/*------------------------------------------------------------------------- * * xlog.c * PostgreSQL transaction log manager * * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * $PostgreSQL: pgsql/src/backend/access/transam/xlog.c,v 1.216 2005/08/20 23:26:10 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include #include #include #include #include "access/clog.h" #include "access/multixact.h" #include "access/subtrans.h" #include "access/twophase.h" #include "access/xact.h" #include "access/xlog.h" #include "access/xlog_internal.h" #include "access/xlogutils.h" #include "catalog/catversion.h" #include "catalog/pg_control.h" #include "miscadmin.h" #include "pgstat.h" #include "postmaster/bgwriter.h" #include "storage/bufpage.h" #include "storage/fd.h" #include "storage/lwlock.h" #include "storage/pmsignal.h" #include "storage/proc.h" #include "storage/procarray.h" #include "storage/spin.h" #include "utils/builtins.h" #include "utils/guc.h" #include "utils/nabstime.h" #include "utils/relcache.h" /* * Because O_DIRECT bypasses the kernel buffers, and because we never * read those buffers except during crash recovery, it is a win to use * it in all cases where we sync on each write(). We could allow O_DIRECT * with fsync(), but because skipping the kernel buffer forces writes out * quickly, it seems best just to use it for O_SYNC. It is hard to imagine * how fsync() could be a win for O_DIRECT compared to O_SYNC and O_DIRECT. * Also, O_DIRECT is never enough to force data to the drives, it merely * tries to bypass the kernel cache, so we still need O_SYNC or fsync(). */ #ifdef O_DIRECT #define PG_O_DIRECT O_DIRECT #else #define PG_O_DIRECT 0 #endif /* * This chunk of hackery attempts to determine which file sync methods * are available on the current platform, and to choose an appropriate * default method. We assume that fsync() is always available, and that * configure determined whether fdatasync() is. */ #ifdef O_SYNC #define CMP_OPEN_SYNC_FLAG O_SYNC #elif defined(O_FSYNC) #define CMP_OPEN_SYNC_FLAG O_FSYNC #endif #ifdef CMP_OPEN_SYNC_FLAG #define OPEN_SYNC_FLAG (CMP_OPEN_SYNC_FLAG | PG_O_DIRECT) #endif #ifdef O_DSYNC #ifdef OPEN_SYNC_FLAG /* O_DSYNC is distinct? */ #if O_DSYNC != CMP_OPEN_SYNC_FLAG #define OPEN_DATASYNC_FLAG (O_DSYNC | PG_O_DIRECT) #endif #else /* !defined(OPEN_SYNC_FLAG) */ /* Win32 only has O_DSYNC */ #define OPEN_DATASYNC_FLAG (O_DSYNC | PG_O_DIRECT) #endif #endif #ifdef OPEN_DATASYNC_FLAG #define DEFAULT_SYNC_METHOD_STR "open_datasync" #define DEFAULT_SYNC_METHOD SYNC_METHOD_OPEN #define DEFAULT_SYNC_FLAGBIT OPEN_DATASYNC_FLAG #elif defined(HAVE_FDATASYNC) #define DEFAULT_SYNC_METHOD_STR "fdatasync" #define DEFAULT_SYNC_METHOD SYNC_METHOD_FDATASYNC #define DEFAULT_SYNC_FLAGBIT 0 #elif !defined(HAVE_FSYNC_WRITETHROUGH_ONLY) #define DEFAULT_SYNC_METHOD_STR "fsync" #define DEFAULT_SYNC_METHOD SYNC_METHOD_FSYNC #define DEFAULT_SYNC_FLAGBIT 0 #else #define DEFAULT_SYNC_METHOD_STR "fsync_writethrough" #define DEFAULT_SYNC_METHOD SYNC_METHOD_FSYNC_WRITETHROUGH #define DEFAULT_SYNC_FLAGBIT 0 #endif /* * Limitation of buffer-alignment for direct IO depends on OS and filesystem, * but BLCKSZ is assumed to be enough for it. */ #ifdef O_DIRECT #define ALIGNOF_XLOG_BUFFER BLCKSZ #else #define ALIGNOF_XLOG_BUFFER ALIGNOF_BUFFER #endif /* File path names (all relative to $PGDATA) */ #define BACKUP_LABEL_FILE "backup_label" #define RECOVERY_COMMAND_FILE "recovery.conf" #define RECOVERY_COMMAND_DONE "recovery.done" /* User-settable parameters */ int CheckPointSegments = 3; int XLOGbuffers = 8; char *XLogArchiveCommand = NULL; char *XLOG_sync_method = NULL; const char XLOG_sync_method_default[] = DEFAULT_SYNC_METHOD_STR; bool fullPageWrites = true; #ifdef WAL_DEBUG bool XLOG_DEBUG = false; #endif /* * XLOGfileslop is used in the code as the allowed "fuzz" in the number of * preallocated XLOG segments --- we try to have at least XLOGfiles advance * segments but no more than XLOGfileslop segments. This could * be made a separate GUC variable, but at present I think it's sufficient * to hardwire it as 2*CheckPointSegments+1. Under normal conditions, a * checkpoint will free no more than 2*CheckPointSegments log segments, and * we want to recycle all of them; the +1 allows boundary cases to happen * without wasting a delete/create-segment cycle. */ #define XLOGfileslop (2*CheckPointSegments + 1) /* these are derived from XLOG_sync_method by assign_xlog_sync_method */ int sync_method = DEFAULT_SYNC_METHOD; static int open_sync_bit = DEFAULT_SYNC_FLAGBIT; #define XLOG_SYNC_BIT (enableFsync ? open_sync_bit : 0) /* * ThisTimeLineID will be same in all backends --- it identifies current * WAL timeline for the database system. */ TimeLineID ThisTimeLineID = 0; /* Are we doing recovery from XLOG? */ bool InRecovery = false; /* Are we recovering using offline XLOG archives? */ static bool InArchiveRecovery = false; /* Was the last xlog file restored from archive, or local? */ static bool restoredFromArchive = false; /* options taken from recovery.conf */ static char *recoveryRestoreCommand = NULL; static bool recoveryTarget = false; static bool recoveryTargetExact = false; static bool recoveryTargetInclusive = true; static TransactionId recoveryTargetXid; static time_t recoveryTargetTime; /* if recoveryStopsHere returns true, it saves actual stop xid/time here */ static TransactionId recoveryStopXid; static time_t recoveryStopTime; static bool recoveryStopAfter; /* constraint set by read_backup_label */ static XLogRecPtr recoveryMinXlogOffset = {0, 0}; /* * During normal operation, the only timeline we care about is ThisTimeLineID. * During recovery, however, things are more complicated. To simplify life * for rmgr code, we keep ThisTimeLineID set to the "current" timeline as we * scan through the WAL history (that is, it is the line that was active when * the currently-scanned WAL record was generated). We also need these * timeline values: * * recoveryTargetTLI: the desired timeline that we want to end in. * * expectedTLIs: an integer list of recoveryTargetTLI and the TLIs of * its known parents, newest first (so recoveryTargetTLI is always the * first list member). Only these TLIs are expected to be seen in the WAL * segments we read, and indeed only these TLIs will be considered as * candidate WAL files to open at all. * * curFileTLI: the TLI appearing in the name of the current input WAL file. * (This is not necessarily the same as ThisTimeLineID, because we could * be scanning data that was copied from an ancestor timeline when the current * file was created.) During a sequential scan we do not allow this value * to decrease. */ static TimeLineID recoveryTargetTLI; static List *expectedTLIs; static TimeLineID curFileTLI; /* * MyLastRecPtr points to the start of the last XLOG record inserted by the * current transaction. If MyLastRecPtr.xrecoff == 0, then the current * xact hasn't yet inserted any transaction-controlled XLOG records. * * Note that XLOG records inserted outside transaction control are not * reflected into MyLastRecPtr. They do, however, cause MyXactMadeXLogEntry * to be set true. The latter can be used to test whether the current xact * made any loggable changes (including out-of-xact changes, such as * sequence updates). * * When we insert/update/delete a tuple in a temporary relation, we do not * make any XLOG record, since we don't care about recovering the state of * the temp rel after a crash. However, we will still need to remember * whether our transaction committed or aborted in that case. So, we must * set MyXactMadeTempRelUpdate true to indicate that the XID will be of * interest later. */ XLogRecPtr MyLastRecPtr = {0, 0}; bool MyXactMadeXLogEntry = false; bool MyXactMadeTempRelUpdate = false; /* * ProcLastRecPtr points to the start of the last XLOG record inserted by the * current backend. It is updated for all inserts, transaction-controlled * or not. ProcLastRecEnd is similar but points to end+1 of last record. */ static XLogRecPtr ProcLastRecPtr = {0, 0}; XLogRecPtr ProcLastRecEnd = {0, 0}; /* * RedoRecPtr is this backend's local copy of the REDO record pointer * (which is almost but not quite the same as a pointer to the most recent * CHECKPOINT record). We update this from the shared-memory copy, * XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we * hold the Insert lock). See XLogInsert for details. We are also allowed * to update from XLogCtl->Insert.RedoRecPtr if we hold the info_lck; * see GetRedoRecPtr. A freshly spawned backend obtains the value during * InitXLOGAccess. */ static XLogRecPtr RedoRecPtr; /*---------- * Shared-memory data structures for XLOG control * * LogwrtRqst indicates a byte position that we need to write and/or fsync * the log up to (all records before that point must be written or fsynced). * LogwrtResult indicates the byte positions we have already written/fsynced. * These structs are identical but are declared separately to indicate their * slightly different functions. * * We do a lot of pushups to minimize the amount of access to lockable * shared memory values. There are actually three shared-memory copies of * LogwrtResult, plus one unshared copy in each backend. Here's how it works: * XLogCtl->LogwrtResult is protected by info_lck * XLogCtl->Write.LogwrtResult is protected by WALWriteLock * XLogCtl->Insert.LogwrtResult is protected by WALInsertLock * One must hold the associated lock to read or write any of these, but * of course no lock is needed to read/write the unshared LogwrtResult. * * XLogCtl->LogwrtResult and XLogCtl->Write.LogwrtResult are both "always * right", since both are updated by a write or flush operation before * it releases WALWriteLock. The point of keeping XLogCtl->Write.LogwrtResult * is that it can be examined/modified by code that already holds WALWriteLock * without needing to grab info_lck as well. * * XLogCtl->Insert.LogwrtResult may lag behind the reality of the other two, * but is updated when convenient. Again, it exists for the convenience of * code that is already holding WALInsertLock but not the other locks. * * The unshared LogwrtResult may lag behind any or all of these, and again * is updated when convenient. * * The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst * (protected by info_lck), but we don't need to cache any copies of it. * * Note that this all works because the request and result positions can only * advance forward, never back up, and so we can easily determine which of two * values is "more up to date". * * info_lck is only held long enough to read/update the protected variables, * so it's a plain spinlock. The other locks are held longer (potentially * over I/O operations), so we use LWLocks for them. These locks are: * * WALInsertLock: must be held to insert a record into the WAL buffers. * * WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or * XLogFlush). * * ControlFileLock: must be held to read/update control file or create * new log file. * * CheckpointLock: must be held to do a checkpoint (ensures only one * checkpointer at a time; even though the postmaster won't launch * parallel checkpoint processes, we need this because manual checkpoints * could be launched simultaneously). * *---------- */ typedef struct XLogwrtRqst { XLogRecPtr Write; /* last byte + 1 to write out */ XLogRecPtr Flush; /* last byte + 1 to flush */ } XLogwrtRqst; typedef struct XLogwrtResult { XLogRecPtr Write; /* last byte + 1 written out */ XLogRecPtr Flush; /* last byte + 1 flushed */ } XLogwrtResult; /* * Shared state data for XLogInsert. */ typedef struct XLogCtlInsert { XLogwrtResult LogwrtResult; /* a recent value of LogwrtResult */ XLogRecPtr PrevRecord; /* start of previously-inserted record */ uint16 curridx; /* current block index in cache */ XLogPageHeader currpage; /* points to header of block in cache */ char *currpos; /* current insertion point in cache */ XLogRecPtr RedoRecPtr; /* current redo point for insertions */ } XLogCtlInsert; /* * Shared state data for XLogWrite/XLogFlush. */ typedef struct XLogCtlWrite { XLogwrtResult LogwrtResult; /* current value of LogwrtResult */ uint16 curridx; /* cache index of next block to write */ } XLogCtlWrite; /* * Total shared-memory state for XLOG. */ typedef struct XLogCtlData { /* Protected by WALInsertLock: */ XLogCtlInsert Insert; /* Protected by info_lck: */ XLogwrtRqst LogwrtRqst; XLogwrtResult LogwrtResult; /* Protected by WALWriteLock: */ XLogCtlWrite Write; /* * These values do not change after startup, although the pointed-to * pages and xlblocks values certainly do. Permission to read/write * the pages and xlblocks values depends on WALInsertLock and * WALWriteLock. */ char *pages; /* buffers for unwritten XLOG pages */ XLogRecPtr *xlblocks; /* 1st byte ptr-s + BLCKSZ */ uint32 XLogCacheByte; /* # bytes in xlog buffers */ uint32 XLogCacheBlck; /* highest allocated xlog buffer index */ TimeLineID ThisTimeLineID; slock_t info_lck; /* locks shared LogwrtRqst/LogwrtResult */ } XLogCtlData; static XLogCtlData *XLogCtl = NULL; /* * We maintain an image of pg_control in shared memory. */ static ControlFileData *ControlFile = NULL; /* * Macros for managing XLogInsert state. In most cases, the calling routine * has local copies of XLogCtl->Insert and/or XLogCtl->Insert->curridx, * so these are passed as parameters instead of being fetched via XLogCtl. */ /* Free space remaining in the current xlog page buffer */ #define INSERT_FREESPACE(Insert) \ (BLCKSZ - ((Insert)->currpos - (char *) (Insert)->currpage)) /* Construct XLogRecPtr value for current insertion point */ #define INSERT_RECPTR(recptr,Insert,curridx) \ ( \ (recptr).xlogid = XLogCtl->xlblocks[curridx].xlogid, \ (recptr).xrecoff = \ XLogCtl->xlblocks[curridx].xrecoff - INSERT_FREESPACE(Insert) \ ) #define PrevBufIdx(idx) \ (((idx) == 0) ? XLogCtl->XLogCacheBlck : ((idx) - 1)) #define NextBufIdx(idx) \ (((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1)) /* * Private, possibly out-of-date copy of shared LogwrtResult. * See discussion above. */ static XLogwrtResult LogwrtResult = {{0, 0}, {0, 0}}; /* * openLogFile is -1 or a kernel FD for an open log file segment. * When it's open, openLogOff is the current seek offset in the file. * openLogId/openLogSeg identify the segment. These variables are only * used to write the XLOG, and so will normally refer to the active segment. */ static int openLogFile = -1; static uint32 openLogId = 0; static uint32 openLogSeg = 0; static uint32 openLogOff = 0; /* * These variables are used similarly to the ones above, but for reading * the XLOG. Note, however, that readOff generally represents the offset * of the page just read, not the seek position of the FD itself, which * will be just past that page. */ static int readFile = -1; static uint32 readId = 0; static uint32 readSeg = 0; static uint32 readOff = 0; /* Buffer for currently read page (BLCKSZ bytes) */ static char *readBuf = NULL; /* Buffer for current ReadRecord result (expandable) */ static char *readRecordBuf = NULL; static uint32 readRecordBufSize = 0; /* State information for XLOG reading */ static XLogRecPtr ReadRecPtr; /* start of last record read */ static XLogRecPtr EndRecPtr; /* end+1 of last record read */ static XLogRecord *nextRecord = NULL; static TimeLineID lastPageTLI = 0; static bool InRedo = false; static void XLogArchiveNotify(const char *xlog); static void XLogArchiveNotifySeg(uint32 log, uint32 seg); static bool XLogArchiveIsDone(const char *xlog); static void XLogArchiveCleanup(const char *xlog); static void readRecoveryCommandFile(void); static void exitArchiveRecovery(TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg); static bool recoveryStopsHere(XLogRecord *record, bool *includeThis); static bool XLogCheckBuffer(XLogRecData *rdata, XLogRecPtr *lsn, BkpBlock *bkpb); static bool AdvanceXLInsertBuffer(void); static void XLogWrite(XLogwrtRqst WriteRqst); static int XLogFileInit(uint32 log, uint32 seg, bool *use_existent, bool use_lock); static bool InstallXLogFileSegment(uint32 *log, uint32 *seg, char *tmppath, bool find_free, int *max_advance, bool use_lock); static int XLogFileOpen(uint32 log, uint32 seg); static int XLogFileRead(uint32 log, uint32 seg, int emode); static bool RestoreArchivedFile(char *path, const char *xlogfname, const char *recovername, off_t expectedSize); static int PreallocXlogFiles(XLogRecPtr endptr); static void MoveOfflineLogs(uint32 log, uint32 seg, XLogRecPtr endptr, int *nsegsremoved, int *nsegsrecycled); static void RemoveOldBackupHistory(void); static XLogRecord *ReadRecord(XLogRecPtr *RecPtr, int emode); static bool ValidXLOGHeader(XLogPageHeader hdr, int emode); static XLogRecord *ReadCheckpointRecord(XLogRecPtr RecPtr, int whichChkpt); static List *readTimeLineHistory(TimeLineID targetTLI); static bool existsTimeLineHistory(TimeLineID probeTLI); static TimeLineID findNewestTimeLine(TimeLineID startTLI); static void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI, TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg); static void WriteControlFile(void); static void ReadControlFile(void); static char *str_time(time_t tnow); static void issue_xlog_fsync(void); /* XLog gather-write staffs */ typedef struct XLogPages { char *head; /* Head of first page */ int size; /* Total bytes of pages == count(pages) * BLCKSZ */ int offset; /* Offset in xlog segment file */ } XLogPages; static void XLogPageReset(XLogPages *pages); static void XLogPageWrite(XLogPages *pages, int index); static void XLogPageFlush(XLogPages *pages, int index); #ifdef WAL_DEBUG static void xlog_outrec(char *buf, XLogRecord *record); #endif static bool read_backup_label(XLogRecPtr *checkPointLoc); static void remove_backup_label(void); /* * Insert an XLOG record having the specified RMID and info bytes, * with the body of the record being the data chunk(s) described by * the rdata chain (see xlog.h for notes about rdata). * * Returns XLOG pointer to end of record (beginning of next record). * This can be used as LSN for data pages affected by the logged action. * (LSN is the XLOG point up to which the XLOG must be flushed to disk * before the data page can be written out. This implements the basic * WAL rule "write the log before the data".) * * NB: this routine feels free to scribble on the XLogRecData structs, * though not on the data they reference. This is OK since the XLogRecData * structs are always just temporaries in the calling code. */ XLogRecPtr XLogInsert(RmgrId rmid, uint8 info, XLogRecData *rdata) { XLogCtlInsert *Insert = &XLogCtl->Insert; XLogRecord *record; XLogContRecord *contrecord; XLogRecPtr RecPtr; XLogRecPtr WriteRqst; uint32 freespace; uint16 curridx; XLogRecData *rdt; Buffer dtbuf[XLR_MAX_BKP_BLOCKS]; bool dtbuf_bkp[XLR_MAX_BKP_BLOCKS]; BkpBlock dtbuf_xlg[XLR_MAX_BKP_BLOCKS]; XLogRecPtr dtbuf_lsn[XLR_MAX_BKP_BLOCKS]; XLogRecData dtbuf_rdt1[XLR_MAX_BKP_BLOCKS]; XLogRecData dtbuf_rdt2[XLR_MAX_BKP_BLOCKS]; XLogRecData dtbuf_rdt3[XLR_MAX_BKP_BLOCKS]; pg_crc32 rdata_crc; uint32 len, write_len; unsigned i; XLogwrtRqst LogwrtRqst; bool updrqst; bool no_tran = (rmid == RM_XLOG_ID) ? true : false; if (info & XLR_INFO_MASK) { if ((info & XLR_INFO_MASK) != XLOG_NO_TRAN) elog(PANIC, "invalid xlog info mask %02X", (info & XLR_INFO_MASK)); no_tran = true; info &= ~XLR_INFO_MASK; } /* * In bootstrap mode, we don't actually log anything but XLOG * resources; return a phony record pointer. */ if (IsBootstrapProcessingMode() && rmid != RM_XLOG_ID) { RecPtr.xlogid = 0; RecPtr.xrecoff = SizeOfXLogLongPHD; /* start of 1st chkpt * record */ return (RecPtr); } /* * Here we scan the rdata chain, determine which buffers must be backed * up, and compute the CRC values for the data. Note that the record * header isn't added into the CRC initially since we don't know the * final length or info bits quite yet. Thus, the CRC will represent * the CRC of the whole record in the order "rdata, then backup blocks, * then record header". * * We