/*------------------------------------------------------------------------- * * arrayfuncs.c * Support functions for arrays. * * Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/utils/adt/arrayfuncs.c,v 1.155 2009/04/09 17:39:48 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "funcapi.h" #include "libpq/pqformat.h" #include "parser/parse_coerce.h" #include "utils/array.h" #include "utils/builtins.h" #include "utils/datum.h" #include "utils/lsyscache.h" #include "utils/memutils.h" #include "utils/typcache.h" /* * GUC parameter */ bool Array_nulls = true; /* * Local definitions */ #define ASSGN "=" typedef enum { ARRAY_NO_LEVEL, ARRAY_LEVEL_STARTED, ARRAY_ELEM_STARTED, ARRAY_ELEM_COMPLETED, ARRAY_QUOTED_ELEM_STARTED, ARRAY_QUOTED_ELEM_COMPLETED, ARRAY_ELEM_DELIMITED, ARRAY_LEVEL_COMPLETED, ARRAY_LEVEL_DELIMITED } ArrayParseState; static int ArrayCount(const char *str, int *dim, char typdelim); static void ReadArrayStr(char *arrayStr, const char *origStr, int nitems, int ndim, int *dim, FmgrInfo *inputproc, Oid typioparam, int32 typmod, char typdelim, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes); static void ReadArrayBinary(StringInfo buf, int nitems, FmgrInfo *receiveproc, Oid typioparam, int32 typmod, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes); static void CopyArrayEls(ArrayType *array, Datum *values, bool *nulls, int nitems, int typlen, bool typbyval, char typalign, bool freedata); static bool array_get_isnull(const bits8 *nullbitmap, int offset); static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull); static Datum ArrayCast(char *value, bool byval, int len); static int ArrayCastAndSet(Datum src, int typlen, bool typbyval, char typalign, char *dest); static char *array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign); static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign); static int array_copy(char *destptr, int nitems, char *srcptr, int offset, bits8 *nullbitmap, int typlen, bool typbyval, char typalign); static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign); static void array_extract_slice(ArrayType *newarray, int ndim, int *dim, int *lb, char *arraydataptr, bits8 *arraynullsptr, int *st, int *endp, int typlen, bool typbyval, char typalign); static void array_insert_slice(ArrayType *destArray, ArrayType *origArray, ArrayType *srcArray, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign); static int array_cmp(FunctionCallInfo fcinfo); static ArrayType *create_array_envelope(int ndims, int *dimv, int *lbv, int nbytes, Oid elmtype, int dataoffset); static ArrayType *array_fill_internal(ArrayType *dims, ArrayType *lbs, Datum value, bool isnull, Oid elmtype, FunctionCallInfo fcinfo); /* * array_in : * converts an array from the external format in "string" to * its internal format. * * return value : * the internal representation of the input array */ Datum array_in(PG_FUNCTION_ARGS) { char *string = PG_GETARG_CSTRING(0); /* external form */ Oid element_type = PG_GETARG_OID(1); /* type of an array * element */ int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ int typlen; bool typbyval; char typalign; char typdelim; Oid typioparam; char *string_save, *p; int i, nitems; Datum *dataPtr; bool *nullsPtr; bool hasnulls; int32 nbytes; int32 dataoffset; ArrayType *retval; int ndim, dim[MAXDIM], lBound[MAXDIM]; ArrayMetaState *my_extra; /* * We arrange to look up info about element type, including its input * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* * Get info about element type, including its input conversion proc */ get_type_io_data(element_type, IOFunc_input, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; typdelim = my_extra->typdelim; typioparam = my_extra->typioparam; /* Make a modifiable copy of the input */ string_save = pstrdup(string); /* * If the input string starts with dimension info, read and use that. * Otherwise, we require the input to be in curly-brace style, and we * prescan the input to determine dimensions. * * Dimension info takes the form of one or more [n] or [m:n] items. The * outer loop iterates once per dimension item. */ p = string_save; ndim = 0; for (;;) { char *q; int ub; /* * Note: we currently