return type is %s.", format_type_be(restype)))); if (modifyTargetList && restype != rettype) { tle->expr = (Expr *) makeRelabelType(tle->expr, rettype, -1, get_typcollation(rettype), COERCE_DONTCARE); /* Relabel is dangerous if TLE is a sort/group or setop column */ if (tle->ressortgroupref != 0 || parse->setOperations) *modifyTargetList = true; } /* Set up junk filter if needed */ if (junkFilter) *junkFilter = ExecInitJunkFilter(tlist, false, NULL); } else if (fn_typtype == TYPTYPE_COMPOSITE || rettype == RECORDOID) { /* Returns a rowtype */ TupleDesc tupdesc; int tupnatts; /* physical number of columns in tuple */ int tuplogcols; /* # of nondeleted columns in tuple */ int colindex; /* physical column index */ List *newtlist; /* new non-junk tlist entries */ List *junkattrs; /* new junk tlist entries */ /* * If the target list is of length 1, and the type of the varnode in * the target list matches the declared return type, this is okay. * This can happen, for example, where the body of the function is * 'SELECT func2()', where func2 has the same composite return type as * the function that's calling it. * * XXX Note that if rettype is RECORD, the IsBinaryCoercible check * will succeed for any composite restype. For the moment we rely on * runtime type checking to catch any discrepancy, but it'd be nice to * do better at parse time. */ if (tlistlen == 1) { TargetEntry *tle = (TargetEntry *) linitial(tlist); Assert(!tle->resjunk); restype = exprType((Node *) tle->expr); if (IsBinaryCoercible(restype, rettype)) { if (modifyTargetList && restype != rettype) { tle->expr = (Expr *) makeRelabelType(tle->expr, rettype, -1, get_typcollation(rettype), COERCE_DONTCARE); /* Relabel is dangerous if sort/group or setop column */ if (tle->ressortgroupref != 0 || parse->setOperations) *modifyTargetList = true; } /* Set up junk filter if needed */ if (junkFilter) *junkFilter = ExecInitJunkFilter(tlist, false, NULL); return false; /* NOT returning whole tuple */ } } /* Is the rowtype fixed, or determined only at runtime? */ if (get_func_result_type(func_id, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) { /* * Assume we are returning the whole tuple. Crosschecking against * what the caller expects will happen at runtime. */ if (junkFilter) *junkFilter = ExecInitJunkFilter(tlist, false, NULL); return true; } Assert(tupdesc); /* * Verify that the targetlist matches the return tuple type. We scan * the non-deleted attributes to ensure that they match the datatypes * of the non-resjunk columns. For deleted attributes, insert NULL * result columns if the caller asked for that. */ tupnatts = tupdesc->natts; tuplogcols = 0; /* we'll count nondeleted cols as we go */ colindex = 0; newtlist = NIL; /* these are only used if modifyTargetList */ junkattrs = NIL; foreach(lc, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(lc); Form_pg_attribute attr; Oid tletype; Oid atttype; if (tle->resjunk) { if (modifyTargetList) junkattrs = lappend(junkattrs, tle); continue; } do { colindex++; if (colindex > tupnatts) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type mismatch in function declared to return %s", format_type_be(rettype)), errdetail("Final statement returns too many columns."))); attr = tupdesc->attrs[colindex - 1]; if (attr->attisdropped && modifyTargetList) { Expr *null_expr; /* The type of the null we insert isn't important */ null_expr = (Expr *) makeConst(INT4OID, -1, InvalidOid, sizeof(int32), (Datum) 0, true, /* isnull */ true /* byval */ ); newtlist = lappend(newtlist, makeTargetEntry(null_expr, colindex, NULL, false)); /* NULL insertion is dangerous in a setop */ if (parse->setOperations) *modifyTargetList = true; } } while (attr->attisdropped); tuplogcols++; tletype = exprType((Node *) tle->expr); atttype = attr->atttypid; if (!IsBinaryCoercible(tletype, atttype)) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type mismatch in function declared to return %s", format_type_be(rettype)), errdetail("Final statement returns %s instead of %s at column %d.", format_type_be(tletype), format_type_be(atttype), tuplogcols))); if (modifyTargetList) { if (tletype != atttype) { tle->expr = (Expr *) makeRelabelType(tle->expr, atttype, -1, get_typcollation(atttype), COERCE_DONTCARE); /* Relabel is dangerous if sort/group or setop column */ if (tle->ressortgroupref != 0 || parse->setOperations) *modifyTargetList = true; } tle->resno = colindex; newtlist = lappend(newtlist, tle); } } /* remaining columns in tupdesc had better all be dropped */ for (colindex++; colindex <= tupnatts; colindex++) { if (!tupdesc->attrs[colindex - 1]->attisdropped) ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type mismatch in function declared to return %s", format_type_be(rettype)), errdetail("Final statement returns too few columns."))); if (modifyTargetList) { Expr *null_expr; /* The type of the null we insert isn't important */ null_expr = (Expr *) makeConst(INT4OID, -1, InvalidOid, sizeof(int32), (Datum) 0, true, /* isnull */ true /* byval */ ); newtlist = lappend(newtlist, makeTargetEntry(null_expr, colindex, NULL, false)); /* NULL insertion is dangerous in a setop */ if (parse->setOperations) *modifyTargetList = true; } } if (modifyTargetList) { /* ensure resjunk columns are numbered correctly */ foreach(lc, junkattrs) { TargetEntry *tle = (TargetEntry *) lfirst(lc); tle->resno = colindex++; } /* replace the tlist with the modified one */ *tlist_ptr = list_concat(newtlist, junkattrs); } /* Set up junk filter if needed */ if (junkFilter) *junkFilter = ExecInitJunkFilterConversion(tlist, CreateTupleDescCopy(tupdesc), NULL); /* Report that we are returning entire tuple result */ return true; } else ereport(ERROR, (errcode(ERRCODE_INVALID_FUNCTION_DEFINITION), errmsg("return type %s is not supported for SQL functions", format_type_be(rettype)))); return false; } /* * CreateSQLFunctionDestReceiver -- create a suitable DestReceiver object */ DestReceiver * CreateSQLFunctionDestReceiver(void) { DR_sqlfunction *self = (DR_sqlfunction *) palloc0(sizeof(DR_sqlfunction)); self->pub.receiveSlot = sqlfunction_receive; self->pub.rStartup = sqlfunction_startup; self->pub.rShutdown = sqlfunction_shutdown; self->pub.rDestroy = sqlfunction_destroy; self->pub.mydest = DestSQLFunction; /* private fields will be set by postquel_start */ return (DestReceiver *) self; } /* * sqlfunction_startup --- executor startup */ static void sqlfunction_startup(DestReceiver *self, int operation, TupleDesc typeinfo) { /* no-op */ } /* * sqlfunction_receive --- receive one tuple */ static void sqlfunction_receive(TupleTableSlot *slot, DestReceiver *self) { DR_sqlfunction *myState = (DR_sqlfunction *) self; /* Filter tuple as needed */ slot = ExecFilterJunk(myState->filter, slot); /* Store the filtered tuple into the tuplestore */ tuplestore_puttupleslot(myState->tstore, slot); } /* * sqlfunction_shutdown --- executor end */ static void sqlfunction_shutdown(DestReceiver *self) { /* no-op */ } /* * sqlfunction_destroy --- release DestReceiver object */ static void sqlfunction_destroy(DestReceiver *self) { pfree(self); }