may have to loop back to here if a race condition is detected * below. We could prevent the race by doing all this work while * holding the insert lock, but it seems better to avoid doing CRC * calculations while holding the lock. This means we have to be * careful about modifying the rdata chain until we know we aren't * going to loop back again. The only change we allow ourselves to * make earlier is to set rdt->data = NULL in chain items we have * decided we will have to back up the whole buffer for. This is OK * because we will certainly decide the same thing again for those * items if we do it over; doing it here saves an extra pass over the * chain later. */ begin:; for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { dtbuf[i] = InvalidBuffer; dtbuf_bkp[i] = false; } INIT_CRC32(rdata_crc); len = 0; for (rdt = rdata;;) { if (rdt->buffer == InvalidBuffer) { /* Simple data, just include it */ len += rdt->len; COMP_CRC32(rdata_crc, rdt->data, rdt->len); } else { /* Find info for buffer */ for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { if (rdt->buffer == dtbuf[i]) { /* Buffer already referenced by earlier chain item */ if (dtbuf_bkp[i]) rdt->data = NULL; else if (rdt->data) { len += rdt->len; COMP_CRC32(rdata_crc, rdt->data, rdt->len); } break; } if (dtbuf[i] == InvalidBuffer) { /* OK, put it in this slot */ dtbuf[i] = rdt->buffer; if (XLogCheckBuffer(rdt, &(dtbuf_lsn[i]), &(dtbuf_xlg[i]))) { dtbuf_bkp[i] = true; rdt->data = NULL; } else if (rdt->data) { len += rdt->len; COMP_CRC32(rdata_crc, rdt->data, rdt->len); } break; } } if (i >= XLR_MAX_BKP_BLOCKS) elog(PANIC, "can backup at most %d blocks per xlog record", XLR_MAX_BKP_BLOCKS); } /* Break out of loop when rdt points to last chain item */ if (rdt->next == NULL) break; rdt = rdt->next; } /* * Now add the backup block headers and data into the CRC */ for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { if (dtbuf_bkp[i]) { BkpBlock *bkpb = &(dtbuf_xlg[i]); char *page; COMP_CRC32(rdata_crc, (char *) bkpb, sizeof(BkpBlock)); page = (char *) BufferGetBlock(dtbuf[i]); if (bkpb->hole_length == 0) { COMP_CRC32(rdata_crc, page, BLCKSZ); } else { /* must skip the hole */ COMP_CRC32(rdata_crc, page, bkpb->hole_offset); COMP_CRC32(rdata_crc, page + (bkpb->hole_offset + bkpb->hole_length), BLCKSZ - (bkpb->hole_offset + bkpb->hole_length)); } } } /* * NOTE: the test for len == 0 here is somewhat fishy, since in theory * all of the rmgr data might have been suppressed in favor of backup * blocks. Currently, all callers of XLogInsert provide at least some * not-in-a-buffer data and so len == 0 should never happen, but that * may not be true forever. If you need to remove the len == 0 check, * also remove the check for xl_len == 0 in ReadRecord, below. */ if (len == 0) elog(PANIC, "invalid xlog record length %u", len); START_CRIT_SECTION(); /* update LogwrtResult before doing cache fill check */ { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); LogwrtRqst = xlogctl->LogwrtRqst; LogwrtResult = xlogctl->LogwrtResult; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); } /* * If cache is half filled then try to acquire write lock and do * XLogWrite. Ignore any fractional blocks in performing this check. */ LogwrtRqst.Write.xrecoff -= LogwrtRqst.Write.xrecoff % BLCKSZ; if (LogwrtRqst.Write.xlogid != LogwrtResult.Write.xlogid || (LogwrtRqst.Write.xrecoff >= LogwrtResult.Write.xrecoff + XLogCtl->XLogCacheByte / 2)) { if (LWLockConditionalAcquire(WALWriteLock, LW_EXCLUSIVE)) { LogwrtResult = XLogCtl->Write.LogwrtResult; if (XLByteLT(LogwrtResult.Write, LogwrtRqst.Write)) XLogWrite(LogwrtRqst); LWLockRelease(WALWriteLock); } } /* Now wait to get insert lock */ LWLockAcquire(WALInsertLock, LW_EXCLUSIVE); /* * Check to see if my RedoRecPtr is out of date. If so, may have to * go back and recompute everything. This can only happen just after * a checkpoint, so it's better to be slow in this case and fast * otherwise. */ if (!XLByteEQ(RedoRecPtr, Insert->RedoRecPtr)) { Assert(XLByteLT(RedoRecPtr, Insert->RedoRecPtr)); RedoRecPtr = Insert->RedoRecPtr; for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { if (dtbuf[i] == InvalidBuffer) continue; if (dtbuf_bkp[i] == false && XLByteLE(dtbuf_lsn[i], RedoRecPtr)) { /* * Oops, this buffer now needs to be backed up, but we * didn't think so above. Start over. */ LWLockRelease(WALInsertLock); END_CRIT_SECTION(); goto begin; } } } /* * Make additional rdata chain entries for the backup blocks, so that * we don't need to special-case them in the write loop. Note that we * have now irrevocably changed the input rdata chain. At the exit of * this loop, write_len includes the backup block data. * * Also set the appropriate info bits to show which buffers were backed * up. The i'th XLR_SET_BKP_BLOCK bit corresponds to the i'th * distinct buffer value (ignoring InvalidBuffer) appearing in the * rdata chain. */ write_len = len; for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { BkpBlock *bkpb; char *page; if (!dtbuf_bkp[i]) continue; info |= XLR_SET_BKP_BLOCK(i); bkpb = &(dtbuf_xlg[i]); page = (char *) BufferGetBlock(dtbuf[i]); rdt->next = &(dtbuf_rdt1[i]); rdt = rdt->next; rdt->data = (char *) bkpb; rdt->len = sizeof(BkpBlock); write_len += sizeof(BkpBlock); rdt->next = &(dtbuf_rdt2[i]); rdt = rdt->next; if (bkpb->hole_length == 0) { rdt->data = page; rdt->len = BLCKSZ; write_len += BLCKSZ; rdt->next = NULL; } else { /* must skip the hole */ rdt->data = page; rdt->len = bkpb->hole_offset; write_len += bkpb->hole_offset; rdt->next = &(dtbuf_rdt3[i]); rdt = rdt->next; rdt->data = page + (bkpb->hole_offset + bkpb->hole_length); rdt->len = BLCKSZ - (bkpb->hole_offset + bkpb->hole_length); write_len += rdt->len; rdt->next = NULL; } } /* * If there isn't enough space on the current XLOG page for a record * header, advance to the next page (leaving the unused space as * zeroes). */ updrqst = false; freespace = INSERT_FREESPACE(Insert); if (freespace < SizeOfXLogRecord) { updrqst = AdvanceXLInsertBuffer(); freespace = INSERT_FREESPACE(Insert); } curridx = Insert->curridx; record = (XLogRecord *) Insert->currpos; /* Insert record header */ record->xl_prev = Insert->PrevRecord; record->xl_xid = GetCurrentTransactionIdIfAny(); record->xl_tot_len = SizeOfXLogRecord + write_len; record->xl_len = len; /* doesn't include backup blocks */ record->xl_info = info; record->xl_rmid = rmid; /* Now we can finish computing the record's CRC */ COMP_CRC32(rdata_crc, (char *) record + sizeof(pg_crc32), SizeOfXLogRecord - sizeof(pg_crc32)); FIN_CRC32(rdata_crc); record->xl_crc = rdata_crc; /* Compute record's XLOG location */ INSERT_RECPTR(RecPtr, Insert, curridx); #ifdef WAL_DEBUG if (XLOG_DEBUG) { char buf[8192]; sprintf(buf, "INSERT @ %X/%X: ", RecPtr.xlogid, RecPtr.xrecoff); xlog_outrec(buf, record); if (rdata->data != NULL) { strcat(buf, " - "); RmgrTable[record->xl_rmid].rm_desc(buf, record->xl_info, rdata->data); } elog(LOG, "%s", buf); } #endif /* Record begin of record in appropriate places */ if (!no_tran) MyLastRecPtr = RecPtr; ProcLastRecPtr = RecPtr; Insert->PrevRecord = RecPtr; MyXactMadeXLogEntry = true; Insert->currpos += SizeOfXLogRecord; freespace -= SizeOfXLogRecord; /* * Append the data, including backup blocks if any */ while (write_len) { while (rdata->data == NULL) rdata = rdata->next; if (freespace > 0) { if (rdata->len > freespace) { memcpy(Insert->currpos, rdata->data, freespace); rdata->data += freespace; rdata->len -= freespace; write_len -= freespace; } else { memcpy(Insert->currpos, rdata->data, rdata->len); freespace -= rdata->len; write_len -= rdata->len; Insert->currpos += rdata->len; rdata = rdata->next; continue; } } /* Use next buffer */ updrqst = AdvanceXLInsertBuffer(); curridx = Insert->curridx; /* Insert cont-record header */ Insert->currpage->xlp_info |= XLP_FIRST_IS_CONTRECORD; contrecord = (XLogContRecord *) Insert->currpos; contrecord->xl_rem_len = write_len; Insert->currpos += SizeOfXLogContRecord; freespace = INSERT_FREESPACE(Insert); } /* Ensure next record will be properly aligned */ Insert->currpos = (char *) Insert->currpage + MAXALIGN(Insert->currpos - (char *) Insert->currpage); freespace = INSERT_FREESPACE(Insert); /* * The recptr I return is the beginning of the *next* record. This * will be stored as LSN for changed data pages... */ INSERT_RECPTR(RecPtr, Insert, curridx); /* Need to update shared LogwrtRqst if some block was filled up */ if (freespace < SizeOfXLogRecord) updrqst = true; /* curridx is filled and available for * writing out */ else curridx = PrevBufIdx(curridx); WriteRqst = XLogCtl->xlblocks[curridx]; LWLockRelease(WALInsertLock); if (updrqst) { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); /* advance global request to include new block(s) */ if (XLByteLT(xlogctl->LogwrtRqst.Write, WriteRqst)) xlogctl->LogwrtRqst.Write = WriteRqst; /* update local result copy while I have the chance */ LogwrtResult = xlogctl->LogwrtResult; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); } ProcLastRecEnd = RecPtr; END_CRIT_SECTION(); return (RecPtr); } /* * Determine whether the buffer referenced by an XLogRecData item has to * be backed up, and if so fill a BkpBlock struct for it. In any case * save the buffer's LSN at *lsn. */ static bool XLogCheckBuffer(XLogRecData *rdata, XLogRecPtr *lsn, BkpBlock *bkpb) { PageHeader page; page = (PageHeader) BufferGetBlock(rdata->buffer); /* * XXX We assume page LSN is first data on *every* page that can be * passed to XLogInsert, whether it otherwise has the standard page * layout or not. */ *lsn = page->pd_lsn; if (fullPageWrites && XLByteLE(page->pd_lsn, RedoRecPtr)) { /* * The page needs to be backed up, so set up *bkpb */ bkpb->node = BufferGetFileNode(rdata->buffer); bkpb->block = BufferGetBlockNumber(rdata->buffer); if (rdata->buffer_std) { /* Assume we can omit data between pd_lower and pd_upper */ uint16 lower = page->pd_lower; uint16 upper = page->pd_upper; if (lower >= SizeOfPageHeaderData && upper > lower && upper <= BLCKSZ) { bkpb->hole_offset = lower; bkpb->hole_length = upper - lower; } else { /* No "hole" to compress out */ bkpb->hole_offset = 0; bkpb->hole_length = 0; } } else { /* Not a standard page header, don't try to eliminate "hole" */ bkpb->hole_offset = 0; bkpb->hole_length = 0; } return true; /* buffer requires backup */ } return false; /* buffer does not need to be backed up */ } /* * XLogArchiveNotify * * Create an archive notification file * * The name of the notification file is the message that will be picked up * by the archiver, e.g. we write 0000000100000001000000C6.ready * and the archiver then knows to archive XLOGDIR/0000000100000001000000C6, * then when complete, rename it to 0000000100000001000000C6.done */ static void XLogArchiveNotify(const char *xlog) { char archiveStatusPath[MAXPGPATH]; FILE *fd; /* insert an otherwise empty file called .ready */ StatusFilePath(archiveStatusPath, xlog, ".ready"); fd = AllocateFile(archiveStatusPath, "w"); if (fd == NULL) { ereport(LOG, (errcode_for_file_access(), errmsg("could not create archive status file \"%s\": %m", archiveStatusPath))); return; } if (FreeFile(fd)) { ereport(LOG, (errcode_for_file_access(), errmsg("could not write archive status file \"%s\": %m", archiveStatusPath))); return; } /* Notify archiver that it's got something to do */ if (IsUnderPostmaster) SendPostmasterSignal(PMSIGNAL_WAKEN_ARCHIVER); } /* * Convenience routine to notify using log/seg representation of filename */ static void XLogArchiveNotifySeg(uint32 log, uint32 seg) { char xlog[MAXFNAMELEN]; XLogFileName(xlog, ThisTimeLineID, log, seg); XLogArchiveNotify(xlog); } /* * XLogArchiveIsDone * * Checks for a ".done" archive notification file. This is called when we * are ready to delete or recycle an old XLOG segment file. If it is okay * to delete it then return true. * * If .done exists, then return true; else if .ready exists, * then return false; else create .ready and return false. The * last case covers the possibility that the original attempt to create * .ready failed. */ static bool XLogArchiveIsDone(const char *xlog) { char archiveStatusPath[MAXPGPATH]; struct stat stat_buf; /* First check for .done --- this is the expected case */ StatusFilePath(archiveStatusPath, xlog, ".done"); if (stat(archiveStatusPath, &stat_buf) == 0) return true; /* check for .ready --- this means archiver is still busy with it */ StatusFilePath(archiveStatusPath, xlog, ".ready"); if (stat(archiveStatusPath, &stat_buf) == 0) return false; /* Race condition --- maybe archiver just finished, so recheck */ StatusFilePath(archiveStatusPath, xlog, ".done"); if (stat(archiveStatusPath, &stat_buf) == 0) return true; /* Retry creation of the .ready file */ XLogArchiveNotify(xlog); return false; } /* * XLogArchiveCleanup * * Cleanup archive notification file(s) for a particular xlog segment */ static void XLogArchiveCleanup(const char *xlog) { char archiveStatusPath[MAXPGPATH]; /* Remove the .done file */ StatusFilePath(archiveStatusPath, xlog, ".done"); unlink(archiveStatusPath); /* should we complain about failure? */ /* Remove the .ready file if present --- normally it shouldn't be */ StatusFilePath(archiveStatusPath, xlog, ".ready"); unlink(archiveStatusPath); /* should we complain about failure? */ } /* * Advance the Insert state to the next buffer page, writing out the next * buffer if it still contains unwritten data. * * The global LogwrtRqst.Write pointer needs to be advanced to include the * just-filled page. If we can do this for free (without an extra lock), * we do so here. Otherwise the caller must do it. We return TRUE if the * request update still needs to be done, FALSE if we did it internally. * * Must be called with WALInsertLock held. */ static bool AdvanceXLInsertBuffer(void) { XLogCtlInsert *Insert = &XLogCtl->Insert; XLogCtlWrite *Write = &XLogCtl->Write; uint16 nextidx = NextBufIdx(Insert->curridx); bool update_needed = true; XLogRecPtr OldPageRqstPtr; XLogwrtRqst WriteRqst; XLogRecPtr NewPageEndPtr; XLogPageHeader NewPage; /* Use Insert->LogwrtResult copy if it's more fresh */ if (XLByteLT(LogwrtResult.Write, Insert->LogwrtResult.Write)) LogwrtResult = Insert->LogwrtResult; /* * Get ending-offset of the buffer page we need to replace (this may * be zero if the buffer hasn't been used yet). Fall through if it's * already written out. */ OldPageRqstPtr = XLogCtl->xlblocks[nextidx]; if (!XLByteLE(OldPageRqstPtr, LogwrtResult.Write)) { /* nope, got work to do... */ XLogRecPtr FinishedPageRqstPtr; FinishedPageRqstPtr = XLogCtl->xlblocks[Insert->curridx]; /* Before waiting, get info_lck and update LogwrtResult */ { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); if (XLByteLT(xlogctl->LogwrtRqst.Write, FinishedPageRqstPtr)) xlogctl->LogwrtRqst.Write = FinishedPageRqstPtr; LogwrtResult = xlogctl->LogwrtResult; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); } update_needed = false; /* Did the shared-request update */ if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write)) { /* OK, someone wrote it already */ Insert->LogwrtResult = LogwrtResult; } else { /* Must acquire write lock */ LWLockAcquire(WALWriteLock, LW_EXCLUSIVE); LogwrtResult = Write->LogwrtResult; if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write)) { /* OK, someone wrote it already */ LWLockRelease(WALWriteLock); Insert->LogwrtResult = LogwrtResult; } else { /* * Have to write buffers while holding insert lock. This * is not good, so only write as much as we absolutely * must. */ WriteRqst.Write = OldPageRqstPtr; WriteRqst.Flush.xlogid = 0; WriteRqst.Flush.xrecoff = 0; XLogWrite(WriteRqst); LWLockRelease(WALWriteLock); Insert->LogwrtResult = LogwrtResult; } } } /* * Now the next buffer slot is free and we can set it up to be the * next output page. */ NewPageEndPtr = XLogCtl->xlblocks[Insert->curridx]; if (NewPageEndPtr.xrecoff >= XLogFileSize) { /* crossing a logid boundary */ NewPageEndPtr.xlogid += 1; NewPageEndPtr.xrecoff = BLCKSZ; } else NewPageEndPtr.xrecoff += BLCKSZ; XLogCtl->xlblocks[nextidx] = NewPageEndPtr; NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * BLCKSZ); Insert->curridx = nextidx; Insert->currpage = NewPage; Insert->currpos = ((char *) NewPage) + SizeOfXLogShortPHD; /* * Be sure to re-zero the buffer so that bytes beyond what we've * written will look like zeroes and not valid XLOG records... */ MemSet((char *) NewPage, 0, BLCKSZ); /* * Fill the new page's header */ NewPage->xlp_magic = XLOG_PAGE_MAGIC; /* NewPage->xlp_info = 0; */ /* done by memset */ NewPage->xlp_tli = ThisTimeLineID; NewPage->xlp_pageaddr.xlogid = NewPageEndPtr.xlogid; NewPage->xlp_pageaddr.xrecoff = NewPageEndPtr.xrecoff - BLCKSZ; /* * If first page of an XLOG segment file, make it a long header. */ if ((NewPage->xlp_pageaddr.xrecoff % XLogSegSize) == 0) { XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage; NewLongPage->xlp_sysid = ControlFile->system_identifier; NewLongPage->xlp_seg_size = XLogSegSize; NewPage->xlp_info |= XLP_LONG_HEADER; Insert->currpos = ((char *) NewPage) + SizeOfXLogLongPHD; } return update_needed; } /* * Write and/or fsync the log at least as far as WriteRqst indicates. * * Must be called with WALWriteLock held. */ static void XLogWrite(XLogwrtRqst WriteRqst) { XLogCtlWrite *Write = &XLogCtl->Write; bool ispartialpage; bool use_existent; int currentIndex = Write->curridx; XLogPages pages; /* We should always be inside a critical section here */ Assert(CritSectionCount > 0); /* * Update local LogwrtResult (caller probably did this already, * but...) */ LogwrtResult = Write->LogwrtResult; XLogPageReset(&pages); while (XLByteLT(LogwrtResult.Write, WriteRqst.Write)) { /* * Make sure we're not ahead of the insert process. This could * happen if we're passed a bogus WriteRqst.Write that is past the * end of the last page that's been initialized by * AdvanceXLInsertBuffer. */ if (!XLByteLT(LogwrtResult.Write, XLogCtl->xlblocks[currentIndex])) elog(PANIC, "xlog write request %X/%X is past end of log %X/%X", LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff, XLogCtl->xlblocks[currentIndex].xlogid, XLogCtl->xlblocks[currentIndex].xrecoff); /* Advance LogwrtResult.Write to end of current buffer page */ LogwrtResult.Write = XLogCtl->xlblocks[currentIndex]; ispartialpage = XLByteLT(WriteRqst.Write, LogwrtResult.Write); if (!XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg)) { /* * Switch to new logfile segment. */ XLogPageFlush(&pages, currentIndex); if (openLogFile >= 0) { if (close(openLogFile)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not close log file %u, segment %u: %m", openLogId, openLogSeg))); openLogFile = -1; } XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg); /* create/use new log file */ use_existent = true; openLogFile = XLogFileInit(openLogId, openLogSeg, &use_existent, true); openLogOff = 0; /* update pg_control, unless someone else already did */ LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); if (ControlFile->logId < openLogId || (ControlFile->logId == openLogId && ControlFile->logSeg < openLogSeg + 1)) { ControlFile->logId = openLogId; ControlFile->logSeg = openLogSeg + 1; ControlFile->time = time(NULL); UpdateControlFile(); /* * Signal bgwriter to start a checkpoint if it's been * too long since the last one. (We look at local copy of * RedoRecPtr which might be a little out of date, but * should be close enough for this purpose.) * * A straight computation of segment number could overflow * 32 bits. Rather than assuming we have working 64-bit * arithmetic, we compare the highest-order bits separately, * and force a checkpoint immediately when they change. */ if (IsUnderPostmaster) { uint32 old_segno, new_segno; uint32 old_highbits, new_highbits; old_segno = (RedoRecPtr.xlogid % XLogSegSize) * XLogSegsPerFile + (RedoRecPtr.xrecoff / XLogSegSize); old_highbits = RedoRecPtr.xlogid / XLogSegSize; new_segno = (openLogId % XLogSegSize) * XLogSegsPerFile + openLogSeg; new_highbits = openLogId / XLogSegSize; if (new_highbits != old_highbits || new_segno >= old_segno + (uint32) CheckPointSegments) { #ifdef WAL_DEBUG if (XLOG_DEBUG) elog(LOG, "time for a checkpoint, signaling bgwriter"); #endif RequestCheckpoint(false, true); } } } LWLockRelease(ControlFileLock); } if (openLogFile < 0) { XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg); openLogFile = XLogFileOpen(openLogId, openLogSeg); openLogOff = 0; } /* Add a page to buffer */ XLogPageWrite(&pages, currentIndex); /* * If we just wrote the whole last page of a logfile segment, * fsync the segment immediately. This avoids having to go back * and re-open prior segments when an fsync request comes along * later. Doing it here ensures that one and only one backend will * perform this fsync. * * This is also the right place to notify the Archiver that the * segment is ready to copy to archival storage. */ if (openLogOff + pages.size >= XLogSegSize && !ispartialpage) { XLogPageFlush(&pages, currentIndex); issue_xlog_fsync(); LogwrtResult.Flush = LogwrtResult.Write; /* end of current page */ if (XLogArchivingActive()) XLogArchiveNotifySeg(openLogId, openLogSeg); } if (ispartialpage) { /* Only asked to write a partial page */ LogwrtResult.Write = WriteRqst.Write; break; } currentIndex = NextBufIdx(currentIndex); } XLogPageFlush(&pages, currentIndex); /* * If asked to flush, do so */ if (XLByteLT(LogwrtResult.Flush, WriteRqst.Flush) && XLByteLT(LogwrtResult.Flush, LogwrtResult.Write)) { /* * Could get here without iterating above loop, in which case we * might have no open file or the wrong one. However, we do not * need to fsync more than one file. */ if (sync_method != SYNC_METHOD_OPEN) { if (openLogFile >= 0 && !XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg)) { if (close(openLogFile)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not close log file %u, segment %u: %m", openLogId, openLogSeg))); openLogFile = -1; } if (openLogFile < 0) { XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg); openLogFile = XLogFileOpen(openLogId, openLogSeg); openLogOff = 0; } issue_xlog_fsync(); } LogwrtResult.Flush = LogwrtResult.Write; } /* * Update shared-memory status * * We make sure that the shared 'request' values do not fall behind the * 'result' values. This is not absolutely essential, but it saves * some code in a couple of places. */ { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); xlogctl->LogwrtResult = LogwrtResult; if (XLByteLT(xlogctl->LogwrtRqst.Write, LogwrtResult.Write)) xlogctl->LogwrtRqst.Write = LogwrtResult.Write; if (XLByteLT(xlogctl->LogwrtRqst.Flush, LogwrtResult.Flush)) xlogctl->LogwrtRqst.Flush = LogwrtResult.Flush; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); } Write->LogwrtResult = LogwrtResult; } /* * Ensure that all XLOG data through the given position is flushed to disk. * * NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not * already held, and we try to avoid acquiring it if possible. */ void XLogFlush(XLogRecPtr record) { XLogRecPtr WriteRqstPtr; XLogwrtRqst WriteRqst; /* Disabled during REDO */ if (InRedo) return; /* Quick exit if already known flushed */ if (XLByteLE(record, LogwrtResult.Flush)) return; #ifdef WAL_DEBUG if (XLOG_DEBUG) elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X", record.xlogid, record.xrecoff, LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff, LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff); #endif START_CRIT_SECTION(); /* * Since fsync is usually a horribly expensive operation, we try to * piggyback as much data as we can on each fsync: if we see any more * data entered into the xlog buffer, we'll write and fsync that too, * so that the final value of LogwrtResult.Flush is as large as * possible. This gives us some chance of avoiding another fsync * immediately after. */ /* initialize to given target; may increase below */ WriteRqstPtr = record; /* read LogwrtResult and update local state */ { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); if (XLByteLT(WriteRqstPtr, xlogctl->LogwrtRqst.Write)) WriteRqstPtr = xlogctl->LogwrtRqst.Write; LogwrtResult = xlogctl->LogwrtResult; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); } /* done already? */ if (!XLByteLE(record, LogwrtResult.Flush)) { /* now wait for the write lock */ LWLockAcquire(WALWriteLock, LW_EXCLUSIVE); LogwrtResult = XLogCtl->Write.LogwrtResult; if (!XLByteLE(record, LogwrtResult.Flush)) { /* try to write/flush later additions to XLOG as well */ if (LWLockConditionalAcquire(WALInsertLock, LW_EXCLUSIVE)) { XLogCtlInsert *Insert = &XLogCtl->Insert; uint32 freespace = INSERT_FREESPACE(Insert); if (freespace < SizeOfXLogRecord) /* buffer is full */ WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx]; else { WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx]; WriteRqstPtr.xrecoff -= freespace; } LWLockRelease(WALInsertLock); WriteRqst.Write = WriteRqstPtr; WriteRqst.Flush = WriteRqstPtr; } else { WriteRqst.Write = WriteRqstPtr; WriteRqst.Flush = record; } XLogWrite(WriteRqst); } LWLockRelease(WALWriteLock); } END_CRIT_SECTION(); /* * If we still haven't flushed to the request point then we have a * problem; most likely, the requested flush point is past end of * XLOG. This has been seen to occur when a disk page has a corrupted * LSN. * * Formerly we treated this as a PANIC condition, but that hurts the * system's robustness rather than helping it: we do not want to take * down the whole system due to corruption on one data page. In * particular, if the bad page is encountered again during recovery * then we would be unable to restart the database at all! (This * scenario has actually happened in the field several times with 7.1 * releases. Note that we cannot get here while InRedo is true, but if * the bad page is brought in and marked dirty during recovery then * CreateCheckPoint will try to flush it at the end of recovery.) * * The current approach is to ERROR under normal conditions, but only * WARNING during recovery, so that the system can be brought up even * if there's a corrupt LSN. Note that for calls from xact.c, the * ERROR will be promoted to PANIC since xact.c calls this routine * inside a critical section. However, calls from bufmgr.c are not * within critical sections and so we will not force a restart for a * bad LSN on a data page. */ if (XLByteLT(LogwrtResult.Flush, record)) elog(InRecovery ? WARNING : ERROR, "xlog flush request %X/%X is not satisfied --- flushed only to %X/%X", record.xlogid, record.xrecoff, LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff); } /* * Create a new XLOG file segment, or open a pre-existing one. * * log, seg: identify segment to be created/opened. * * *use_existent: if TRUE, OK to use a pre-existing file (else, any * pre-existing file will be deleted). On return, TRUE if a pre-existing * file was used. * * use_lock: if TRUE, acquire ControlFileLock while moving file into * place. This should be TRUE except during bootstrap log creation. The * caller must *not* hold the lock at call. * * Returns FD of opened file. * * Note: errors here are ERROR not PANIC because we might or might not be * inside a critical section (eg, during checkpoint there is no reason to * take down the system on failure). They will promote to PANIC if we are * in a critical section. */ static int XLogFileInit(uint32 log, uint32 seg, bool *use_existent, bool use_lock) { char path[MAXPGPATH]; char tmppath[MAXPGPATH]; char zbuffer[BLCKSZ]; uint32 installed_log; uint32 installed_seg; int max_advance; int fd; int nbytes; XLogFilePath(path, ThisTimeLineID, log, seg); /* * Try to use existent file (checkpoint maker may have created it * already) */ if (*use_existent) { fd = BasicOpenFile(path, O_RDWR | PG_BINARY | XLOG_SYNC_BIT, S_IRUSR | S_IWUSR); if (fd < 0) { if (errno != ENOENT) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\" (log file %u, segment %u): %m", path, log, seg))); } else return (fd); } /* * Initialize an empty (all zeroes) segment. NOTE: it is possible * that another process is doing the same thing. If so, we will end * up pre-creating an extra log segment. That seems OK, and better * than holding the lock throughout this lengthy process. */ snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid()); unlink(tmppath); /* do not use XLOG_SYNC_BIT here --- want to fsync only at end of fill */ fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY, S_IRUSR | S_IWUSR); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not create file \"%s\": %m", tmppath))); /* * Zero-fill the file. We have to do this the hard way to ensure that * all the file space has really been allocated --- on platforms that * allow "holes" in files, just seeking to the end doesn't allocate * intermediate space. This way, we know that we have all the space * and (after the fsync below) that all the indirect blocks are down * on disk. Therefore, fdatasync(2) or O_DSYNC will be sufficient to * sync future writes to the log file. */ MemSet(zbuffer, 0, sizeof(zbuffer)); for (nbytes = 0; nbytes < XLogSegSize; nbytes += sizeof(zbuffer)) { errno = 0; if ((int) write(fd, zbuffer, sizeof(zbuffer)) != (int) sizeof(zbuffer)) { int save_errno = errno; /* * If we fail to make the file, delete it to release disk * space */ unlink(tmppath); /* if write didn't set errno, assume problem is no disk space */ errno = save_errno ? save_errno : ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write to file \"%s\": %m", tmppath))); } } if (pg_fsync(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not fsync file \"%s\": %m", tmppath))); if (close(fd)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not close file \"%s\": %m", tmppath))); /* * Now move the segment into place with its final name. * * If caller didn't want to use a pre-existing file, get rid of any * pre-existing file. Otherwise, cope with possibility that someone * else has created the file while we were filling ours: if so, use * ours to pre-create a future log segment. */ installed_log = log; installed_seg = seg; max_advance = XLOGfileslop; if (!InstallXLogFileSegment(&installed_log, &installed_seg, tmppath, *use_existent, &max_advance, use_lock)) { /* No need for any more future segments... */ unlink(tmppath); } /* Set flag to tell caller there was no existent file */ *use_existent = false; /* Now open original target segment (might not be file I just made) */ fd = BasicOpenFile(path, O_RDWR | PG_BINARY | XLOG_SYNC_BIT, S_IRUSR | S_IWUSR); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\" (log file %u, segment %u): %m", path, log, seg))); return (fd); } /* * Create a new XLOG file segment by copying a pre-existing one. * * log, seg: identify segment to be created. * * srcTLI, srclog, srcseg: identify segment to be copied (could be from * a different timeline) * * Currently this is only used during recovery, and so there are no locking * considerations. But we should be just as tense as XLogFileInit to avoid * emplacing a bogus file. */ static void XLogFileCopy(uint32 log, uint32 seg, TimeLineID srcTLI, uint32 srclog, uint32 srcseg) { char path[MAXPGPATH]; char tmppath[MAXPGPATH]; char buffer[BLCKSZ]; int srcfd; int fd; int nbytes; /* * Open the source file */ XLogFilePath(path, srcTLI, srclog, srcseg); srcfd = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0); if (srcfd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); /* * Copy into a temp file name. */ snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid()); unlink(tmppath); /* do not use XLOG_SYNC_BIT here --- want to fsync only at end of fill */ fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY, S_IRUSR | S_IWUSR); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not create file \"%s\": %m", tmppath))); /* * Do the data copying. */ for (nbytes = 0; nbytes < XLogSegSize; nbytes += sizeof(buffer)) { errno = 0; if ((int) read(srcfd, buffer, sizeof(buffer)) != (int) sizeof(buffer)) { if (errno != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", path))); else ereport(ERROR, (errmsg("not enough data in file \"%s\"", path))); } errno = 0; if ((int) write(fd, buffer, sizeof(buffer)) != (int) sizeof(buffer)) { int save_errno = errno; /* * If we fail to make the file, delete it to release disk * space */ unlink(tmppath); /* if write didn't set errno, assume problem is no disk space */ errno = save_errno ? save_errno : ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write to file \"%s\": %m", tmppath))); } } if (pg_fsync(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not fsync file \"%s\": %m", tmppath))); if (close(fd)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not close file \"%s\": %m", tmppath))); close(srcfd); /* * Now move the segment into place with its final name. */ if (!InstallXLogFileSegment(&log, &seg, tmppath, false, NULL, false)) elog(ERROR, "InstallXLogFileSegment should not have failed"); } /* * Install a new XLOG segment file as a current or future log segment. * * This is used both to install a newly-created segment (which has a temp * filename while it's being created) and to recycle an old segment. * * *log, *seg: identify segment to install as (or first possible target). * When find_free is TRUE, these are modified on return to indicate the * actual installation location or last segment searched. * * tmppath: initial name of file to install. It will be renamed into place. * * find_free: if TRUE, install the new segment at the first empty log/seg * number at or after the passed numbers. If FALSE, install the new segment * exactly where specified, deleting any existing segment file there. * * *max_advance: maximum number of log/seg slots to advance past the starting * point. Fail if no free slot is found in this range. On return, reduced * by the number of slots skipped over. (Irrelevant, and may be NULL, * when find_free is FALSE.) * * use_lock: if TRUE, acquire ControlFileLock while moving file into * place. This should be TRUE except during bootstrap log creation. The * caller must *not* hold the lock at call. * * Returns TRUE if file installed, FALSE if not installed because of * exceeding max_advance limit. (Any other kind of failure causes ereport().) */ static bool InstallXLogFileSegment(uint32 *log, uint32 *seg, char *tmppath, bool find_free, int *max_advance, bool use_lock) { char path[MAXPGPATH]; struct stat stat_buf; XLogFilePath(path, ThisTimeLineID, *log, *seg); /* * We want to be sure that only one process does this at a time. */ if (use_lock) LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); if (!find_free) { /* Force installation: get rid of any pre-existing segment file */ unlink(path); } else { /* Find a free slot to put it in */ while (stat(path, &stat_buf) == 0) { if (*max_advance <= 0) { /* Failed to find a free slot within specified range */ if (use_lock) LWLockRelease(ControlFileLock); return false; } NextLogSeg(*log, *seg); (*max_advance)--; XLogFilePath(path, ThisTimeLineID, *log, *seg); } } /* * Prefer link() to rename() here just to be really sure that we don't * overwrite an existing logfile. However, there shouldn't be one, so * rename() is an acceptable substitute except for the truly paranoid. */ #if HAVE_WORKING_LINK if (link(tmppath, path) < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not link file \"%s\" to \"%s\" (initialization of log file %u, segment %u): %m", tmppath, path, *log, *seg))); unlink(tmppath); #else if (rename(tmppath, path) < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not rename file \"%s\" to \"%s\" (initialization of log file %u, segment %u): %m", tmppath, path, *log, *seg))); #endif if (use_lock) LWLockRelease(ControlFileLock); return true; } /* * Open a pre-existing logfile segment for writing. */ static int XLogFileOpen(uint32 log, uint32 seg) { char path[MAXPGPATH]; int fd; XLogFilePath(path, ThisTimeLineID, log, seg); fd = BasicOpenFile(path, O_RDWR | PG_BINARY | XLOG_SYNC_BIT, S_IRUSR | S_IWUSR); if (fd < 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not open file \"%s\" (log file %u, segment %u): %m", path, log, seg))); return fd; } /* * Open a logfile segment for reading (during recovery). */ static int XLogFileRead(uint32 log, uint32 seg, int emode) { char path[MAXPGPATH]; char xlogfname[MAXFNAMELEN]; ListCell *cell; int fd; /* * Loop looking for a suitable timeline ID: we might need to read any * of the timelines listed in expectedTLIs. * * We expect curFileTLI on entry to be the TLI of the preceding file in * sequence, or 0 if there was no predecessor. We do not allow * curFileTLI to go backwards; this prevents us from picking up the * wrong file when a parent timeline extends to higher segment numbers * than the child we want to read. */ foreach(cell, expectedTLIs) { TimeLineID tli = (TimeLineID) lfirst_int(cell); if (tli < curFileTLI) break; /* don't bother looking at too-old TLIs */ if (InArchiveRecovery) { XLogFileName(xlogfname, tli, log, seg); restoredFromArchive = RestoreArchivedFile(path, xlogfname, "RECOVERYXLOG", XLogSegSize); } else XLogFilePath(path, tli, log, seg); fd = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0); if (fd >= 0) { /* Success! */ curFileTLI = tli; return fd; } if (errno != ENOENT) /* unexpected failure? */ ereport(PANIC, (errcode_for_file_access(), errmsg("could not open file \"%s\" (log file %u, segment %u): %m", path, log, seg))); } /* Couldn't find it. For simplicity, complain about front timeline */ XLogFilePath(path, recoveryTargetTLI, log, seg); errno = ENOENT; ereport(emode, (errcode_for_file_access(), errmsg("could not open file \"%s\" (log file %u, segment %u): %m", path, log, seg))); return -1; } /* * Attempt to retrieve the specified file from off-line archival storage. * If successful, fill "path" with its complete path (note that this will be * a temp file name that doesn't follow the normal naming convention), and * return TRUE. * * If not successful, fill "path" with the name of the normal on-line file * (which may or may not actually exist, but we'll try to use it), and return * FALSE. * * For fixed-size files, the caller may pass the expected size as an * additional crosscheck on successful recovery. If the file size is not * known, set expectedSize = 0. */ static bool RestoreArchivedFile(char *path, const char *xlogfname, const char *recovername, off_t expectedSize) { char xlogpath[MAXPGPATH]; char xlogRestoreCmd[MAXPGPATH]; char *dp; char *endp; const char *sp; int rc; struct stat stat_buf; /* * When doing archive recovery, we always prefer an archived log file * even if a file of the same name exists in XLOGDIR. The reason is * that the file in XLOGDIR could be an old, un-filled or * partly-filled version that was copied and restored as part of * backing up $PGDATA. * * We could try to optimize this slightly by checking the local copy * lastchange timestamp against the archived copy, but we have no API * to do this, nor can we guarantee that the lastchange timestamp was * preserved correctly when we copied to archive. Our aim is * robustness, so we elect not to do this. * * If we cannot obtain the log file from the archive, however, we will * try to use the XLOGDIR file if it exists. This is so that we can * make use of log segments that weren't yet transferred to the * archive. * * Notice that we don't actually overwrite any files when we copy back * from archive because the recoveryRestoreCommand may inadvertently * restore inappropriate xlogs, or they may be corrupt, so we may wish * to fallback to the segments remaining in current XLOGDIR later. The * copy-from-archive filename is always the same, ensuring that we * don't run out of disk space on long recoveries. */ snprintf(xlogpath, MAXPGPATH, XLOGDIR "/%s", recovername); /* * Make sure there is no existing file named recovername. */ if (stat(xlogpath, &stat_buf) != 0) { if (errno != ENOENT) ereport(FATAL, (errcode_for_file_access(), errmsg("could not stat file \"%s\": %m", xlogpath))); } else { if (unlink(xlogpath) != 0) ereport(FATAL, (errcode_for_file_access(), errmsg("could