allow whitespace between, but not within, * dimension items. */ while (isspace((unsigned char) *p)) p++; if (*p != '[') break; /* no more dimension items */ p++; if (ndim >= MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndim, MAXDIM))); for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++); if (q == p) /* no digits? */ ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("missing dimension value"))); if (*q == ':') { /* [m:n] format */ *q = '\0'; lBound[ndim] = atoi(p); p = q + 1; for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++); if (q == p) /* no digits? */ ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("missing dimension value"))); } else { /* [n] format */ lBound[ndim] = 1; } if (*q != ']') ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("missing \"]\" in array dimensions"))); *q = '\0'; ub = atoi(p); p = q + 1; if (ub < lBound[ndim]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); dim[ndim] = ub - lBound[ndim] + 1; ndim++; } if (ndim == 0) { /* No array dimensions, so intuit dimensions from brace structure */ if (*p != '{') ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("array value must start with \"{\" or dimension information"))); ndim = ArrayCount(p, dim, typdelim); for (i = 0; i < ndim; i++) lBound[i] = 1; } else { int ndim_braces, dim_braces[MAXDIM]; /* If array dimensions are given, expect '=' operator */ if (strncmp(p, ASSGN, strlen(ASSGN)) != 0) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("missing assignment operator"))); p += strlen(ASSGN); while (isspace((unsigned char) *p)) p++; /* * intuit dimensions from brace structure -- it better match what we * were given */ if (*p != '{') ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("array value must start with \"{\" or dimension information"))); ndim_braces = ArrayCount(p, dim_braces, typdelim); if (ndim_braces != ndim) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("array dimensions incompatible with array literal"))); for (i = 0; i < ndim; ++i) { if (dim[i] != dim_braces[i]) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("array dimensions incompatible with array literal"))); } } #ifdef ARRAYDEBUG printf("array_in- ndim %d (", ndim); for (i = 0; i < ndim; i++) { printf(" %d", dim[i]); }; printf(") for %s\n", string); #endif /* This checks for overflow of the array dimensions */ nitems = ArrayGetNItems(ndim, dim); /* Empty array? */ if (nitems == 0) PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); nullsPtr = (bool *) palloc(nitems * sizeof(bool)); ReadArrayStr(p, string, nitems, ndim, dim, &my_extra->proc, typioparam, typmod, typdelim, typlen, typbyval, typalign, dataPtr, nullsPtr, &hasnulls, &nbytes); if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } retval = (ArrayType *) palloc0(nbytes); SET_VARSIZE(retval, nbytes); retval->ndim = ndim; retval->dataoffset = dataoffset; retval->elemtype = element_type; memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); CopyArrayEls(retval, dataPtr, nullsPtr, nitems, typlen, typbyval, typalign, true); pfree(dataPtr); pfree(nullsPtr); pfree(string_save); PG_RETURN_ARRAYTYPE_P(retval); } /* * ArrayCount * Determines the dimensions for an array string. * * Returns number of dimensions as function result. The axis lengths are * returned in dim[], which must be of size MAXDIM. */ static int ArrayCount(const char *str, int *dim, char typdelim) { int nest_level = 0, i; int ndim = 1, temp[MAXDIM], nelems[MAXDIM], nelems_last[MAXDIM]; bool in_quotes = false; bool eoArray = false; bool empty_array = true; const char *ptr; ArrayParseState parse_state = ARRAY_NO_LEVEL; for (i = 0; i < MAXDIM; ++i) { temp[i] = dim[i] = 0; nelems_last[i] = nelems[i] = 1; } ptr = str; while (!eoArray) { bool itemdone = false; while (!itemdone) { if (parse_state == ARRAY_ELEM_STARTED || parse_state == ARRAY_QUOTED_ELEM_STARTED) empty_array = false; switch (*ptr) { case '\0': /* Signal a premature end of the string */ ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); break; case '\\': /* * An escape must be after a level start, after an element * start, or after an element delimiter. In any case we * now must be past an element start. */ if (parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_QUOTED_ELEM_STARTED && parse_state != ARRAY_ELEM_DELIMITED) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); if (parse_state != ARRAY_QUOTED_ELEM_STARTED) parse_state = ARRAY_ELEM_STARTED; /* skip the escaped character */ if (*(ptr + 1)) ptr++; else ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); break; case '\"': /* * A quote must be after a level start, after a quoted * element start, or after an element delimiter. In any * case we now must be past an element start. */ if (parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_QUOTED_ELEM_STARTED && parse_state != ARRAY_ELEM_DELIMITED) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); in_quotes = !in_quotes; if (in_quotes) parse_state = ARRAY_QUOTED_ELEM_STARTED; else parse_state = ARRAY_QUOTED_ELEM_COMPLETED; break; case '{': if (!in_quotes) { /* * A left brace can occur if no nesting has occurred * yet, after a level start, or after a level * delimiter. */ if (parse_state != ARRAY_NO_LEVEL && parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_LEVEL_DELIMITED) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); parse_state = ARRAY_LEVEL_STARTED; if (nest_level >= MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", nest_level, MAXDIM))); temp[nest_level] = 0; nest_level++; if (ndim < nest_level) ndim = nest_level; } break; case '}': if (!in_quotes) { /* * A right brace can occur after an element start, an * element completion, a quoted element completion, or * a level completion. */ if (parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_ELEM_COMPLETED && parse_state != ARRAY_QUOTED_ELEM_COMPLETED && parse_state != ARRAY_LEVEL_COMPLETED && !(nest_level == 1 && parse_state == ARRAY_LEVEL_STARTED)) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); parse_state = ARRAY_LEVEL_COMPLETED; if (nest_level == 0) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); nest_level--; if ((nelems_last[nest_level] != 1) && (nelems[nest_level] != nelems_last[nest_level])) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("multidimensional arrays must have " "array expressions with matching " "dimensions"))); nelems_last[nest_level] = nelems[nest_level]; nelems[nest_level] = 1; if (nest_level == 0) eoArray = itemdone = true; else { /* * We don't set itemdone here; see comments in * ReadArrayStr */ temp[nest_level - 1]++; } } break; default: if (!in_quotes) { if (*ptr == typdelim) { /* * Delimiters can occur after an element start, an * element completion, a quoted element * completion, or a level completion. */ if (parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_ELEM_COMPLETED && parse_state != ARRAY_QUOTED_ELEM_COMPLETED && parse_state != ARRAY_LEVEL_COMPLETED) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); if (parse_state == ARRAY_LEVEL_COMPLETED) parse_state = ARRAY_LEVEL_DELIMITED; else parse_state = ARRAY_ELEM_DELIMITED; itemdone = true; nelems[nest_level - 1]++; } else if (!isspace((unsigned char) *ptr)) { /* * Other non-space characters must be after a * level start, after an element start, or after * an element delimiter. In any case we now must * be past an element start. */ if (parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_ELEM_DELIMITED) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); parse_state = ARRAY_ELEM_STARTED; } } break; } if (!itemdone) ptr++; } temp[ndim - 1]++; ptr++; } /* only whitespace is allowed after the closing brace */ while (*ptr) { if (!isspace((unsigned char) *ptr++)) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str))); } /* special case for an empty array */ if (empty_array) return 0; for (i = 0; i < ndim; ++i) dim[i] = temp[i]; return ndim; } /* * ReadArrayStr : * parses the array string pointed to by "arrayStr" and converts the values * to internal format. Unspecified elements are initialized to nulls. * The array dimensions must already have been determined. * * Inputs: * arrayStr: the string to parse. * CAUTION: the contents of "arrayStr" will be modified! * origStr: the unmodified input string, used only in error messages. * nitems: total number of array elements, as already determined. * ndim: number of array dimensions * dim[]: array axis lengths * inputproc: type-specific input procedure for element datatype. * typioparam, typmod: auxiliary values to pass to inputproc. * typdelim: the value delimiter (type-specific). * typlen, typbyval, typalign: storage parameters of element datatype. * * Outputs: * values[]: filled with converted data values. * nulls[]: filled with is-null markers. * *hasnulls: set TRUE iff there are any null elements. * *nbytes: set to total size of data area needed (including alignment * padding but not including array header overhead). * * Note that values[] and nulls[] are allocated by the caller, and must have * nitems elements. */ static void ReadArrayStr(char *arrayStr, const char *origStr, int nitems, int ndim, int *dim, FmgrInfo *inputproc, Oid typioparam, int32 typmod, char typdelim, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes) { int i, nest_level = 0; char *srcptr; bool in_quotes = false; bool eoArray = false; bool hasnull; int32 totbytes; int indx[MAXDIM], prod[MAXDIM]; mda_get_prod(ndim, dim, prod); MemSet(indx, 0, sizeof(indx)); /* Initialize is-null markers to true */ memset(nulls, true, nitems * sizeof(bool)); /* * We have to remove " and \ characters to create a clean item value to * pass to the datatype input routine. We overwrite each item value * in-place within arrayStr to do this. srcptr is the current scan point, * and dstptr is where we are copying to. * * We also want to suppress leading and trailing unquoted whitespace. We * use the leadingspace flag to suppress leading space. Trailing space is * tracked by using dstendptr to point to the last significant output * character. * * The error checking in this routine is mostly pro-forma, since we expect * that ArrayCount() already validated the string. */ srcptr = arrayStr; while (!eoArray) { bool itemdone = false; bool leadingspace = true; bool hasquoting = false; char *itemstart; char *dstptr; char *dstendptr; i = -1; itemstart = dstptr = dstendptr = srcptr; while (!itemdone) { switch (*srcptr) { case '\0': /* Signal a premature end of the string */ ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); break; case '\\': /* Skip backslash, copy next character as-is. */ srcptr++; if (*srcptr == '\0') ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); *dstptr++ = *srcptr++; /* Treat the escaped character as non-whitespace */ leadingspace = false; dstendptr = dstptr; hasquoting = true; /* can't be a NULL marker */ break; case '\"': in_quotes = !in_quotes; if (in_quotes) leadingspace = false; else { /* * Advance dstendptr when we exit in_quotes; this * saves having to do it in all the other in_quotes * cases. */ dstendptr = dstptr; } hasquoting = true; /* can't be a NULL marker */ srcptr++; break; case '{': if (!in_quotes) { if (nest_level >= ndim) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); nest_level++; indx[nest_level - 1] = 0; srcptr++; } else *dstptr++ = *srcptr++; break; case '}': if (!in_quotes) { if (nest_level == 0) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); if (i == -1) i = ArrayGetOffset0(ndim, indx, prod); indx[nest_level - 1] = 0; nest_level--; if (nest_level == 0) eoArray = itemdone = true; else indx[nest_level - 1]++; srcptr++; } else *dstptr++ = *srcptr++; break; default: if (in_quotes) *dstptr++ = *srcptr++; else if (*srcptr == typdelim) { if (i == -1) i = ArrayGetOffset0(ndim, indx, prod); itemdone = true; indx[ndim - 1]++; srcptr++; } else if (isspace((unsigned char) *srcptr)) { /* * If leading space, drop it immediately. Else, copy * but don't advance dstendptr. */ if (leadingspace) srcptr++; else *dstptr++ = *srcptr++; } else { *dstptr++ = *srcptr++; leadingspace = false; dstendptr = dstptr; } break; } } Assert(dstptr < srcptr); *dstendptr = '\0'; if (i < 0 || i >= nitems) ereport(ERROR, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); if (Array_nulls && !hasquoting && pg_strcasecmp(itemstart, "NULL") == 0) { /* it's a NULL item */ values[i] = InputFunctionCall(inputproc, NULL, typioparam, typmod); nulls[i] = true; } else { values[i] = InputFunctionCall(inputproc, itemstart, typioparam, typmod); nulls[i] = false; } } /* * Check for