not remove file \"%s\": %m", xlogpath))); } /* * construct the command to be executed */ dp = xlogRestoreCmd; endp = xlogRestoreCmd + MAXPGPATH - 1; *endp = '\0'; for (sp = recoveryRestoreCommand; *sp; sp++) { if (*sp == '%') { switch (sp[1]) { case 'p': /* %p: full path of target file */ sp++; StrNCpy(dp, xlogpath, endp - dp); make_native_path(dp); dp += strlen(dp); break; case 'f': /* %f: filename of desired file */ sp++; StrNCpy(dp, xlogfname, endp - dp); dp += strlen(dp); break; case '%': /* convert %% to a single % */ sp++; if (dp < endp) *dp++ = *sp; break; default: /* otherwise treat the % as not special */ if (dp < endp) *dp++ = *sp; break; } } else { if (dp < endp) *dp++ = *sp; } } *dp = '\0'; ereport(DEBUG3, (errmsg_internal("executing restore command \"%s\"", xlogRestoreCmd))); /* * Copy xlog from archival storage to XLOGDIR */ rc = system(xlogRestoreCmd); if (rc == 0) { /* * command apparently succeeded, but let's make sure the file is * really there now and has the correct size. * * XXX I made wrong-size a fatal error to ensure the DBA would notice * it, but is that too strong? We could try to plow ahead with a * local copy of the file ... but the problem is that there * probably isn't one, and we'd incorrectly conclude we've reached * the end of WAL and we're done recovering ... */ if (stat(xlogpath, &stat_buf) == 0) { if (expectedSize > 0 && stat_buf.st_size != expectedSize) ereport(FATAL, (errmsg("archive file \"%s\" has wrong size: %lu instead of %lu", xlogfname, (unsigned long) stat_buf.st_size, (unsigned long) expectedSize))); else { ereport(LOG, (errmsg("restored log file \"%s\" from archive", xlogfname))); strcpy(path, xlogpath); return true; } } else { /* stat failed */ if (errno != ENOENT) ereport(FATAL, (errcode_for_file_access(), errmsg("could not stat file \"%s\": %m", xlogpath))); } } /* * remember, we rollforward UNTIL the restore fails so failure here is * just part of the process... that makes it difficult to determine * whether the restore failed because there isn't an archive to * restore, or because the administrator has specified the restore * program incorrectly. We have to assume the former. */ ereport(DEBUG2, (errmsg("could not restore file \"%s\" from archive: return code %d", xlogfname, rc))); /* * if an archived file is not available, there might still be a * version of this file in XLOGDIR, so return that as the filename to * open. * * In many recovery scenarios we expect this to fail also, but if so that * just means we've reached the end of WAL. */ snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlogfname); return false; } /* * Preallocate log files beyond the specified log endpoint, according to * the XLOGfile user parameter. */ static int PreallocXlogFiles(XLogRecPtr endptr) { int nsegsadded = 0; uint32 _logId; uint32 _logSeg; int lf; bool use_existent; XLByteToPrevSeg(endptr, _logId, _logSeg); if ((endptr.xrecoff - 1) % XLogSegSize >= (uint32) (0.75 * XLogSegSize)) { NextLogSeg(_logId, _logSeg); use_existent = true; lf = XLogFileInit(_logId, _logSeg, &use_existent, true); close(lf); if (!use_existent) nsegsadded++; } return nsegsadded; } /* * Remove or move offline all log files older or equal to passed log/seg# * * endptr is current (or recent) end of xlog; this is used to determine * whether we want to recycle rather than delete no-longer-wanted log files. */ static void MoveOfflineLogs(uint32 log, uint32 seg, XLogRecPtr endptr, int *nsegsremoved, int *nsegsrecycled) { uint32 endlogId; uint32 endlogSeg; int max_advance; DIR *xldir; struct dirent *xlde; char lastoff[MAXFNAMELEN]; char path[MAXPGPATH]; *nsegsremoved = 0; *nsegsrecycled = 0; /* * Initialize info about where to try to recycle to. We allow recycling * segments up to XLOGfileslop segments beyond the current XLOG location. */ XLByteToPrevSeg(endptr, endlogId, endlogSeg); max_advance = XLOGfileslop; xldir = AllocateDir(XLOGDIR); if (xldir == NULL) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open transaction log directory \"%s\": %m", XLOGDIR))); XLogFileName(lastoff, ThisTimeLineID, log, seg); while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) { /* * We ignore the timeline part of the XLOG segment identifiers in * deciding whether a segment is still needed. This ensures that * we won't prematurely remove a segment from a parent timeline. * We could probably be a little more proactive about removing * segments of non-parent timelines, but that would be a whole lot * more complicated. * * We use the alphanumeric sorting property of the filenames to * decide which ones are earlier than the lastoff segment. */ if (strlen(xlde->d_name) == 24 && strspn(xlde->d_name, "0123456789ABCDEF") == 24 && strcmp(xlde->d_name + 8, lastoff + 8) <= 0) { bool recycle; if (XLogArchivingActive()) recycle = XLogArchiveIsDone(xlde->d_name); else recycle = true; if (recycle) { snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name); /* * Before deleting the file, see if it can be recycled as * a future log segment. */ if (InstallXLogFileSegment(&endlogId, &endlogSeg, path, true, &max_advance, true)) { ereport(DEBUG2, (errmsg("recycled transaction log file \"%s\"", xlde->d_name))); (*nsegsrecycled)++; /* Needn't recheck that slot on future iterations */ if (max_advance > 0) { NextLogSeg(endlogId, endlogSeg); max_advance--; } } else { /* No need for any more future segments... */ ereport(DEBUG2, (errmsg("removing transaction log file \"%s\"", xlde->d_name))); unlink(path); (*nsegsremoved)++; } XLogArchiveCleanup(xlde->d_name); } } } FreeDir(xldir); } /* * Remove previous backup history files */ static void RemoveOldBackupHistory(void) { DIR *xldir; struct dirent *xlde; char path[MAXPGPATH]; xldir = AllocateDir(XLOGDIR); if (xldir == NULL) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open transaction log directory \"%s\": %m", XLOGDIR))); while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL) { if (strlen(xlde->d_name) > 24 && strspn(xlde->d_name, "0123456789ABCDEF") == 24 && strcmp(xlde->d_name + strlen(xlde->d_name) - strlen(".backup"), ".backup") == 0) { /* Remove any *.backup files that have been archived. */ if (!XLogArchivingActive() || XLogArchiveIsDone(xlde->d_name)) { ereport(DEBUG2, (errmsg("removing transaction log backup history file \"%s\"", xlde->d_name))); snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name); unlink(path); XLogArchiveCleanup(xlde->d_name); } } } FreeDir(xldir); } /* * Restore the backup blocks present in an XLOG record, if any. * * We assume all of the record has been read into memory at *record. * * Note: when a backup block is available in XLOG, we restore it * unconditionally, even if the page in the database appears newer. * This is to protect ourselves against database pages that were partially * or incorrectly written during a crash. We assume that the XLOG data * must be good because it has passed a CRC check, while the database * page might not be. This will force us to replay all subsequent * modifications of the page that appear in XLOG, rather than possibly * ignoring them as already applied, but that's not a huge drawback. */ static void RestoreBkpBlocks(XLogRecord *record, XLogRecPtr lsn) { Relation reln; Buffer buffer; Page page; BkpBlock bkpb; char *blk; int i; blk = (char *) XLogRecGetData(record) + record->xl_len; for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { if (!(record->xl_info & XLR_SET_BKP_BLOCK(i))) continue; memcpy(&bkpb, blk, sizeof(BkpBlock)); blk += sizeof(BkpBlock); reln = XLogOpenRelation(bkpb.node); if (reln) { buffer = XLogReadBuffer(true, reln, bkpb.block); if (BufferIsValid(buffer)) { page = (Page) BufferGetPage(buffer); if (bkpb.hole_length == 0) { memcpy((char *) page, blk, BLCKSZ); } else { /* must zero-fill the hole */ MemSet((char *) page, 0, BLCKSZ); memcpy((char *) page, blk, bkpb.hole_offset); memcpy((char *) page + (bkpb.hole_offset + bkpb.hole_length), blk + bkpb.hole_offset, BLCKSZ - (bkpb.hole_offset + bkpb.hole_length)); } PageSetLSN(page, lsn); PageSetTLI(page, ThisTimeLineID); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); WriteBuffer(buffer); } } blk += BLCKSZ - bkpb.hole_length; } } /* * CRC-check an XLOG record. We do not believe the contents of an XLOG * record (other than to the minimal extent of computing the amount of * data to read in) until we've checked the CRCs. * * We assume all of the record has been read into memory at *record. */ static bool RecordIsValid(XLogRecord *record, XLogRecPtr recptr, int emode) { pg_crc32 crc; int i; uint32 len = record->xl_len; BkpBlock bkpb; char *blk; /* First the rmgr data */ INIT_CRC32(crc); COMP_CRC32(crc, XLogRecGetData(record), len); /* Add in the backup blocks, if any */ blk = (char *) XLogRecGetData(record) + len; for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++) { uint32 blen; if (!(record->xl_info & XLR_SET_BKP_BLOCK(i))) continue; memcpy(&bkpb, blk, sizeof(BkpBlock)); if (bkpb.hole_offset + bkpb.hole_length > BLCKSZ) { ereport(emode, (errmsg("incorrect hole size in record at %X/%X", recptr.xlogid, recptr.xrecoff))); return false; } blen = sizeof(BkpBlock) + BLCKSZ - bkpb.hole_length; COMP_CRC32(crc, blk, blen); blk += blen; } /* Check that xl_tot_len agrees with our calculation */ if (blk != (char *) record + record->xl_tot_len) { ereport(emode, (errmsg("incorrect total length in record at %X/%X", recptr.xlogid, recptr.xrecoff))); return false; } /* Finally include the record header */ COMP_CRC32(crc, (char *) record + sizeof(pg_crc32), SizeOfXLogRecord - sizeof(pg_crc32)); FIN_CRC32(crc); if (!EQ_CRC32(record->xl_crc, crc)) { ereport(emode, (errmsg("incorrect resource manager data checksum in record at %X/%X", recptr.xlogid, recptr.xrecoff))); return false; } return true; } /* * Attempt to read an XLOG record. * * If RecPtr is not NULL, try to read a record at that position. Otherwise * try to read a record just after the last one previously read. * * If no valid record is available, returns NULL, or fails if emode is PANIC. * (emode must be either PANIC or LOG.) * * The record is copied into readRecordBuf, so that on successful return, * the returned record pointer always points there. */ static XLogRecord * ReadRecord(XLogRecPtr *RecPtr, int emode) { XLogRecord *record; char *buffer; XLogRecPtr tmpRecPtr = EndRecPtr; bool randAccess = false; uint32 len, total_len; uint32 targetPageOff; uint32 targetRecOff; uint32 pageHeaderSize; if (readBuf == NULL) { /* * First time through, permanently allocate readBuf. We do it * this way, rather than just making a static array, for two * reasons: (1) no need to waste the storage in most * instantiations of the backend; (2) a static char array isn't * guaranteed to have any particular alignment, whereas malloc() * will provide MAXALIGN'd storage. */ readBuf = (char *) malloc(BLCKSZ); Assert(readBuf != NULL); } if (RecPtr == NULL) { RecPtr = &tmpRecPtr; /* fast case if next record is on same page */ if (nextRecord != NULL) { record = nextRecord; goto got_record; } /* align old recptr to next page */ if (tmpRecPtr.xrecoff % BLCKSZ != 0) tmpRecPtr.xrecoff += (BLCKSZ - tmpRecPtr.xrecoff % BLCKSZ); if (tmpRecPtr.xrecoff >= XLogFileSize) { (tmpRecPtr.xlogid)++; tmpRecPtr.xrecoff = 0; } /* We will account for page header size below */ } else { if (!XRecOffIsValid(RecPtr->xrecoff)) ereport(PANIC, (errmsg("invalid record offset at %X/%X", RecPtr->xlogid, RecPtr->xrecoff))); /* * Since we are going to a random position in WAL, forget any * prior state about what timeline we were in, and allow it to be * any timeline in expectedTLIs. We also set a flag to allow * curFileTLI to go backwards (but we can't reset that variable * right here, since we might not change files at all). */ lastPageTLI = 0; /* see comment in ValidXLOGHeader */ randAccess = true; /* allow curFileTLI to go backwards too */ } if (readFile >= 0 && !XLByteInSeg(*RecPtr, readId, readSeg)) { close(readFile); readFile = -1; } XLByteToSeg(*RecPtr, readId, readSeg); if (readFile < 0) { /* Now it's okay to reset curFileTLI if random fetch */ if (randAccess) curFileTLI = 0; readFile = XLogFileRead(readId, readSeg, emode); if (readFile < 0) goto next_record_is_invalid; readOff = (uint32) (-1); /* force read to occur below */ } targetPageOff = ((RecPtr->xrecoff % XLogSegSize) / BLCKSZ) * BLCKSZ; if (readOff != targetPageOff) { readOff = targetPageOff; if (lseek(readFile, (off_t) readOff, SEEK_SET) < 0) { ereport(emode, (errcode_for_file_access(), errmsg("could not seek in log file %u, segment %u to offset %u: %m", readId, readSeg, readOff))); goto next_record_is_invalid; } if (read(readFile, readBuf, BLCKSZ) != BLCKSZ) { ereport(emode, (errcode_for_file_access(), errmsg("could not read from log file %u, segment %u at offset %u: %m", readId, readSeg, readOff))); goto next_record_is_invalid; } if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode)) goto next_record_is_invalid; } pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf); targetRecOff = RecPtr->xrecoff % BLCKSZ; if (targetRecOff == 0) { /* * Can only get here in the continuing-from-prev-page case, * because XRecOffIsValid eliminated the zero-page-offset case * otherwise. Need to skip over the new page's header. */ tmpRecPtr.xrecoff += pageHeaderSize; targetRecOff = pageHeaderSize; } else if (targetRecOff < pageHeaderSize) { ereport(emode, (errmsg("invalid record offset at %X/%X", RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } if ((((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD) && targetRecOff == pageHeaderSize) { ereport(emode, (errmsg("contrecord is requested by %X/%X", RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } record = (XLogRecord *) ((char *) readBuf + RecPtr->xrecoff % BLCKSZ); got_record:; /* * Currently, xl_len == 0 must be bad data, but that might not be true * forever. See note in XLogInsert. */ if (record->xl_len == 0) { ereport(emode, (errmsg("record with zero length at %X/%X", RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } if (record->xl_tot_len < SizeOfXLogRecord + record->xl_len || record->xl_tot_len > SizeOfXLogRecord + record->xl_len + XLR_MAX_BKP_BLOCKS * (sizeof(BkpBlock) + BLCKSZ)) { ereport(emode, (errmsg("invalid record length at %X/%X", RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } if (record->xl_rmid > RM_MAX_ID) { ereport(emode, (errmsg("invalid resource manager ID %u at %X/%X", record->xl_rmid, RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } if (randAccess) { /* * We can't exactly verify the prev-link, but surely it should be * less than the record's own address. */ if (!XLByteLT(record->xl_prev, *RecPtr)) { ereport(emode, (errmsg("record with incorrect prev-link %X/%X at %X/%X", record->xl_prev.xlogid, record->xl_prev.xrecoff, RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } } else { /* * Record's prev-link should exactly match our previous location. * This check guards against torn WAL pages where a stale but * valid-looking WAL record starts on a sector boundary. */ if (!XLByteEQ(record->xl_prev, ReadRecPtr)) { ereport(emode, (errmsg("record with incorrect prev-link %X/%X at %X/%X", record->xl_prev.xlogid, record->xl_prev.xrecoff, RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } } /* * Allocate or enlarge readRecordBuf as needed. To avoid useless * small increases, round its size to a multiple of BLCKSZ, and make * sure it's at least 4*BLCKSZ to start with. (That is enough for all * "normal" records, but very large commit or abort records might need * more space.) */ total_len = record->xl_tot_len; if (total_len > readRecordBufSize) { uint32 newSize = total_len; newSize += BLCKSZ - (newSize % BLCKSZ); newSize = Max(newSize, 4 * BLCKSZ); if (readRecordBuf) free(readRecordBuf); readRecordBuf = (char *) malloc(newSize); if (!readRecordBuf) { readRecordBufSize = 0; /* We treat this as a "bogus data" condition */ ereport(emode, (errmsg("record length %u at %X/%X too long", total_len, RecPtr->xlogid, RecPtr->xrecoff))); goto next_record_is_invalid; } readRecordBufSize = newSize; } buffer = readRecordBuf; nextRecord = NULL; len = BLCKSZ - RecPtr->xrecoff % BLCKSZ; if (total_len > len) { /* Need to reassemble record */ XLogContRecord *contrecord; uint32 gotlen = len; memcpy(buffer, record, len); record = (XLogRecord *) buffer; buffer += len; for (;;) { readOff += BLCKSZ; if (readOff >= XLogSegSize) { close(readFile); readFile = -1; NextLogSeg(readId, readSeg); readFile = XLogFileRead(readId, readSeg, emode); if (readFile < 0) goto next_record_is_invalid; readOff = 0; } if (read(readFile, readBuf, BLCKSZ) != BLCKSZ) { ereport(emode, (errcode_for_file_access(), errmsg("could not read from log file %u, segment %u, offset %u: %m", readId, readSeg, readOff))); goto next_record_is_invalid; } if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode)) goto next_record_is_invalid; if (!(((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD)) { ereport(emode, (errmsg("there is no contrecord flag in log file %u, segment %u, offset %u", readId, readSeg, readOff))); goto next_record_is_invalid; } pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf); contrecord = (XLogContRecord *) ((char *) readBuf + pageHeaderSize); if (contrecord->xl_rem_len == 0 || total_len != (contrecord->xl_rem_len + gotlen)) { ereport(emode, (errmsg("invalid contrecord length %u in log file %u, segment %u, offset %u", contrecord->xl_rem_len, readId, readSeg, readOff))); goto next_record_is_invalid; } len = BLCKSZ - pageHeaderSize - SizeOfXLogContRecord; if (contrecord->xl_rem_len > len) { memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord, len); gotlen += len; buffer += len; continue; } memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord, contrecord->xl_rem_len); break; } if (!RecordIsValid(record, *RecPtr, emode)) goto next_record_is_invalid; pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf); if (BLCKSZ - SizeOfXLogRecord >= pageHeaderSize + MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len)) { nextRecord = (XLogRecord *) ((char *) contrecord + MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len)); } EndRecPtr.xlogid = readId; EndRecPtr.xrecoff = readSeg * XLogSegSize + readOff + pageHeaderSize + MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len); ReadRecPtr = *RecPtr; return record; } /* Record does not cross a page boundary */ if (!RecordIsValid(record, *RecPtr, emode)) goto next_record_is_invalid; if (BLCKSZ - SizeOfXLogRecord >= RecPtr->xrecoff % BLCKSZ + MAXALIGN(total_len)) nextRecord = (XLogRecord *) ((char *) record + MAXALIGN(total_len)); EndRecPtr.xlogid = RecPtr->xlogid; EndRecPtr.xrecoff = RecPtr->xrecoff + MAXALIGN(total_len); ReadRecPtr = *RecPtr; memcpy(buffer, record, total_len); return (XLogRecord *) buffer; next_record_is_invalid:; close(readFile); readFile = -1; nextRecord = NULL; return NULL; } /* * Check whether the xlog header of a page just read in looks valid. * * This is just a convenience subroutine to avoid duplicated code in * ReadRecord. It's not intended for use from anywhere else. */ static bool ValidXLOGHeader(XLogPageHeader hdr, int emode) { XLogRecPtr recaddr; if (hdr->xlp_magic != XLOG_PAGE_MAGIC) { ereport(emode, (errmsg("invalid magic number %04X in log file %u, segment %u, offset %u", hdr->xlp_magic, readId, readSeg, readOff))); return false; } if ((hdr->xlp_info & ~XLP_ALL_FLAGS) != 0) { ereport(emode, (errmsg("invalid info bits %04X in log file %u, segment %u, offset %u", hdr->xlp_info, readId, readSeg, readOff))); return false; } if (hdr->xlp_info & XLP_LONG_HEADER) { XLogLongPageHeader longhdr = (XLogLongPageHeader) hdr; if (longhdr->xlp_sysid != ControlFile->system_identifier) { char fhdrident_str[32]; char sysident_str[32]; /* * Format sysids separately to keep platform-dependent format * code out of the translatable message string. */ snprintf(fhdrident_str, sizeof(fhdrident_str), UINT64_FORMAT, longhdr->xlp_sysid); snprintf(sysident_str, sizeof(sysident_str), UINT64_FORMAT, ControlFile->system_identifier); ereport(emode, (errmsg("WAL file is from different system"), errdetail("WAL file SYSID is %s, pg_control SYSID is %s", fhdrident_str, sysident_str))); return false; } if (longhdr->xlp_seg_size != XLogSegSize) { ereport(emode, (errmsg("WAL file is from different system"), errdetail("Incorrect XLOG_SEG_SIZE in page header."))); return false; } } recaddr.xlogid = readId; recaddr.xrecoff = readSeg * XLogSegSize + readOff; if (!XLByteEQ(hdr->xlp_pageaddr, recaddr)) { ereport(emode, (errmsg("unexpected pageaddr %X/%X in log file %u, segment %u, offset %u", hdr->xlp_pageaddr.xlogid, hdr->xlp_pageaddr.xrecoff, readId, readSeg, readOff))); return false; } /* * Check page TLI is one of the expected values. */ if (!list_member_int(expectedTLIs, (int) hdr->xlp_tli)) { ereport(emode, (errmsg("unexpected timeline ID %u in log file %u, segment %u, offset %u", hdr->xlp_tli, readId, readSeg, readOff))); return false; } /* * Since child timelines are always assigned a TLI greater than their * immediate parent's TLI, we should never see TLI go backwards across * successive pages of a consistent WAL sequence. * * Of course this check should only be applied when advancing * sequentially across pages; therefore ReadRecord resets lastPageTLI * to zero when going to a random page. */ if (hdr->xlp_tli < lastPageTLI) { ereport(emode, (errmsg("out-of-sequence timeline ID %u (after %u) in log file %u, segment %u, offset %u", hdr->xlp_tli, lastPageTLI, readId, readSeg, readOff))); return false; } lastPageTLI = hdr->xlp_tli; return true; } /* * Try to read a timeline's history file. * * If successful, return the list of component TLIs (the given TLI followed by * its ancestor TLIs). If we can't find the history file, assume that the * timeline has no parents, and return a list of just the specified timeline * ID. */ static List * readTimeLineHistory(TimeLineID targetTLI) { List *result; char path[MAXPGPATH]; char histfname[MAXFNAMELEN]; char fline[MAXPGPATH]; FILE *fd; if (InArchiveRecovery) { TLHistoryFileName(histfname, targetTLI); RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0); } else TLHistoryFilePath(path, targetTLI); fd = AllocateFile(path, "r"); if (fd == NULL) { if (errno != ENOENT) ereport(FATAL, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); /* Not there, so assume no parents */ return list_make1_int((int) targetTLI); } result = NIL; /* * Parse the file... */ while (fgets(fline, MAXPGPATH, fd) != NULL) { /* skip leading whitespace and check for # comment */ char *ptr; char *endptr; TimeLineID tli; for (ptr = fline; *ptr; ptr++) { if (!isspace((unsigned char) *ptr)) break; } if (*ptr == '\0' || *ptr == '#') continue; /* expect a numeric timeline ID as first field of line */ tli = (TimeLineID) strtoul(ptr, &endptr, 0); if (endptr == ptr) ereport(FATAL, (errmsg("syntax error in history file: %s", fline), errhint("Expected a numeric timeline ID."))); if (result && tli <= (TimeLineID) linitial_int(result)) ereport(FATAL, (errmsg("invalid data in history file: %s", fline), errhint("Timeline IDs must be in increasing sequence."))); /* Build list with newest item first */ result = lcons_int((int) tli, result); /* we ignore the remainder of each line */ } FreeFile(fd); if (result && targetTLI <= (TimeLineID) linitial_int(result)) ereport(FATAL, (errmsg("invalid data in history file \"%s\"", path), errhint("Timeline IDs must be less than child timeline's ID."))); result = lcons_int((int) targetTLI, result); ereport(DEBUG3, (errmsg_internal("history of timeline %u is %s", targetTLI, nodeToString(result)))); return result; } /* * Probe whether a timeline history file exists for the given timeline ID */ static bool existsTimeLineHistory(TimeLineID probeTLI) { char path[MAXPGPATH]; char histfname[MAXFNAMELEN]; FILE *fd; if (InArchiveRecovery) { TLHistoryFileName(histfname, probeTLI); RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0); } else TLHistoryFilePath(path, probeTLI); fd = AllocateFile(path, "r"); if (fd != NULL) { FreeFile(fd); return true; } else { if (errno != ENOENT) ereport(FATAL, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); return false; } } /* * Find the newest existing timeline, assuming that startTLI exists. * * Note: while this is somewhat heuristic, it does positively guarantee * that (result + 1) is not a known timeline, and therefore it should * be safe to assign that ID to a new timeline. */ static TimeLineID findNewestTimeLine(TimeLineID startTLI) { TimeLineID newestTLI; TimeLineID probeTLI; /* * The algorithm is just to probe for the existence of timeline * history files. XXX is it useful to allow gaps in the sequence? */ newestTLI = startTLI; for (probeTLI = startTLI + 1;; probeTLI++) { if (existsTimeLineHistory(probeTLI)) { newestTLI = probeTLI; /* probeTLI exists */ } else { /* doesn't exist, assume we're done */ break; } } return newestTLI; } /* * Create a new timeline history file. * * newTLI: ID of the new timeline * parentTLI: ID of its immediate parent * endTLI et al: ID of the last used WAL file, for annotation purposes * * Currently this is only used during recovery, and so there are no locking * considerations. But we should be just as tense as XLogFileInit to avoid * emplacing a bogus file. */ static void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI, TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg) { char path[MAXPGPATH]; char tmppath[MAXPGPATH]; char histfname[MAXFNAMELEN]; char xlogfname[MAXFNAMELEN]; char buffer[BLCKSZ]; int srcfd; int fd; int nbytes; Assert(newTLI > parentTLI); /* else bad selection of newTLI */ /* * Write into a temp file name. */ snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid()); unlink(tmppath); /* do not use XLOG_SYNC_BIT here --- want to fsync only at end of fill */ fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR); if (fd < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not create file \"%s\": %m", tmppath))); /* * If a history file exists for the parent, copy it verbatim */ if (InArchiveRecovery) { TLHistoryFileName(histfname, parentTLI); RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0); } else TLHistoryFilePath(path, parentTLI); srcfd = BasicOpenFile(path, O_RDONLY, 0); if (srcfd < 0) { if (errno != ENOENT) ereport(ERROR, (errcode_for_file_access(), errmsg("could not open file \"%s\": %m", path))); /* Not there, so assume parent has no parents */ } else { for (;;) { errno = 0; nbytes = (int) read(srcfd, buffer, sizeof(buffer)); if (nbytes < 0 || errno != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", path))); if (nbytes == 0) break; errno = 0; if ((int) write(fd, buffer, nbytes) != nbytes) { int save_errno = errno; /* * If we fail to make the file, delete it to release disk * space */ unlink(tmppath); /* * if write didn't set errno, assume problem is no disk * space */ errno = save_errno ? save_errno : ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write to file \"%s\": %m", tmppath))); } } close(srcfd); } /* * Append one line with the details of this timeline split. * * If we did have a parent file, insert an extra newline just in case the * parent file failed to end with one. */ XLogFileName(xlogfname, endTLI, endLogId, endLogSeg); snprintf(buffer, sizeof(buffer), "%s%u\t%s\t%s transaction %u at %s\n", (srcfd < 0) ? "" : "\n", parentTLI, xlogfname, recoveryStopAfter ? "after" : "before", recoveryStopXid, str_time(recoveryStopTime)); nbytes = strlen(buffer); errno = 0; if ((int) write(fd, buffer, nbytes) != nbytes) { int save_errno = errno; /* * If we fail to make the file, delete it to release disk space */ unlink(tmppath); /* if write didn't set errno, assume problem is no disk space */ errno = save_errno ? save_errno : ENOSPC; ereport(ERROR, (errcode_for_file_access(), errmsg("could not write to file \"%s\": %m", tmppath))); } if (pg_fsync(fd) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not fsync file \"%s\": %m", tmppath))); if (close(fd)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not close file \"%s\": %m", tmppath))); /* * Now move the completed history file into place with its final name. */ TLHistoryFilePath(path, newTLI); /* * Prefer link() to rename() here just to be really sure that we don't * overwrite an existing logfile. However, there shouldn't be one, so * rename() is an acceptable substitute except for the truly paranoid. */ #if HAVE_WORKING_LINK if (link(tmppath, path) < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not link file \"%s\" to \"%s\": %m", tmppath, path))); unlink(tmppath); #else if (rename(tmppath, path) < 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not rename file \"%s\" to \"%s\": %m", tmppath, path))); #endif /* The history file can be archived immediately. */ TLHistoryFileName(histfname, newTLI); XLogArchiveNotify(histfname); } /* * I/O routines for pg_control * * *ControlFile is a buffer in shared memory that holds an image of the * contents of pg_control. WriteControlFile() initializes pg_control * given a preloaded buffer, ReadControlFile() loads the buffer from * the pg_control file (during postmaster or standalone-backend startup), * and UpdateControlFile() rewrites pg_control after we modify xlog state. * * For simplicity, WriteControlFile() initializes the fields of pg_control * that are related to checking backend/database compatibility, and * ReadControlFile() verifies they are correct. We could split out the * I/O and compatibility-check functions, but there seems no need currently. */ static void WriteControlFile(void) { int fd; char buffer[BLCKSZ]; /* need not be aligned */ char *localeptr; /* * Initialize version and compatibility-check fields */ ControlFile->pg_control_version = PG_CONTROL_VERSION; ControlFile->catalog_version_no = CATALOG_VERSION_NO; ControlFile->blcksz = BLCKSZ; ControlFile->relseg_size = RELSEG_SIZE; ControlFile->xlog_seg_size = XLOG_SEG_SIZE; ControlFile->nameDataLen = NAMEDATALEN; ControlFile->indexMaxKeys = INDEX_MAX_KEYS; #ifdef HAVE_INT64_TIMESTAMP ControlFile->enableIntTimes = TRUE; #else ControlFile->enableIntTimes = FALSE; #endif ControlFile->localeBuflen = LOCALE_NAME_BUFLEN; localeptr = setlocale(LC_COLLATE, NULL); if (!localeptr) ereport(PANIC, (errmsg("invalid LC_COLLATE setting"))); StrNCpy(ControlFile->lc_collate, localeptr, LOCALE_NAME_BUFLEN); localeptr = setlocale(LC_CTYPE, NULL); if (!localeptr) ereport(PANIC, (errmsg("invalid LC_CTYPE setting"))); StrNCpy(ControlFile->lc_ctype, localeptr, LOCALE_NAME_BUFLEN); /* Contents are protected with a CRC */ INIT_CRC32(ControlFile->crc); COMP_CRC32(ControlFile->crc, (char *) ControlFile, offsetof(ControlFileData, crc)); FIN_CRC32(ControlFile->crc); /* * We write out BLCKSZ bytes into pg_control, zero-padding the excess * over sizeof(ControlFileData). This reduces the odds of * premature-EOF errors when reading pg_control. We'll still fail * when we check the contents of the file, but hopefully with a more * specific error than "couldn't read pg_control". */ if (sizeof(ControlFileData) > BLCKSZ) ereport(PANIC, (errmsg("sizeof(ControlFileData) is larger than BLCKSZ; fix either one"))); memset(buffer, 0, BLCKSZ); memcpy(buffer, ControlFile, sizeof(ControlFileData)); fd = BasicOpenFile(XLOG_CONTROL_FILE, O_RDWR | O_CREAT | O_EXCL | PG_BINARY, S_IRUSR | S_IWUSR); if (fd < 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not create control file \"%s\": %m", XLOG_CONTROL_FILE))); errno = 0; if (write(fd, buffer, BLCKSZ) != BLCKSZ) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; ereport(PANIC, (errcode_for_file_access(), errmsg("could not write to control file: %m"))); } if (pg_fsync(fd) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fsync control file: %m"))); if (close(fd)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not close control file: %m"))); } static void ReadControlFile(void) { pg_crc32 crc; int fd; /* * Read data... */ fd = BasicOpenFile(XLOG_CONTROL_FILE, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR); if (fd < 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not open control file \"%s\": %m", XLOG_CONTROL_FILE))); if (read(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not read from control file: %m"))); close(fd); /* * Check for expected pg_control format version. If this is wrong, * the CRC check will likely fail because we'll be checking the wrong * number of bytes. Complaining about wrong version will probably be * more enlightening than complaining about wrong CRC. */ if (ControlFile->pg_control_version != PG_CONTROL_VERSION) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d," " but the server was compiled with PG_CONTROL_VERSION %d.", ControlFile->pg_control_version, PG_CONTROL_VERSION), errhint("It looks like you need to initdb."))); /* Now check the CRC. */ INIT_CRC32(crc); COMP_CRC32(crc, (char *) ControlFile, offsetof(ControlFileData, crc)); FIN_CRC32(crc); if (!EQ_CRC32(crc, ControlFile->crc)) ereport(FATAL, (errmsg("incorrect checksum in control file"))); /* * Do compatibility checking immediately. We do this here for 2 * reasons: * * (1) if the database isn't compatible with the backend executable, we * want to abort before we can possibly do any damage; * * (2) this code is executed in the postmaster, so the setlocale() will * propagate to forked backends, which aren't going to read this file * for themselves. (These locale settings are considered critical * compatibility items because they can affect sort order of indexes.) */ if (ControlFile->catalog_version_no != CATALOG_VERSION_NO) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d," " but the server was compiled with CATALOG_VERSION_NO %d.", ControlFile->catalog_version_no, CATALOG_VERSION_NO), errhint("It looks like you need to initdb."))); if (ControlFile->blcksz != BLCKSZ) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with BLCKSZ %d," " but the server was compiled with BLCKSZ %d.", ControlFile->blcksz, BLCKSZ), errhint("It looks like you need to recompile or initdb."))); if (ControlFile->relseg_size != RELSEG_SIZE) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with RELSEG_SIZE %d," " but the server was compiled with RELSEG_SIZE %d.", ControlFile->relseg_size, RELSEG_SIZE), errhint("It looks like you need to recompile or initdb."))); if (ControlFile->xlog_seg_size != XLOG_SEG_SIZE) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with XLOG_SEG_SIZE %d," " but the server was compiled with XLOG_SEG_SIZE %d.", ControlFile->xlog_seg_size, XLOG_SEG_SIZE), errhint("It looks like you need to recompile or initdb."))); if (ControlFile->nameDataLen != NAMEDATALEN) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with NAMEDATALEN %d," " but the server was compiled with NAMEDATALEN %d.", ControlFile->nameDataLen, NAMEDATALEN), errhint("It looks like you need to recompile or initdb."))); if (ControlFile->indexMaxKeys != INDEX_MAX_KEYS) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d," " but the server was compiled with INDEX_MAX_KEYS %d.", ControlFile->indexMaxKeys, INDEX_MAX_KEYS), errhint("It looks like you need to recompile or initdb."))); #ifdef HAVE_INT64_TIMESTAMP if (ControlFile->enableIntTimes != TRUE) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized without HAVE_INT64_TIMESTAMP" " but the server was compiled with HAVE_INT64_TIMESTAMP."), errhint("It looks like you need to recompile or initdb."))); #else if (ControlFile->enableIntTimes != FALSE) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with HAVE_INT64_TIMESTAMP" " but the server was compiled without HAVE_INT64_TIMESTAMP."), errhint("It looks like you need to recompile or initdb."))); #endif if (ControlFile->localeBuflen != LOCALE_NAME_BUFLEN) ereport(FATAL, (errmsg("database files are incompatible with server"), errdetail("The database cluster was initialized with LOCALE_NAME_BUFLEN %d," " but the server was compiled with LOCALE_NAME_BUFLEN %d.", ControlFile->localeBuflen, LOCALE_NAME_BUFLEN), errhint("It looks like you need to recompile or initdb."))); if (setlocale(LC_COLLATE, ControlFile->lc_collate) == NULL) ereport(FATAL, (errmsg("database files are incompatible with operating system"), errdetail("The database cluster was initialized with LC_COLLATE \"%s\"," " which is not recognized by setlocale().", ControlFile->lc_collate), errhint("It looks like you need to initdb or install locale support."))); if (setlocale(LC_CTYPE, ControlFile->lc_ctype) == NULL) ereport(FATAL, (errmsg("database files are incompatible with operating system"), errdetail("The database cluster was initialized with LC_CTYPE \"%s\"," " which is not recognized by setlocale().", ControlFile->lc_ctype), errhint("It looks like you need to initdb or install locale support."))); /* Make the fixed locale settings visible as GUC variables, too */ SetConfigOption("lc_collate", ControlFile->lc_collate, PGC_INTERNAL, PGC_S_OVERRIDE); SetConfigOption("lc_ctype", ControlFile->lc_ctype, PGC_INTERNAL, PGC_S_OVERRIDE); } void UpdateControlFile(void) { int fd; INIT_CRC32(ControlFile->crc); COMP_CRC32(ControlFile->crc, (char *) ControlFile, offsetof(ControlFileData, crc)); FIN_CRC32(ControlFile->crc); fd = BasicOpenFile(XLOG_CONTROL_FILE, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR); if (fd < 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not open control file \"%s\": %m", XLOG_CONTROL_FILE))); errno = 0; if (write(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData)) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; ereport(PANIC, (errcode_for_file_access(), errmsg("could not write to control file: %m"))); } if (pg_fsync(fd) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fsync control file: %m"))); if (close(fd)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not close control file: %m"))); } /* * Initialization of shared memory for XLOG */ Size XLOGShmemSize(void) { Size size; /* XLogCtl */ size = sizeof(XLogCtlData); /* xlblocks array */ size = add_size(size, mul_size(sizeof(XLogRecPtr), XLOGbuffers)); /* extra alignment padding for XLOG I/O buffers */ size = add_size(size, ALIGNOF_XLOG_BUFFER); /* and the buffers themselves */ size = add_size(size, mul_size(BLCKSZ, XLOGbuffers)); /* * Note: we don't count ControlFileData, it comes out of the "slop * factor" added by CreateSharedMemoryAndSemaphores. This lets us * use this routine again below to compute the actual allocation size. */ return size; } void XLOGShmemInit(void) { bool foundXLog, foundCFile; char *allocptr; XLogCtl = (XLogCtlData *) ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog); ControlFile = (ControlFileData *) ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile); if (foundXLog || foundCFile) { /* both should be present or neither */ Assert(foundXLog && foundCFile); return; } memset(XLogCtl, 0, sizeof(XLogCtlData)); /* * Since XLogCtlData contains XLogRecPtr fields, its sizeof should be * a multiple of the alignment for same, so no extra alignment padding * is needed here. */ allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData); XLogCtl->xlblocks = (XLogRecPtr *) allocptr; memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers); allocptr += sizeof(XLogRecPtr) * XLOGbuffers; /* * Align the start of the page buffers to an ALIGNOF_XLOG_BUFFER boundary. */ allocptr = (char *) TYPEALIGN(ALIGNOF_XLOG_BUFFER, allocptr); XLogCtl->pages = allocptr; memset(XLogCtl->pages, 0, BLCKSZ * XLOGbuffers); /* * Do basic initialization of XLogCtl shared data. (StartupXLOG will * fill in additional info.) */ XLogCtl->XLogCacheByte = BLCKSZ * XLOGbuffers; XLogCtl->XLogCacheBlck = XLOGbuffers - 1; XLogCtl->Insert.currpage = (XLogPageHeader) (XLogCtl->pages); SpinLockInit(&XLogCtl->info_lck); /* * If we are not in bootstrap mode, pg_control should already exist. * Read and validate it immediately (see comments in ReadControlFile() * for the reasons why). */ if (!IsBootstrapProcessingMode()) ReadControlFile(); } /* * This func must be called ONCE on system install. It creates pg_control * and the initial XLOG segment. */ void