nulls, compute total data space needed */ hasnull = false; totbytes = 0; for (i = 0; i < nitems; i++) { if (nulls[i]) hasnull = true; else { /* let's just make sure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); totbytes = att_addlength_datum(totbytes, typlen, values[i]); totbytes = att_align_nominal(totbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(totbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } } *hasnulls = hasnull; *nbytes = totbytes; } /* * Copy data into an array object from a temporary array of Datums. * * array: array object (with header fields already filled in) * values: array of Datums to be copied * nulls: array of is-null flags (can be NULL if no nulls) * nitems: number of Datums to be copied * typbyval, typlen, typalign: info about element datatype * freedata: if TRUE and element type is pass-by-ref, pfree data values * referenced by Datums after copying them. * * If the input data is of varlena type, the caller must have ensured that * the values are not toasted. (Doing it here doesn't work since the * caller has already allocated space for the array...) */ static void CopyArrayEls(ArrayType *array, Datum *values, bool *nulls, int nitems, int typlen, bool typbyval, char typalign, bool freedata) { char *p = ARR_DATA_PTR(array); bits8 *bitmap = ARR_NULLBITMAP(array); int bitval = 0; int bitmask = 1; int i; if (typbyval) freedata = false; for (i = 0; i < nitems; i++) { if (nulls && nulls[i]) { if (!bitmap) /* shouldn't happen */ elog(ERROR, "null array element where not supported"); /* bitmap bit stays 0 */ } else { bitval |= bitmask; p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p); if (freedata) pfree(DatumGetPointer(values[i])); } if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { *bitmap++ = bitval; bitval = 0; bitmask = 1; } } } if (bitmap && bitmask != 1) *bitmap = bitval; } /* * array_out : * takes the internal representation of an array and returns a string * containing the array in its external format. */ Datum array_out(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); Oid element_type = ARR_ELEMTYPE(v); int typlen; bool typbyval; char typalign; char typdelim; char *p, *tmp, *retval, **values, dims_str[(MAXDIM * 33) + 2]; /* * 33 per dim since we assume 15 digits per number + ':' +'[]' * * +2 allows for assignment operator + trailing null */ bits8 *bitmap; int bitmask; bool *needquotes, needdims = false; int nitems, overall_length, i, j, k, indx[MAXDIM]; int ndim, *dims, *lb; ArrayMetaState *my_extra; /* * We arrange to look up info about element type, including its output * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* * Get info about element type, including its output conversion proc */ get_type_io_data(element_type, IOFunc_output, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; typdelim = my_extra->typdelim; ndim = ARR_NDIM(v); dims = ARR_DIMS(v); lb = ARR_LBOUND(v); nitems = ArrayGetNItems(ndim, dims); if (nitems == 0) { retval = pstrdup("{}"); PG_RETURN_CSTRING(retval); } /* * we will need to add explicit dimensions if any dimension has a lower * bound other than one */ for (i = 0; i < ndim; i++) { if (lb[i] != 1) { needdims = true; break; } } /* * Convert all values to string form, count total space needed (including * any overhead such as escaping backslashes), and detect whether each * item needs double quotes. */ values = (char **) palloc(nitems * sizeof(char *)); needquotes = (bool *) palloc(nitems * sizeof(bool)); overall_length = 1; /* don't forget to count \0 at end. */ p = ARR_DATA_PTR(v); bitmap = ARR_NULLBITMAP(v); bitmask = 1; for (i = 0; i < nitems; i++) { bool needquote; /* Get source element, checking for NULL */ if (bitmap && (*bitmap & bitmask) == 0) { values[i] = pstrdup("NULL"); overall_length += 4; needquote = false; } else { Datum itemvalue; itemvalue = fetch_att(p, typbyval, typlen); values[i] = OutputFunctionCall(&my_extra->proc, itemvalue); p = att_addlength_pointer(p, typlen, p); p = (char *) att_align_nominal(p, typalign); /* count data plus backslashes; detect chars needing quotes */ if (values[i][0] == '\0') needquote = true; /* force quotes for empty string */ else if (pg_strcasecmp(values[i], "NULL") == 