BootStrapXLOG(void) { CheckPoint checkPoint; char *buffer; XLogPageHeader page; XLogLongPageHeader longpage; XLogRecord *record; bool use_existent; uint64 sysidentifier; struct timeval tv; pg_crc32 crc; /* * Select a hopefully-unique system identifier code for this * installation. We use the result of gettimeofday(), including the * fractional seconds field, as being about as unique as we can easily * get. (Think not to use random(), since it hasn't been seeded and * there's no portable way to seed it other than the system clock * value...) The upper half of the uint64 value is just the tv_sec * part, while the lower half is the XOR of tv_sec and tv_usec. This * is to ensure that we don't lose uniqueness unnecessarily if * "uint64" is really only 32 bits wide. A person knowing this * encoding can determine the initialization time of the installation, * which could perhaps be useful sometimes. */ gettimeofday(&tv, NULL); sysidentifier = ((uint64) tv.tv_sec) << 32; sysidentifier |= (uint32) (tv.tv_sec | tv.tv_usec); /* First timeline ID is always 1 */ ThisTimeLineID = 1; /* page buffer must be aligned suitably for O_DIRECT */ buffer = (char *) palloc(BLCKSZ + ALIGNOF_XLOG_BUFFER); page = (XLogPageHeader) TYPEALIGN(ALIGNOF_XLOG_BUFFER, buffer); memset(page, 0, BLCKSZ); /* Set up information for the initial checkpoint record */ checkPoint.redo.xlogid = 0; checkPoint.redo.xrecoff = SizeOfXLogLongPHD; checkPoint.undo = checkPoint.redo; checkPoint.ThisTimeLineID = ThisTimeLineID; checkPoint.nextXid = FirstNormalTransactionId; checkPoint.nextOid = FirstBootstrapObjectId; checkPoint.nextMulti = FirstMultiXactId; checkPoint.nextMultiOffset = 0; checkPoint.time = time(NULL); ShmemVariableCache->nextXid = checkPoint.nextXid; ShmemVariableCache->nextOid = checkPoint.nextOid; ShmemVariableCache->oidCount = 0; MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); /* Set up the XLOG page header */ page->xlp_magic = XLOG_PAGE_MAGIC; page->xlp_info = XLP_LONG_HEADER; page->xlp_tli = ThisTimeLineID; page->xlp_pageaddr.xlogid = 0; page->xlp_pageaddr.xrecoff = 0; longpage = (XLogLongPageHeader) page; longpage->xlp_sysid = sysidentifier; longpage->xlp_seg_size = XLogSegSize; /* Insert the initial checkpoint record */ record = (XLogRecord *) ((char *) page + SizeOfXLogLongPHD); record->xl_prev.xlogid = 0; record->xl_prev.xrecoff = 0; record->xl_xid = InvalidTransactionId; record->xl_tot_len = SizeOfXLogRecord + sizeof(checkPoint); record->xl_len = sizeof(checkPoint); record->xl_info = XLOG_CHECKPOINT_SHUTDOWN; record->xl_rmid = RM_XLOG_ID; memcpy(XLogRecGetData(record), &checkPoint, sizeof(checkPoint)); INIT_CRC32(crc); COMP_CRC32(crc, &checkPoint, sizeof(checkPoint)); COMP_CRC32(crc, (char *) record + sizeof(pg_crc32), SizeOfXLogRecord - sizeof(pg_crc32)); FIN_CRC32(crc); record->xl_crc = crc; /* Create first XLOG segment file */ use_existent = false; openLogFile = XLogFileInit(0, 0, &use_existent, false); /* Write the first page with the initial record */ errno = 0; if (write(openLogFile, page, BLCKSZ) != BLCKSZ) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; ereport(PANIC, (errcode_for_file_access(), errmsg("could not write bootstrap transaction log file: %m"))); } if (pg_fsync(openLogFile) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fsync bootstrap transaction log file: %m"))); if (close(openLogFile)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not close bootstrap transaction log file: %m"))); openLogFile = -1; /* Now create pg_control */ memset(ControlFile, 0, sizeof(ControlFileData)); /* Initialize pg_control status fields */ ControlFile->system_identifier = sysidentifier; ControlFile->state = DB_SHUTDOWNED; ControlFile->time = checkPoint.time; ControlFile->logId = 0; ControlFile->logSeg = 1; ControlFile->checkPoint = checkPoint.redo; ControlFile->checkPointCopy = checkPoint; /* some additional ControlFile fields are set in WriteControlFile() */ WriteControlFile(); /* Bootstrap the commit log, too */ BootStrapCLOG(); BootStrapSUBTRANS(); BootStrapMultiXact(); pfree(buffer); } static char * str_time(time_t tnow) { static char buf[128]; strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S %Z", localtime(&tnow)); return buf; } /* * See if there is a recovery command file (recovery.conf), and if so * read in parameters for archive recovery. * * XXX longer term intention is to expand this to * cater for additional parameters and controls * possibly use a flex lexer similar to the GUC one */ static void readRecoveryCommandFile(void) { FILE *fd; char cmdline[MAXPGPATH]; TimeLineID rtli = 0; bool rtliGiven = false; bool syntaxError = false; fd = AllocateFile(RECOVERY_COMMAND_FILE, "r"); if (fd == NULL) { if (errno == ENOENT) return; /* not there, so no archive recovery */ ereport(FATAL, (errcode_for_file_access(), errmsg("could not open recovery command file \"%s\": %m", RECOVERY_COMMAND_FILE))); } ereport(LOG, (errmsg("starting archive recovery"))); /* * Parse the file... */ while (fgets(cmdline, MAXPGPATH, fd) != NULL) { /* skip leading whitespace and check for # comment */ char *ptr; char *tok1; char *tok2; for (ptr = cmdline; *ptr; ptr++) { if (!isspace((unsigned char) *ptr)) break; } if (*ptr == '\0' || *ptr == '#') continue; /* identify the quoted parameter value */ tok1 = strtok(ptr, "'"); if (!tok1) { syntaxError = true; break; } tok2 = strtok(NULL, "'"); if (!tok2) { syntaxError = true; break; } /* reparse to get just the parameter name */ tok1 = strtok(ptr, " \t="); if (!tok1) { syntaxError = true; break; } if (strcmp(tok1, "restore_command") == 0) { recoveryRestoreCommand = pstrdup(tok2); ereport(LOG, (errmsg("restore_command = \"%s\"", recoveryRestoreCommand))); } else if (strcmp(tok1, "recovery_target_timeline") == 0) { rtliGiven = true; if (strcmp(tok2, "latest") == 0) rtli = 0; else { errno = 0; rtli = (TimeLineID) strtoul(tok2, NULL, 0); if (errno == EINVAL || errno == ERANGE) ereport(FATAL, (errmsg("recovery_target_timeline is not a valid number: \"%s\"", tok2))); } if (rtli) ereport(LOG, (errmsg("recovery_target_timeline = %u", rtli))); else ereport(LOG, (errmsg("recovery_target_timeline = latest"))); } else if (strcmp(tok1, "recovery_target_xid") == 0) { errno = 0; recoveryTargetXid = (TransactionId) strtoul(tok2, NULL, 0); if (errno == EINVAL || errno == ERANGE) ereport(FATAL, (errmsg("recovery_target_xid is not a valid number: \"%s\"", tok2))); ereport(LOG, (errmsg("recovery_target_xid = %u", recoveryTargetXid))); recoveryTarget = true; recoveryTargetExact = true; } else if (strcmp(tok1, "recovery_target_time") == 0) { /* * if recovery_target_xid specified, then this overrides * recovery_target_time */ if (recoveryTargetExact) continue; recoveryTarget = true; recoveryTargetExact = false; /* * Convert the time string given by the user to the time_t * format. We use type abstime's input converter because we * know abstime has the same representation as time_t. */ recoveryTargetTime = (time_t) DatumGetAbsoluteTime(DirectFunctionCall1(abstimein, CStringGetDatum(tok2))); ereport(LOG, (errmsg("recovery_target_time = %s", DatumGetCString(DirectFunctionCall1(abstimeout, AbsoluteTimeGetDatum((AbsoluteTime) recoveryTargetTime)))))); } else if (strcmp(tok1, "recovery_target_inclusive") == 0) { /* * does nothing if a recovery_target is not also set */ if (strcmp(tok2, "true") == 0) recoveryTargetInclusive = true; else { recoveryTargetInclusive = false; tok2 = "false"; } ereport(LOG, (errmsg("recovery_target_inclusive = %s", tok2))); } else ereport(FATAL, (errmsg("unrecognized recovery parameter \"%s\"", tok1))); } FreeFile(fd); if (syntaxError) ereport(FATAL, (errmsg("syntax error in recovery command file: %s", cmdline), errhint("Lines should have the format parameter = 'value'."))); /* Check that required parameters were supplied */ if (recoveryRestoreCommand == NULL) ereport(FATAL, (errmsg("recovery command file \"%s\" did not specify restore_command", RECOVERY_COMMAND_FILE))); /* Enable fetching from archive recovery area */ InArchiveRecovery = true; /* * If user specified recovery_target_timeline, validate it or compute * the "latest" value. We can't do this until after we've gotten the * restore command and set InArchiveRecovery, because we need to fetch * timeline history files from the archive. */ if (rtliGiven) { if (rtli) { /* Timeline 1 does not have a history file, all else should */ if (rtli != 1 && !existsTimeLineHistory(rtli)) ereport(FATAL, (errmsg("recovery_target_timeline %u does not exist", rtli))); recoveryTargetTLI = rtli; } else { /* We start the "latest" search from pg_control's timeline */ recoveryTargetTLI = findNewestTimeLine(recoveryTargetTLI); } } } /* * Exit archive-recovery state */ static void exitArchiveRecovery(TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg) { char recoveryPath[MAXPGPATH]; char xlogpath[MAXPGPATH]; /* * We are no longer in archive recovery state. */ InArchiveRecovery = false; /* * We should have the ending log segment currently open. Verify, and * then close it (to avoid problems on Windows with trying to rename * or delete an open file). */ Assert(readFile >= 0); Assert(readId == endLogId); Assert(readSeg == endLogSeg); close(readFile); readFile = -1; /* * If the segment was fetched from archival storage, we want to * replace the existing xlog segment (if any) with the archival * version. This is because whatever is in XLOGDIR is very possibly * older than what we have from the archives, since it could have come * from restoring a PGDATA backup. In any case, the archival version * certainly is more descriptive of what our current database state * is, because that is what we replayed from. * * Note that if we are establishing a new timeline, ThisTimeLineID is * already set to the new value, and so we will create a new file * instead of overwriting any existing file. */ snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYXLOG"); XLogFilePath(xlogpath, ThisTimeLineID, endLogId, endLogSeg); if (restoredFromArchive) { ereport(DEBUG3, (errmsg_internal("moving last restored xlog to \"%s\"", xlogpath))); unlink(xlogpath); /* might or might not exist */ if (rename(recoveryPath, xlogpath) != 0) ereport(FATAL, (errcode_for_file_access(), errmsg("could not rename file \"%s\" to \"%s\": %m", recoveryPath, xlogpath))); /* XXX might we need to fix permissions on the file? */ } else { /* * If the latest segment is not archival, but there's still a * RECOVERYXLOG laying about, get rid of it. */ unlink(recoveryPath); /* ignore any error */ /* * If we are establishing a new timeline, we have to copy data * from the last WAL segment of the old timeline to create a * starting WAL segment for the new timeline. */ if (endTLI != ThisTimeLineID) XLogFileCopy(endLogId, endLogSeg, endTLI, endLogId, endLogSeg); } /* * Let's just make real sure there are not .ready or .done flags * posted for the new segment. */ XLogFileName(xlogpath, ThisTimeLineID, endLogId, endLogSeg); XLogArchiveCleanup(xlogpath); /* Get rid of any remaining recovered timeline-history file, too */ snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYHISTORY"); unlink(recoveryPath); /* ignore any error */ /* * Rename the config file out of the way, so that we don't * accidentally re-enter archive recovery mode in a subsequent crash. */ unlink(RECOVERY_COMMAND_DONE); if (rename(RECOVERY_COMMAND_FILE, RECOVERY_COMMAND_DONE) != 0) ereport(FATAL, (errcode_for_file_access(), errmsg("could not rename file \"%s\" to \"%s\": %m", RECOVERY_COMMAND_FILE, RECOVERY_COMMAND_DONE))); ereport(LOG, (errmsg("archive recovery complete"))); } /* * For point-in-time recovery, this function decides whether we want to * stop applying the XLOG at or after the current record. * * Returns TRUE if we are stopping, FALSE otherwise. On TRUE return, * *includeThis is set TRUE if we should apply this record before stopping. * Also, some information is saved in recoveryStopXid et al for use in * annotating the new timeline's history file. */ static bool recoveryStopsHere(XLogRecord *record, bool *includeThis) { bool stopsHere; uint8 record_info; time_t recordXtime; /* Do we have a PITR target at all? */ if (!recoveryTarget) return false; /* We only consider stopping at COMMIT or ABORT records */ if (record->xl_rmid != RM_XACT_ID) return false; record_info = record->xl_info & ~XLR_INFO_MASK; if (record_info == XLOG_XACT_COMMIT) { xl_xact_commit *recordXactCommitData; recordXactCommitData = (xl_xact_commit *) XLogRecGetData(record); recordXtime = recordXactCommitData->xtime; } else if (record_info == XLOG_XACT_ABORT) { xl_xact_abort *recordXactAbortData; recordXactAbortData = (xl_xact_abort *) XLogRecGetData(record); recordXtime = recordXactAbortData->xtime; } else return false; if (recoveryTargetExact) { /* * there can be only one transaction end record with this exact * transactionid * * when testing for an xid, we MUST test for equality only, since * transactions are numbered in the order they start, not the * order they complete. A higher numbered xid will complete before * you about 50% of the time... */ stopsHere = (record->xl_xid == recoveryTargetXid); if (stopsHere) *includeThis = recoveryTargetInclusive; } else { /* * there can be many transactions that share the same commit time, * so we stop after the last one, if we are inclusive, or stop at * the first one if we are exclusive */ if (recoveryTargetInclusive) stopsHere = (recordXtime > recoveryTargetTime); else stopsHere = (recordXtime >= recoveryTargetTime); if (stopsHere) *includeThis = false; } if (stopsHere) { recoveryStopXid = record->xl_xid; recoveryStopTime = recordXtime; recoveryStopAfter = *includeThis; if (record_info == XLOG_XACT_COMMIT) { if (recoveryStopAfter) ereport(LOG, (errmsg("recovery stopping after commit of transaction %u, time %s", recoveryStopXid, str_time(recoveryStopTime)))); else ereport(LOG, (errmsg("recovery stopping before commit of transaction %u, time %s", recoveryStopXid, str_time(recoveryStopTime)))); } else { if (recoveryStopAfter) ereport(LOG, (errmsg("recovery stopping after abort of transaction %u, time %s", recoveryStopXid, str_time(recoveryStopTime)))); else ereport(LOG, (errmsg("recovery stopping before abort of transaction %u, time %s", recoveryStopXid, str_time(recoveryStopTime)))); } } return stopsHere; } /* * This must be called ONCE during postmaster or standalone-backend startup */ void StartupXLOG(void) { XLogCtlInsert *Insert; CheckPoint checkPoint; bool wasShutdown; bool needNewTimeLine = false; XLogRecPtr RecPtr, LastRec, checkPointLoc, EndOfLog; uint32 endLogId; uint32 endLogSeg; XLogRecord *record; uint32 freespace; TransactionId oldestActiveXID; CritSectionCount++; /* * Read control file and check XLOG status looks valid. * * Note: in most control paths, *ControlFile is already valid and we need * not do ReadControlFile() here, but might as well do it to be sure. */ ReadControlFile(); if (ControlFile->logSeg == 0 || ControlFile->state < DB_SHUTDOWNED || ControlFile->state > DB_IN_PRODUCTION || !XRecOffIsValid(ControlFile->checkPoint.xrecoff)) ereport(FATAL, (errmsg("control file contains invalid data"))); if (ControlFile->state == DB_SHUTDOWNED) ereport(LOG, (errmsg("database system was shut down at %s", str_time(ControlFile->time)))); else if (ControlFile->state == DB_SHUTDOWNING) ereport(LOG, (errmsg("database system shutdown was interrupted at %s", str_time(ControlFile->time)))); else if (ControlFile->state == DB_IN_RECOVERY) ereport(LOG, (errmsg("database system was interrupted while in recovery at %s", str_time(ControlFile->time)), errhint("This probably means that some data is corrupted and" " you will have to use the last backup for recovery."))); else if (ControlFile->state == DB_IN_PRODUCTION) ereport(LOG, (errmsg("database system was interrupted at %s", str_time(ControlFile->time)))); /* This is just to allow attaching to startup process with a debugger */ #ifdef XLOG_REPLAY_DELAY if (ControlFile->state != DB_SHUTDOWNED) pg_usleep(60000000L); #endif /* * Initialize on the assumption we want to recover to the same * timeline that's active according to pg_control. */ recoveryTargetTLI = ControlFile->checkPointCopy.ThisTimeLineID; /* * Check for recovery control file, and if so set up state for offline * recovery */ readRecoveryCommandFile(); /* Now we can determine the list of expected TLIs */ expectedTLIs = readTimeLineHistory(recoveryTargetTLI); /* * If pg_control's timeline is not in expectedTLIs, then we cannot * proceed: the backup is not part of the history of the requested * timeline. */ if (!list_member_int(expectedTLIs, (int) ControlFile->checkPointCopy.ThisTimeLineID)) ereport(FATAL, (errmsg("requested timeline %u is not a child of database system timeline %u", recoveryTargetTLI, ControlFile->checkPointCopy.ThisTimeLineID))); if (read_backup_label(&checkPointLoc)) { /* * When a backup_label file is present, we want to roll forward * from the checkpoint it identifies, rather than using * pg_control. */ record = ReadCheckpointRecord(checkPointLoc, 0); if (record != NULL) { ereport(LOG, (errmsg("checkpoint record is at %X/%X", checkPointLoc.xlogid, checkPointLoc.xrecoff))); InRecovery = true; /* force recovery even if SHUTDOWNED */ } else { ereport(PANIC, (errmsg("could not locate required checkpoint record"), errhint("If you are not restoring from a backup, try removing the file \"%s/backup_label\".", DataDir))); } } else { /* * Get the last valid checkpoint record. If the latest one * according to pg_control is broken, try the next-to-last one. */ checkPointLoc = ControlFile->checkPoint; record = ReadCheckpointRecord(checkPointLoc, 1); if (record != NULL) { ereport(LOG, (errmsg("checkpoint record is at %X/%X", checkPointLoc.xlogid, checkPointLoc.xrecoff))); } else { checkPointLoc = ControlFile->prevCheckPoint; record = ReadCheckpointRecord(checkPointLoc, 2); if (record != NULL) { ereport(LOG, (errmsg("using previous checkpoint record at %X/%X", checkPointLoc.xlogid, checkPointLoc.xrecoff))); InRecovery = true; /* force recovery even if * SHUTDOWNED */ } else ereport(PANIC, (errmsg("could not locate a valid checkpoint record"))); } } LastRec = RecPtr = checkPointLoc; memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); wasShutdown = (record->xl_info == XLOG_CHECKPOINT_SHUTDOWN); ereport(LOG, (errmsg("redo record is at %X/%X; undo record is at %X/%X; shutdown %s", checkPoint.redo.xlogid, checkPoint.redo.xrecoff, checkPoint.undo.xlogid, checkPoint.undo.xrecoff, wasShutdown ? "TRUE" : "FALSE"))); ereport(LOG, (errmsg("next transaction ID: %u; next OID: %u", checkPoint.nextXid, checkPoint.nextOid))); ereport(LOG, (errmsg("next MultiXactId: %u; next MultiXactOffset: %u", checkPoint.nextMulti, checkPoint.nextMultiOffset))); if (!TransactionIdIsNormal(checkPoint.nextXid)) ereport(PANIC, (errmsg("invalid next transaction ID"))); ShmemVariableCache->nextXid = checkPoint.nextXid; ShmemVariableCache->nextOid = checkPoint.nextOid; ShmemVariableCache->oidCount = 0; MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); /* * We must replay WAL entries using the same TimeLineID they were * created under, so temporarily adopt the TLI indicated by the * checkpoint (see also xlog_redo()). */ ThisTimeLineID = checkPoint.ThisTimeLineID; RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo; if (XLByteLT(RecPtr, checkPoint.redo)) ereport(PANIC, (errmsg("invalid redo in checkpoint record"))); if (checkPoint.undo.xrecoff == 0) checkPoint.undo = RecPtr; /* * Check whether we need to force recovery from WAL. If it appears to * have been a clean shutdown and we did not have a recovery.conf * file, then assume no recovery needed. */ if (XLByteLT(checkPoint.undo, RecPtr) || XLByteLT(checkPoint.redo, RecPtr)) { if (wasShutdown) ereport(PANIC, (errmsg("invalid redo/undo record in shutdown checkpoint"))); InRecovery = true; } else if (ControlFile->state != DB_SHUTDOWNED) InRecovery = true; else if (InArchiveRecovery) { /* force recovery due to presence of recovery.conf */ InRecovery = true; } /* REDO */ if (InRecovery) { int rmid; if (InArchiveRecovery) ereport(LOG, (errmsg("automatic recovery in progress"))); else ereport(LOG, (errmsg("database system was not properly shut down; " "automatic recovery in progress"))); ControlFile->state = DB_IN_RECOVERY; ControlFile->time = time(NULL); UpdateControlFile(); /* Start up the recovery environment */ XLogInitRelationCache(); for (rmid = 0; rmid <= RM_MAX_ID; rmid++) { if (RmgrTable[rmid].rm_startup != NULL) RmgrTable[rmid].rm_startup(); } /* * Find the first record that logically follows the checkpoint --- * it might physically precede it, though. */ if (XLByteLT(checkPoint.redo, RecPtr)) { /* back up to find the record */ record = ReadRecord(&(checkPoint.redo), PANIC); } else { /* just have to read next record after CheckPoint */ record = ReadRecord(NULL, LOG); } if (record != NULL) { bool recoveryContinue = true; bool recoveryApply = true; InRedo = true; ereport(LOG, (errmsg("redo starts at %X/%X", ReadRecPtr.xlogid, ReadRecPtr.xrecoff))); /* * main redo apply loop */ do { #ifdef WAL_DEBUG if (XLOG_DEBUG) { char buf[8192]; sprintf(buf, "REDO @ %X/%X; LSN %X/%X: ", ReadRecPtr.xlogid, ReadRecPtr.xrecoff, EndRecPtr.xlogid, EndRecPtr.xrecoff); xlog_outrec(buf, record); strcat(buf, " - "); RmgrTable[record->xl_rmid].rm_desc(buf, record->xl_info, XLogRecGetData(record)); elog(LOG, "%s", buf); } #endif /* * Have we reached our recovery target? */ if (recoveryStopsHere(record, &recoveryApply)) { needNewTimeLine = true; /* see below */ recoveryContinue = false; if (!recoveryApply) break; } /* nextXid must be beyond record's xid */ if (TransactionIdFollowsOrEquals(record->xl_xid, ShmemVariableCache->nextXid)) { ShmemVariableCache->nextXid = record->xl_xid; TransactionIdAdvance(ShmemVariableCache->nextXid); } if (record->xl_info & XLR_BKP_BLOCK_MASK) RestoreBkpBlocks(record, EndRecPtr); RmgrTable[record->xl_rmid].rm_redo(EndRecPtr, record); LastRec = ReadRecPtr; record = ReadRecord(NULL, LOG); } while (record != NULL && recoveryContinue); /* * end of main redo apply loop */ ereport(LOG, (errmsg("redo done at %X/%X", ReadRecPtr.xlogid, ReadRecPtr.xrecoff))); InRedo = false; } else { /* there are no WAL records following the checkpoint */ ereport(LOG, (errmsg("redo is not required"))); } } /* * Re-fetch the last valid or last applied record, so we can identify * the exact endpoint of what we consider the valid portion of WAL. */ record = ReadRecord(&LastRec, PANIC); EndOfLog = EndRecPtr; XLByteToPrevSeg(EndOfLog, endLogId, endLogSeg); /* * Complain if we did not roll forward far enough to render the backup * dump consistent. */ if (XLByteLT(EndOfLog, recoveryMinXlogOffset)) { if (needNewTimeLine) /* stopped because of stop request */ ereport(FATAL, (errmsg("requested recovery stop point is before end time of backup dump"))); else /* ran off end of WAL */ ereport(FATAL, (errmsg("WAL ends before end time of backup dump"))); } /* * Consider whether we need to assign a new timeline ID. * * If we stopped short of the end of WAL during recovery, then we are * generating a new timeline and must assign it a unique new ID. * Otherwise, we can just extend the timeline we were in when we ran * out of WAL. */ if (needNewTimeLine) { ThisTimeLineID = findNewestTimeLine(recoveryTargetTLI) + 1; ereport(LOG, (errmsg("selected new timeline ID: %u", ThisTimeLineID))); writeTimeLineHistory(ThisTimeLineID, recoveryTargetTLI, curFileTLI, endLogId, endLogSeg); } /* Save the selected TimeLineID in shared memory, too */ XLogCtl->ThisTimeLineID = ThisTimeLineID; /* * We are now done reading the old WAL. Turn off archive fetching if * it was active, and make a writable copy of the last WAL segment. * (Note that we also have a copy of the last block of the old WAL in * readBuf; we will use that below.) */ if (InArchiveRecovery) exitArchiveRecovery(curFileTLI, endLogId, endLogSeg); /* * Prepare to write WAL starting at EndOfLog position, and init xlog * buffer cache using the block containing the last record from the * previous incarnation. */ openLogId = endLogId; openLogSeg = endLogSeg; openLogFile = XLogFileOpen(openLogId, openLogSeg); openLogOff = 0; ControlFile->logId = openLogId; ControlFile->logSeg = openLogSeg + 1; Insert = &XLogCtl->Insert; Insert->PrevRecord = LastRec; XLogCtl->xlblocks[0].xlogid = openLogId; XLogCtl->xlblocks[0].xrecoff = ((EndOfLog.xrecoff - 1) / BLCKSZ + 1) * BLCKSZ; /* * Tricky point here: readBuf contains the *last* block that the * LastRec record spans, not the one it starts in. The last block is * indeed the one we want to use. */ Assert(readOff == (XLogCtl->xlblocks[0].xrecoff - BLCKSZ) % XLogSegSize); memcpy((char *) Insert->currpage, readBuf, BLCKSZ); Insert->currpos = (char *) Insert->currpage + (EndOfLog.xrecoff + BLCKSZ - XLogCtl->xlblocks[0].xrecoff); LogwrtResult.Write = LogwrtResult.Flush = EndOfLog; XLogCtl->Write.LogwrtResult = LogwrtResult; Insert->LogwrtResult = LogwrtResult; XLogCtl->LogwrtResult = LogwrtResult; XLogCtl->LogwrtRqst.Write = EndOfLog; XLogCtl->LogwrtRqst.Flush = EndOfLog; freespace = INSERT_FREESPACE(Insert); if (freespace > 0) { /* Make sure rest of page is zero */ MemSet(Insert->currpos, 0, freespace); XLogCtl->Write.curridx = 0; } else { /* * Whenever Write.LogwrtResult points to exactly the end of a * page, Write.curridx must point to the *next* page (see * XLogWrite()). * * Note: it might seem we should do AdvanceXLInsertBuffer() here, but * this is sufficient. The first actual attempt to insert a log * record will advance the insert state. */ XLogCtl->Write.curridx = NextBufIdx(0); } /* Pre-scan prepared transactions to find out the range of XIDs present */ oldestActiveXID = PrescanPreparedTransactions(); if (InRecovery) { int rmid; /* * Allow resource managers to do any required cleanup. */ for (rmid = 0; rmid <= RM_MAX_ID; rmid++) { if (RmgrTable[rmid].rm_cleanup != NULL) RmgrTable[rmid].rm_cleanup(); } /* * Reset pgstat data, because it may be invalid after recovery. */ pgstat_reset_all(); /* * Perform a new checkpoint to update our recovery activity to * disk. * * Note that we write a shutdown checkpoint rather than an on-line * one. This is not particularly critical, but since we may be * assigning a new TLI, using a shutdown checkpoint allows us to * have the rule that TLI only changes in shutdown checkpoints, * which allows some extra error checking in xlog_redo. * * In case we had to use the secondary checkpoint, make sure that it * will still be shown as the secondary checkpoint after this * CreateCheckPoint operation; we don't want the broken primary * checkpoint to become prevCheckPoint... */ if (XLByteEQ(checkPointLoc, ControlFile->prevCheckPoint)) ControlFile->checkPoint = checkPointLoc; CreateCheckPoint(true, true); /* * Close down recovery environment */ XLogCloseRelationCache(); /* * Now that we've checkpointed the recovery, it's safe to flush * old backup_label, if present. */ remove_backup_label(); } /* * Preallocate additional log files, if wanted. */ (void) PreallocXlogFiles(EndOfLog); /* * Okay, we're officially UP. */ InRecovery = false; ControlFile->state = DB_IN_PRODUCTION; ControlFile->time = time(NULL); UpdateControlFile(); /* Start up the commit log and related stuff, too */ StartupCLOG(); StartupSUBTRANS(oldestActiveXID); StartupMultiXact(); /* Reload shared-memory state for prepared transactions */ RecoverPreparedTransactions(); ereport(LOG, (errmsg("database system is ready"))); CritSectionCount--; /* Shut down readFile facility, free space */ if (readFile >= 0) { close(readFile); readFile = -1; } if (readBuf) { free(readBuf); readBuf = NULL; } if (readRecordBuf) { free(readRecordBuf); readRecordBuf = NULL; readRecordBufSize = 0; } } /* * Subroutine to try to fetch and validate a prior checkpoint record. * * whichChkpt identifies the checkpoint (merely for reporting purposes). * 1 for "primary", 2 for "secondary", 0 for "other" (backup_label) */ static XLogRecord * ReadCheckpointRecord(XLogRecPtr RecPtr, int whichChkpt) { XLogRecord *record; if (!XRecOffIsValid(RecPtr.xrecoff)) { switch (whichChkpt) { case 1: ereport(LOG, (errmsg("invalid primary checkpoint link in control file"))); break; case 2: ereport(LOG, (errmsg("invalid secondary checkpoint link in control file"))); break; default: ereport(LOG, (errmsg("invalid checkpoint link in backup_label file"))); break; } return NULL; } record = ReadRecord(&RecPtr, LOG); if (record == NULL) { switch (whichChkpt) { case 1: ereport(LOG, (errmsg("invalid primary checkpoint record"))); break; case 2: ereport(LOG, (errmsg("invalid secondary checkpoint record"))); break; default: ereport(LOG, (errmsg("invalid checkpoint record"))); break; } return NULL; } if (record->xl_rmid != RM_XLOG_ID) { switch (whichChkpt) { case 1: ereport(LOG, (errmsg("invalid resource manager ID in primary checkpoint record"))); break; case 2: ereport(LOG, (errmsg("invalid resource manager ID in secondary checkpoint record"))); break; default: ereport(LOG, (errmsg("invalid resource manager ID in checkpoint record"))); break; } return NULL; } if (record->xl_info != XLOG_CHECKPOINT_SHUTDOWN && record->xl_info != XLOG_CHECKPOINT_ONLINE) { switch (whichChkpt) { case 1: ereport(LOG, (errmsg("invalid xl_info in primary checkpoint record"))); break; case 2: ereport(LOG, (errmsg("invalid xl_info in secondary checkpoint record"))); break; default: ereport(LOG, (errmsg("invalid xl_info in checkpoint record"))); break; } return NULL; } if (record->xl_len != sizeof(CheckPoint) || record->xl_tot_len != SizeOfXLogRecord + sizeof(CheckPoint)) { switch (whichChkpt) { case 1: ereport(LOG, (errmsg("invalid length of primary checkpoint record"))); break; case 2: ereport(LOG, (errmsg("invalid length of secondary checkpoint record"))); break; default: ereport(LOG, (errmsg("invalid length of checkpoint record"))); break; } return NULL; } return record; } /* * This must be called during startup of a backend process, except that * it need not be called in a standalone backend (which does StartupXLOG * instead). We need to initialize the local copies of ThisTimeLineID and * RedoRecPtr. * * Note: before Postgres 8.0, we went to some effort to keep the postmaster * process's copies of ThisTimeLineID and RedoRecPtr valid too. This was * unnecessary however, since the postmaster itself never touches XLOG anyway. */ void InitXLOGAccess(void) { /* ThisTimeLineID doesn't change so we need no lock to copy it */ ThisTimeLineID = XLogCtl->ThisTimeLineID; /* Use GetRedoRecPtr to copy the RedoRecPtr safely */ (void) GetRedoRecPtr(); } /* * Once spawned, a backend may update its local RedoRecPtr from * XLogCtl->Insert.RedoRecPtr; it must hold the insert lock or info_lck * to do so. This is done in XLogInsert() or GetRedoRecPtr(). */ XLogRecPtr GetRedoRecPtr(void) { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); Assert(XLByteLE(RedoRecPtr, xlogctl->Insert.RedoRecPtr)); RedoRecPtr = xlogctl->Insert.RedoRecPtr; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); return RedoRecPtr; } /* * GetRecentNextXid - get the nextXid value saved by the most recent checkpoint * * This is currently used only by the autovacuum daemon. To check for * impending XID wraparound, autovac needs an approximate idea of the current * XID counter, and it needs it before choosing which DB to attach to, hence * before it sets up a PGPROC, hence before it can take any LWLocks. But it * has attached to shared memory, and so we can let it reach into the shared * ControlFile structure and pull out the last checkpoint nextXID. * * Since we don't take any sort of lock, we have to assume that reading a * TransactionId is atomic ... but that assumption is made elsewhere, too, * and in any case the worst possible consequence of a bogus result is that * autovac issues an unnecessary database-wide VACUUM. * * Note: we could also choose to read ShmemVariableCache->nextXid in an * unlocked fashion, thus getting a more up-to-date result; but since that * changes far more frequently than the controlfile checkpoint copy, it would * pose a far higher risk of bogus result if we did have a nonatomic-read * problem. * * A (theoretically) completely safe answer is to read the actual pg_control * file into local process memory, but that certainly seems like overkill. */ TransactionId GetRecentNextXid(void) { return ControlFile->checkPointCopy.nextXid; } /* * This must be called ONCE during postmaster or standalone-backend shutdown */ void ShutdownXLOG(int code, Datum arg) { ereport(LOG, (errmsg("shutting down"))); CritSectionCount++; CreateCheckPoint(true, true); ShutdownCLOG(); ShutdownSUBTRANS(); ShutdownMultiXact(); CritSectionCount--; ereport(LOG, (errmsg("database system is shut down"))); } /* * Perform a checkpoint --- either during shutdown, or on-the-fly * * If force is true, we force a checkpoint regardless of whether any XLOG * activity has occurred since the last one. */ void CreateCheckPoint(bool shutdown, bool force) { CheckPoint checkPoint; XLogRecPtr recptr; XLogCtlInsert *Insert = &XLogCtl->Insert; XLogRecData rdata; uint32 freespace; uint32 _logId; uint32 _logSeg; int nsegsadded = 0; int nsegsremoved = 0; int nsegsrecycled = 0; /* * Acquire CheckpointLock to ensure only one checkpoint happens at a * time. (This is just pro forma, since in the present system * structure there is only one process that is allowed to issue * checkpoints at any given time.) */ LWLockAcquire(CheckpointLock, LW_EXCLUSIVE); /* * Use a critical section to force system panic if we have trouble. */ START_CRIT_SECTION(); if (shutdown) { ControlFile->state = DB_SHUTDOWNING; ControlFile->time = time(NULL); UpdateControlFile(); } MemSet(&checkPoint, 0, sizeof(checkPoint)); checkPoint.ThisTimeLineID = ThisTimeLineID; checkPoint.time = time(NULL); /* * We must hold CheckpointStartLock while determining the checkpoint * REDO pointer. This ensures that any concurrent transaction commits * will be either not yet logged, or logged and recorded in pg_clog. * See notes in RecordTransactionCommit(). */ LWLockAcquire(CheckpointStartLock, LW_EXCLUSIVE); /* And we need WALInsertLock too */ LWLockAcquire(WALInsertLock, LW_EXCLUSIVE); /* * If this isn't a shutdown or forced checkpoint, and we have not * inserted any XLOG records since the start of the last checkpoint, * skip the checkpoint. The idea here is to avoid inserting duplicate * checkpoints when the system is idle. That wastes log space, and * more importantly it exposes us to possible loss of both current and * previous checkpoint records if the machine crashes just as we're * writing the update. (Perhaps it'd make even more sense to * checkpoint only when the previous checkpoint record is in a * different xlog page?) * * We have to make two tests to determine that nothing has happened since * the start of the last checkpoint: current insertion point must * match the end of the last checkpoint record, and its redo pointer * must point to itself. */ if (!shutdown && !force) { XLogRecPtr curInsert; INSERT_RECPTR(curInsert, Insert, Insert->curridx); if (curInsert.xlogid == ControlFile->checkPoint.xlogid && curInsert.xrecoff == ControlFile->checkPoint.xrecoff + MAXALIGN(SizeOfXLogRecord + sizeof(CheckPoint)) && ControlFile->checkPoint.xlogid == ControlFile->checkPointCopy.redo.xlogid && ControlFile->checkPoint.xrecoff == ControlFile->checkPointCopy.redo.xrecoff) { LWLockRelease(WALInsertLock); LWLockRelease(CheckpointStartLock); LWLockRelease(CheckpointLock); END_CRIT_SECTION(); return; } } /* * Compute new REDO record ptr = location of next XLOG record. * * NB: this is NOT necessarily where the checkpoint record itself will * be, since other backends may insert more XLOG records while we're * off doing the buffer flush work. Those XLOG records are logically * after the checkpoint, even though physically before it. Got that? */ freespace = INSERT_FREESPACE(Insert); if (freespace < SizeOfXLogRecord) { (void) AdvanceXLInsertBuffer(); /* OK to ignore update return flag, since we will do flush anyway */ freespace = INSERT_FREESPACE(Insert); } INSERT_RECPTR(checkPoint.redo, Insert, Insert->curridx); /* * Here we update the shared RedoRecPtr for future XLogInsert calls; * this must be done while holding the insert lock AND the info_lck. * * Note: if we fail to complete the checkpoint, RedoRecPtr will be left * pointing past where it really needs to point. This is okay; the * only consequence is that XLogInsert might back up whole buffers * that it didn't really need to. We can't postpone advancing * RedoRecPtr because XLogInserts that happen while we are dumping * buffers must assume that their buffer changes are not included in * the checkpoint. */ { /* use volatile pointer to prevent code rearrangement */ volatile XLogCtlData *xlogctl = XLogCtl; SpinLockAcquire_NoHoldoff(&xlogctl->info_lck); RedoRecPtr = xlogctl->Insert.RedoRecPtr = checkPoint.redo; SpinLockRelease_NoHoldoff(&xlogctl->info_lck); } /* * Now we can release insert lock and checkpoint start lock, allowing * other xacts to proceed even while we are flushing disk buffers. */ LWLockRelease(WALInsertLock); LWLockRelease(CheckpointStartLock); /* * Get the other info we need for the checkpoint record. */ LWLockAcquire(XidGenLock, LW_SHARED); checkPoint.nextXid = ShmemVariableCache->nextXid; LWLockRelease(XidGenLock); LWLockAcquire(OidGenLock, LW_SHARED); checkPoint.nextOid = ShmemVariableCache->nextOid; if (!shutdown) checkPoint.nextOid += ShmemVariableCache->oidCount; LWLockRelease(OidGenLock); MultiXactGetCheckptMulti(shutdown, &checkPoint.nextMulti, &checkPoint.nextMultiOffset); /* * Having constructed the checkpoint record, ensure all shmem disk * buffers and commit-log buffers are flushed to disk. * * This I/O could fail for various reasons. If so, we will fail to * complete the checkpoint, but there is no reason to force a system * panic. Accordingly, exit critical section while doing it. (If * we are doing a shutdown checkpoint, we probably *should* panic --- * but that will happen anyway because we'll still be inside the * critical section established by ShutdownXLOG.) */ END_CRIT_SECTION(); if (!shutdown) ereport(DEBUG2, (errmsg("checkpoint starting"))); CheckPointCLOG(); CheckPointSUBTRANS(); CheckPointMultiXact(); FlushBufferPool(); /* We deliberately delay 2PC checkpointing as long as possible */ CheckPointTwoPhase(checkPoint.redo); START_CRIT_SECTION(); /* * Now insert the checkpoint record into XLOG. */ rdata.data = (char *) (&checkPoint); rdata.len = sizeof(checkPoint); rdata.buffer = InvalidBuffer; rdata.next = NULL; recptr = XLogInsert(RM_XLOG_ID, shutdown ? XLOG_CHECKPOINT_SHUTDOWN : XLOG_CHECKPOINT_ONLINE, &rdata); XLogFlush(recptr); /* * We now have ProcLastRecPtr = start of actual checkpoint record, * recptr = end of actual checkpoint record. */ if (shutdown && !XLByteEQ(checkPoint.redo, ProcLastRecPtr)) ereport(PANIC, (errmsg("concurrent transaction log activity while database system is shutting down"))); /* * Select point at which we can truncate the log, which we base on the * prior checkpoint's earliest info. */ XLByteToSeg(ControlFile->checkPointCopy.redo, _logId, _logSeg); /* * Update the control file. */ LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); if (shutdown) ControlFile->state = DB_SHUTDOWNED; ControlFile->prevCheckPoint = ControlFile->checkPoint; ControlFile->checkPoint = ProcLastRecPtr; ControlFile->checkPointCopy = checkPoint; ControlFile->time = time(NULL); UpdateControlFile(); LWLockRelease(ControlFileLock); /* * We are now done with critical updates; no need for system panic if * we have trouble while fooling with offline log segments. */ END_CRIT_SECTION(); /* * Delete offline log files (those no longer needed even for previous * checkpoint). */ if (_logId || _logSeg) { PrevLogSeg(_logId, _logSeg); MoveOfflineLogs(_logId, _logSeg, recptr, &nsegsremoved, &nsegsrecycled); } /* * Make more log segments if needed. (Do this after deleting offline * log segments, to avoid having peak disk space usage higher than * necessary.) */ if (!shutdown) nsegsadded = PreallocXlogFiles(recptr); /* * Truncate pg_subtrans if possible. We can throw away all data * before the oldest XMIN of any running transaction. No future * transaction will attempt to reference any pg_subtrans entry older * than that (see Asserts in subtrans.c). During recovery, though, we * mustn't do this because StartupSUBTRANS hasn't been called yet. */ if (!InRecovery) TruncateSUBTRANS(GetOldestXmin(true)); if (!shutdown) ereport(DEBUG2, (errmsg("checkpoint complete; %d transaction log file(s) added, %d removed, %d recycled", nsegsadded, nsegsremoved, nsegsrecycled))); LWLockRelease(CheckpointLock); } /* * Write a NEXTOID log record */ void XLogPutNextOid(Oid nextOid) { XLogRecData rdata; rdata.data = (char *) (&nextOid); rdata.len = sizeof(Oid); rdata.buffer = InvalidBuffer; rdata.next = NULL; (void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID, &rdata); /* * We need not flush the NEXTOID record immediately, because any of the * just-allocated OIDs could only reach disk as part of a tuple insert * or update that would have its own XLOG record that must follow the * NEXTOID record. Therefore, the standard buffer LSN interlock applied * to those records will ensure no such OID reaches disk before the * NEXTOID record does. */ } /* * XLOG resource manager's routines */ void xlog_redo(XLogRecPtr lsn, XLogRecord *record) { uint8 info = record->xl_info & ~XLR_INFO_MASK; if (info == XLOG_NEXTOID) { Oid nextOid; memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid)); if (ShmemVariableCache->nextOid < nextOid) { ShmemVariableCache->nextOid = nextOid; ShmemVariableCache->oidCount = 0; } } else if (info == XLOG_CHECKPOINT_SHUTDOWN) { CheckPoint checkPoint; memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); /* In a SHUTDOWN checkpoint, believe the counters exactly */ ShmemVariableCache->nextXid = checkPoint.nextXid; ShmemVariableCache->nextOid = checkPoint.nextOid; ShmemVariableCache->oidCount = 0; MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); /* * TLI may change in a shutdown checkpoint, but it shouldn't * decrease */ if (checkPoint.ThisTimeLineID != ThisTimeLineID) { if (checkPoint.ThisTimeLineID < ThisTimeLineID || !list_member_int(expectedTLIs, (int) checkPoint.ThisTimeLineID)) ereport(PANIC, (errmsg("unexpected timeline ID %u (after %u) in checkpoint record", checkPoint.ThisTimeLineID, ThisTimeLineID))); /* Following WAL records should be run with new TLI */ ThisTimeLineID = checkPoint.ThisTimeLineID; } } else if (info == XLOG_CHECKPOINT_ONLINE) { CheckPoint checkPoint; memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint)); /* In an ONLINE checkpoint, treat the counters like NEXTOID */ if (TransactionIdPrecedes(ShmemVariableCache->nextXid, checkPoint.nextXid)) ShmemVariableCache->nextXid = checkPoint.nextXid; if (ShmemVariableCache->nextOid < checkPoint.nextOid) { ShmemVariableCache->nextOid = checkPoint.nextOid; ShmemVariableCache->oidCount = 0; } MultiXactAdvanceNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset); /* TLI should not change in an on-line checkpoint */ if (checkPoint.ThisTimeLineID != ThisTimeLineID) ereport(PANIC, (errmsg("unexpected timeline ID %u (should be %u) in checkpoint record", checkPoint.ThisTimeLineID, ThisTimeLineID))); } } void xlog_desc(char *buf, uint8 xl_info, char *rec) { uint8 info = xl_info & ~XLR_INFO_MASK; if (info == XLOG_CHECKPOINT_SHUTDOWN || info == XLOG_CHECKPOINT_ONLINE) { CheckPoint *checkpoint = (CheckPoint *) rec; sprintf(buf + strlen(buf), "checkpoint: redo %X/%X; undo %X/%X; " "tli %u; xid %u; oid %u; multi %u; offset %u; %s", checkpoint->redo.xlogid, checkpoint->redo.xrecoff, checkpoint->undo.xlogid, checkpoint->undo.xrecoff, checkpoint->ThisTimeLineID, checkpoint->nextXid, checkpoint->nextOid, checkpoint->nextMulti, checkpoint->nextMultiOffset, (info == XLOG_CHECKPOINT_SHUTDOWN) ? "shutdown" : "online"); } else if (info == XLOG_NEXTOID) { Oid nextOid; memcpy(&nextOid, rec, sizeof(Oid)); sprintf(buf + strlen(buf), "nextOid: %u", nextOid); } else strcat(buf, "UNKNOWN"); } #ifdef WAL_DEBUG static void xlog_outrec(char *buf, XLogRecord *record) { int bkpb; int i; sprintf(buf + strlen(buf), "prev %X/%X; xid %u", record->xl_prev.xlogid, record->xl_prev.xrecoff, record->xl_xid); for (i = 0, bkpb = 0; i < XLR_MAX_BKP_BLOCKS; i++) { if (!(record->xl_info & (XLR_SET_BKP_BLOCK(i)))) continue; bkpb++; } if (bkpb) sprintf(buf + strlen(buf), "; bkpb %d", bkpb); sprintf(buf + strlen(buf), ": %s", RmgrTable[record->xl_rmid].rm_name); } #endif /* WAL_DEBUG */ /* * GUC support */ const char * assign_xlog_sync_method(const char *method, bool doit, GucSource source) { int new_sync_method; int new_sync_bit; if (pg_strcasecmp(method, "fsync") == 0) { new_sync_method = SYNC_METHOD_FSYNC; new_sync_bit = 0; } #ifdef HAVE_FSYNC_WRITETHROUGH else if (pg_strcasecmp(method, "fsync_writethrough") == 0) { new_sync_method = SYNC_METHOD_FSYNC_WRITETHROUGH; new_sync_bit = 0; } #endif #ifdef HAVE_FDATASYNC else if (pg_strcasecmp(method, "fdatasync") == 0) { new_sync_method = SYNC_METHOD_FDATASYNC; new_sync_bit = 0; } #endif #ifdef OPEN_SYNC_FLAG else if (pg_strcasecmp(method, "open_sync") == 0) { new_sync_method = SYNC_METHOD_OPEN; new_sync_bit = OPEN_SYNC_FLAG; } #endif #ifdef OPEN_DATASYNC_FLAG else if (pg_strcasecmp(method, "open_datasync") == 0) { new_sync_method = SYNC_METHOD_OPEN; new_sync_bit = OPEN_DATASYNC_FLAG; } #endif else return NULL; if (!doit) return method; if (sync_method != new_sync_method || open_sync_bit != new_sync_bit) { /* * To ensure that no blocks escape unsynced, force an fsync on the * currently open log segment (if any). Also, if the open flag is * changing, close the log file so it will be reopened (with new * flag bit) at next use. */ if (openLogFile >= 0) { if (pg_fsync(openLogFile) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fsync log file %u, segment %u: %m", openLogId, openLogSeg))); if (open_sync_bit != new_sync_bit) { if (close(openLogFile)) ereport(PANIC, (errcode_for_file_access(), errmsg("could not close log file %u, segment %u: %m", openLogId, openLogSeg))); openLogFile = -1; } } sync_method = new_sync_method; open_sync_bit = new_sync_bit; } return method; } /* * Issue appropriate kind of fsync (if any) on the current XLOG output file */ static void issue_xlog_fsync(void) { switch (sync_method) { case SYNC_METHOD_FSYNC: if (pg_fsync_no_writethrough(openLogFile) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fsync log file %u, segment %u: %m", openLogId, openLogSeg))); break; #ifdef HAVE_FSYNC_WRITETHROUGH case SYNC_METHOD_FSYNC_WRITETHROUGH: if (pg_fsync_writethrough(openLogFile) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fsync write-through log file %u, segment %u: %m", openLogId, openLogSeg))); break; #endif #ifdef HAVE_FDATASYNC case SYNC_METHOD_FDATASYNC: if (pg_fdatasync(openLogFile) != 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not fdatasync log file %u, segment %u: %m", openLogId, openLogSeg))); break; #endif case SYNC_METHOD_OPEN: /* write synced it already */ break; default: elog(PANIC, "unrecognized wal_sync_method: %d", sync_method); break; } } /* * pg_start_backup: set up for taking an on-line backup dump * * Essentially what this does is to create a backup label file in $PGDATA, * where it will be archived as part of the backup dump. The label file * contains the user-supplied label string (typically this would be used * to tell where the backup dump will be stored) and the starting time and * starting WAL offset for the dump. */ Datum pg_start_backup(PG_FUNCTION_ARGS) { text *backupid = PG_GETARG_TEXT_P(0); text *result; char *backupidstr; XLogRecPtr checkpointloc; XLogRecPtr startpoint; time_t stamp_time; char strfbuf[128]; char xlogfilename[MAXFNAMELEN]; uint32 _logId; uint32 _logSeg; struct stat stat_buf; FILE *fp; if (!superuser()) ereport(ERROR, (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), (errmsg("must be superuser to run a backup")))); if (!XLogArchivingActive()) ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), (errmsg("WAL archiving is not active"), (errhint("archive_command must be defined before " "online backups can be made safely."))))); backupidstr = DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(backupid))); /* * Force a CHECKPOINT. This is not strictly necessary, but it seems * like a good idea to minimize the amount of past WAL needed to use * the backup. Also, this guarantees that two successive backup runs * will have different checkpoint positions and hence different * history file names, even if nothing happened in between. */ RequestCheckpoint(true, false); /* * Now we need to fetch the checkpoint record location, and also its * REDO pointer. The oldest point in WAL that would be needed to * restore starting from the checkpoint is precisely the REDO pointer. */ LWLockAcquire(ControlFileLock, LW_EXCLUSIVE); checkpointloc = ControlFile->checkPoint; startpoint = ControlFile->checkPointCopy.redo; LWLockRelease(ControlFileLock); XLByteToSeg(startpoint, _logId, _logSeg); XLogFileName(xlogfilename, ThisTimeLineID, _logId, _logSeg); /* * We deliberately use strftime/localtime not the src/timezone * functions, so that backup labels will consistently be recorded in * the same timezone regardless of TimeZone setting. This matches * elog.c's practice. */ stamp_time = time(NULL); strftime(strfbuf, sizeof(strfbuf), "%Y-%m-%d %H:%M:%S %Z", localtime(&stamp_time)); /* * Check for existing backup label --- implies a backup is already * running */ if (stat(BACKUP_LABEL_FILE, &stat_buf) != 0) { if (errno != ENOENT) ereport(ERROR, (errcode_for_file_access(), errmsg("could not stat file \"%s\": %m", BACKUP_LABEL_FILE))); } else ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("a backup is already in progress"), errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again.", BACKUP_LABEL_FILE))); /* * Okay, write the file */ fp = AllocateFile(BACKUP_LABEL_FILE, "w"); if (!fp) ereport(ERROR, (errcode_for_file_access(), errmsg("could not create file \"%s\": %m", BACKUP_LABEL_FILE))); fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n", startpoint.xlogid, startpoint.xrecoff, xlogfilename); fprintf(fp, "CHECKPOINT LOCATION: %X/%X\n", checkpointloc.xlogid, checkpointloc.xrecoff); fprintf(fp, "START TIME: %s\n", strfbuf); fprintf(fp, "LABEL: %s\n", backupidstr); if (fflush(fp) || ferror(fp) || FreeFile(fp)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not write file \"%s\": %m", BACKUP_LABEL_FILE))); /* * We're done. As a convenience, return the starting WAL offset. */ snprintf(xlogfilename, sizeof(xlogfilename), "%X/%X", startpoint.xlogid, startpoint.xrecoff); result = DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(xlogfilename))); PG_RETURN_TEXT_P(result); } /* * pg_stop_backup: finish taking an on-line backup dump * * We remove the backup label file created by pg_start_backup, and instead * create a backup history file in pg_xlog (whence it will immediately be * archived). The backup history file contains the same info found in * the label file, plus the backup-end time and WAL offset. */ Datum pg_stop_backup(PG_FUNCTION_ARGS) { text *result; XLogCtlInsert *Insert = &XLogCtl->Insert; XLogRecPtr startpoint; XLogRecPtr stoppoint; time_t stamp_time; char strfbuf[128]; char histfilepath[MAXPGPATH]; char startxlogfilename[MAXFNAMELEN]; char stopxlogfilename[MAXFNAMELEN]; uint32 _logId; uint32 _logSeg; FILE *lfp; FILE *fp; char ch; int ich; if (!superuser()) ereport(ERROR, (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE), (errmsg("must be superuser to run a backup")))); /* * Get the current end-of-WAL position; it will be unsafe to use this * dump to restore to a point in advance of this time. */ LWLockAcquire(WALInsertLock, LW_EXCLUSIVE); INSERT_RECPTR(stoppoint, Insert, Insert->curridx); LWLockRelease(WALInsertLock); XLByteToSeg(stoppoint, _logId, _logSeg); XLogFileName(stopxlogfilename, ThisTimeLineID, _logId, _logSeg); /* * We deliberately use strftime/localtime not the src/timezone * functions, so that backup labels will consistently be recorded in * the same timezone regardless of TimeZone setting. This matches * elog.c's practice. */ stamp_time = time(NULL); strftime(strfbuf, sizeof(strfbuf), "%Y-%m-%d %H:%M:%S %Z", localtime(&stamp_time)); /* * Open the existing label file */ lfp = AllocateFile(BACKUP_LABEL_FILE, "r"); if (!lfp) { if (errno != ENOENT) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", BACKUP_LABEL_FILE))); ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("a backup is not in progress"))); } /* * Read and parse the START WAL LOCATION line (this code is pretty * crude, but we are not expecting any variability in the file * format). */ if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %24s)%c", &startpoint.xlogid, &startpoint.xrecoff, startxlogfilename, &ch) != 4 || ch != '\n') ereport(ERROR, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE))); /* * Write the backup history file */ XLByteToSeg(startpoint, _logId, _logSeg); BackupHistoryFilePath(histfilepath, ThisTimeLineID, _logId, _logSeg, startpoint.xrecoff % XLogSegSize); fp = AllocateFile(histfilepath, "w"); if (!fp) ereport(ERROR, (errcode_for_file_access(), errmsg("could not create file \"%s\": %m", histfilepath))); fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n", startpoint.xlogid, startpoint.xrecoff, startxlogfilename); fprintf(fp, "STOP WAL LOCATION: %X/%X (file %s)\n", stoppoint.xlogid, stoppoint.xrecoff, stopxlogfilename); /* transfer remaining lines from label to history file */ while ((ich = fgetc(lfp)) != EOF) fputc(ich, fp); fprintf(fp, "STOP TIME: %s\n", strfbuf); if (fflush(fp) || ferror(fp) || FreeFile(fp)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not write file \"%s\": %m", histfilepath))); /* * Close and remove the backup label file */ if (ferror(lfp) || FreeFile(lfp)) ereport(ERROR, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", BACKUP_LABEL_FILE))); if (unlink(BACKUP_LABEL_FILE) != 0) ereport(ERROR, (errcode_for_file_access(), errmsg("could not remove file \"%s\": %m", BACKUP_LABEL_FILE))); RemoveOldBackupHistory(); /* * Notify archiver that history file may be archived immediately */ if (XLogArchivingActive()) { BackupHistoryFileName(histfilepath, ThisTimeLineID, _logId, _logSeg, startpoint.xrecoff % XLogSegSize); XLogArchiveNotify(histfilepath); } /* * We're done. As a convenience, return the ending WAL offset. */ snprintf(stopxlogfilename, sizeof(stopxlogfilename), "%X/%X", stoppoint.xlogid, stoppoint.xrecoff); result = DatumGetTextP(DirectFunctionCall1(textin, CStringGetDatum(stopxlogfilename))); PG_RETURN_TEXT_P(result); } /* * read_backup_label: check to see if a backup_label file is present * * If we see a backup_label during recovery, we assume that we are recovering * from a backup dump file, and we therefore roll forward from the checkpoint * identified by the label file, NOT what pg_control says. This avoids the * problem that pg_control might have been archived one or more checkpoints * later than the start of the dump, and so if we rely on it as the start * point, we will fail to restore a consistent database state. * * We also attempt to retrieve the corresponding backup history file. * If successful, set recoveryMinXlogOffset to constrain valid PITR stopping * points. * * Returns TRUE if a backup_label was found (and fills the checkpoint * location into *checkPointLoc); returns FALSE if not. */ static bool read_backup_label(XLogRecPtr *checkPointLoc) { XLogRecPtr startpoint; XLogRecPtr stoppoint; char histfilename[MAXFNAMELEN]; char histfilepath[MAXPGPATH]; char startxlogfilename[MAXFNAMELEN]; char stopxlogfilename[MAXFNAMELEN]; TimeLineID tli; uint32 _logId; uint32 _logSeg; FILE *lfp; FILE *fp; char ch; /* * See if label file is present */ lfp = AllocateFile(BACKUP_LABEL_FILE, "r"); if (!lfp) { if (errno != ENOENT) ereport(FATAL, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", BACKUP_LABEL_FILE))); return false; /* it's not there, all is fine */ } /* * Read and parse the START WAL LOCATION and CHECKPOINT lines (this * code is pretty crude, but we are not expecting any variability in * the file format). */ if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %08X%16s)%c", &startpoint.xlogid, &startpoint.xrecoff, &tli, startxlogfilename, &ch) != 5 || ch != '\n') ereport(FATAL, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE))); if (fscanf(lfp, "CHECKPOINT LOCATION: %X/%X%c", &checkPointLoc->xlogid, &checkPointLoc->xrecoff, &ch) != 3 || ch != '\n') ereport(FATAL, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE))); if (ferror(lfp) || FreeFile(lfp)) ereport(FATAL, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", BACKUP_LABEL_FILE))); /* * Try to retrieve the backup history file (no error if we can't) */ XLByteToSeg(startpoint, _logId, _logSeg); BackupHistoryFileName(histfilename, tli, _logId, _logSeg, startpoint.xrecoff % XLogSegSize); if (InArchiveRecovery) RestoreArchivedFile(histfilepath, histfilename, "RECOVERYHISTORY", 0); else BackupHistoryFilePath(histfilepath, tli, _logId, _logSeg, startpoint.xrecoff % XLogSegSize); fp = AllocateFile(histfilepath, "r"); if (fp) { /* * Parse history file to identify stop point. */ if (fscanf(fp, "START WAL LOCATION: %X/%X (file %24s)%c", &startpoint.xlogid, &startpoint.xrecoff, startxlogfilename, &ch) != 4 || ch != '\n') ereport(FATAL, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("invalid data in file \"%s\"", histfilename))); if (fscanf(fp, "STOP WAL LOCATION: %X/%X (file %24s)%c", &stoppoint.xlogid, &stoppoint.xrecoff, stopxlogfilename, &ch) != 4 || ch != '\n') ereport(FATAL, (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE), errmsg("invalid data in file \"%s\"", histfilename))); recoveryMinXlogOffset = stoppoint; if (ferror(fp) || FreeFile(fp)) ereport(FATAL, (errcode_for_file_access(), errmsg("could not read file \"%s\": %m", histfilepath))); } return true; } /* * remove_backup_label: remove any extant backup_label after successful * recovery. Once we have completed the end-of-recovery checkpoint there * is no reason to have to replay from the start point indicated by the * label (and indeed we'll probably have removed/recycled the needed WAL * segments), so remove the label to prevent trouble in later crash recoveries. */ static void remove_backup_label(void) { if (unlink(BACKUP_LABEL_FILE) != 0) if (errno != ENOENT) ereport(FATAL, (errcode_for_file_access(), errmsg("could not remove file \"%s\": %m", BACKUP_LABEL_FILE))); } /* XLog gather-write staffs */ static void XLogPageReset(XLogPages *pages) { memset(pages, 0, sizeof(*pages)); } static void XLogPageWrite(XLogPages *pages, int index) { char *page = XLogCtl->pages + index * BLCKSZ; int size = BLCKSZ; int offset = (LogwrtResult.Write.xrecoff - BLCKSZ) % XLogSegSize; if (pages->head + pages->size == page && pages->offset + pages->size == offset) { /* Pages are continuous. Append new page. */ pages->size += size; } else { /* Pages are not continuous. Flush and clear. */ XLogPageFlush(pages, PrevBufIdx(index)); pages->head = page; pages->size = size; pages->offset = offset; } } static void XLogPageFlush(XLogPages *pages, int index) { if (!pages->head) { /* No needs to write pages. */ XLogCtl->Write.curridx = index; return; } /* Need to seek in the file? */ if (openLogOff != pages->offset) { openLogOff = pages->offset; if (lseek(openLogFile, (off_t) openLogOff, SEEK_SET) < 0) ereport(PANIC, (errcode_for_file_access(), errmsg("could not seek in log file %u, segment %u to offset %u: %m", openLogId, openLogSeg, openLogOff))); } /* OK to write the page */ errno = 0; if (write(openLogFile, pages->head, pages->size) != pages->size) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; ereport(PANIC, (errcode_for_file_access(), errmsg("could not write to log file %u, segment %u at offset %u: %m", openLogId, openLogSeg, openLogOff))); } openLogOff += pages->size; XLogCtl->Write.curridx = index; XLogPageReset(pages); }