0) needquote = true; /* force quotes for literal NULL */ else needquote = false; for (tmp = values[i]; *tmp != '\0'; tmp++) { char ch = *tmp; overall_length += 1; if (ch == '"' || ch == '\\') { needquote = true; overall_length += 1; } else if (ch == '{' || ch == '}' || ch == typdelim || isspace((unsigned char) ch)) needquote = true; } } needquotes[i] = needquote; /* Count the pair of double quotes, if needed */ if (needquote) overall_length += 2; /* and the comma */ overall_length += 1; /* advance bitmap pointer if any */ if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { bitmap++; bitmask = 1; } } } /* * count total number of curly braces in output string */ for (i = j = 0, k = 1; i < ndim; i++) k *= dims[i], j += k; dims_str[0] = '\0'; /* add explicit dimensions if required */ if (needdims) { char *ptr = dims_str; for (i = 0; i < ndim; i++) { sprintf(ptr, "[%d:%d]", lb[i], lb[i] + dims[i] - 1); ptr += strlen(ptr); } *ptr++ = *ASSGN; *ptr = '\0'; } retval = (char *) palloc(strlen(dims_str) + overall_length + 2 * j); p = retval; #define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p)) #define APPENDCHAR(ch) (*p++ = (ch), *p = '\0') if (needdims) APPENDSTR(dims_str); APPENDCHAR('{'); for (i = 0; i < ndim; i++) indx[i] = 0; j = 0; k = 0; do { for (i = j; i < ndim - 1; i++) APPENDCHAR('{'); if (needquotes[k]) { APPENDCHAR('"'); for (tmp = values[k]; *tmp; tmp++) { char ch = *tmp; if (ch == '"' || ch == '\\') *p++ = '\\'; *p++ = ch; } *p = '\0'; APPENDCHAR('"'); } else APPENDSTR(values[k]); pfree(values[k++]); for (i = ndim - 1; i >= 0; i--) { indx[i] = (indx[i] + 1) % dims[i]; if (indx[i]) { APPENDCHAR(typdelim); break; } else APPENDCHAR('}'); } j = i; } while (j != -1); #undef APPENDSTR #undef APPENDCHAR pfree(values); pfree(needquotes); PG_RETURN_CSTRING(retval); } /* * array_recv : * converts an array from the external binary format to * its internal format. * * return value : * the internal representation of the input array */ Datum array_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); Oid spec_element_type = PG_GETARG_OID(1); /* type of an array * element */ int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ Oid element_type; int typlen; bool typbyval; char typalign; Oid typioparam; int i, nitems; Datum *dataPtr; bool *nullsPtr; bool hasnulls; int32 nbytes; int32 dataoffset; ArrayType *retval; int ndim, flags, dim[MAXDIM], lBound[MAXDIM]; ArrayMetaState *my_extra; /* Get the array header information */ ndim = pq_getmsgint(buf, 4); if (ndim < 0) /* we do allow zero-dimension arrays */ ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid number of dimensions: %d", ndim))); if (ndim > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndim, MAXDIM))); flags = pq_getmsgint(buf, 4); if (flags != 0 && flags != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid array flags"))); element_type = pq_getmsgint(buf, sizeof(Oid)); if (element_type != spec_element_type) { /* XXX Can we allow taking the input element type in any cases? */ ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("wrong element type"))); } for (i = 0; i < ndim; i++) { dim[i] = pq_getmsgint(buf, 4); lBound[i] = pq_getmsgint(buf, 4); } /* This checks for overflow of array dimensions */ nitems = ArrayGetNItems(ndim, dim); /* * We arrange to look up info about element type, including its receive * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* Get info about element type, including its receive proc */ get_type_io_data(element_type, IOFunc_receive, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); if (!OidIsValid(my_extra->typiofunc)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("no binary input function available for type %s", format_type_be(element_type)))); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } if (nitems == 0) { /* Return empty array ... but not till we've validated element_type */ PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; typioparam = my_extra->typioparam; dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); nullsPtr = (bool *) palloc(nitems * sizeof(bool)); ReadArrayBinary(buf, nitems, &my_extra->proc, typioparam, typmod, typlen, typbyval, typalign, dataPtr, nullsPtr, &hasnulls, &nbytes); if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } retval = (ArrayType *) palloc(nbytes); SET_VARSIZE(retval, nbytes); retval->ndim = ndim; retval->dataoffset = dataoffset; retval->elemtype = element_type; memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); CopyArrayEls(retval, dataPtr, nullsPtr, nitems, typlen, typbyval, typalign, true); pfree(dataPtr); pfree(nullsPtr); PG_RETURN_ARRAYTYPE_P(retval); } /* * ReadArrayBinary: * collect the data elements of an array being read in binary style. * * Inputs: * buf: the data buffer to read from. * nitems: total number of array elements (already read). * receiveproc: type-specific receive procedure for element datatype. * typioparam, typmod: auxiliary values to pass to receiveproc. * typlen, typbyval, typalign: storage parameters of element datatype. * * Outputs: * values[]: filled with converted data values. * nulls[]: filled with is-null markers. * *hasnulls: set TRUE iff there are any null elements. * *nbytes: set to total size of data area needed (including alignment * padding but not including array header overhead). * * Note that values[] and nulls[] are allocated by the caller, and must have * nitems elements. */ static void ReadArrayBinary(StringInfo buf, int nitems, FmgrInfo *receiveproc, Oid typioparam, int32 typmod, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes) { int i; bool hasnull; int32 totbytes; for (i = 0; i < nitems; i++) { int itemlen; StringInfoData elem_buf; char csave; /* Get and check the item length */ itemlen = pq_getmsgint(buf, 4); if (itemlen < -1 || itemlen > (buf->len - buf->cursor)) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("insufficient data left in message"))); if (itemlen == -1) { /* -1 length means NULL */ values[i] = ReceiveFunctionCall(receiveproc, NULL, typioparam, typmod); nulls[i] = true; continue; } /* * Rather than copying data around, we just set up a phony StringInfo * pointing to the correct portion of the input buffer. We assume we * can scribble on the input buffer so as to maintain the convention * that StringInfos have a trailing null. */ elem_buf.data = &buf->data[buf->cursor]; elem_buf.maxlen = itemlen + 1; elem_buf.len = itemlen; elem_buf.cursor = 0; buf->cursor += itemlen; csave = buf->data[buf->cursor]; buf->data[buf->cursor] = '\0'; /* Now call the element's receiveproc */ values[i] = ReceiveFunctionCall(receiveproc, &elem_buf, typioparam, typmod); nulls[i] = false; /* Trouble if it didn't eat the whole buffer */ if (elem_buf.cursor != itemlen) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("improper binary format in array element %d", i + 1))); buf->data[buf->cursor] = csave; } /* * Check for nulls, compute total data space needed */ hasnull = false; totbytes = 0; for (i = 0; i < nitems; i++) { if (nulls[i]) hasnull = true; else { /* let's just make sure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); totbytes = att_addlength_datum(totbytes, typlen, values[i]); totbytes = att_align_nominal(totbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(totbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } } *hasnulls = hasnull; *nbytes = totbytes; } /* * array_send : * takes the internal representation of an array and returns a bytea * containing the array in its external binary format. */ Datum array_send(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); Oid element_type = ARR_ELEMTYPE(v); int typlen; bool typbyval; char typalign; char *p; bits8 *bitmap; int bitmask; int nitems, i; int ndim, *dim; StringInfoData buf; ArrayMetaState *my_extra; /* * We arrange to look up info about element type, including its send * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* Get info about element type, including its send proc */ get_type_io_data(element_type, IOFunc_send, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); if (!OidIsValid(my_extra->typiofunc)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("no binary output function available for type %s", format_type_be(element_type)))); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; ndim = ARR_NDIM(v); dim = ARR_DIMS(v); nitems = ArrayGetNItems(ndim, dim); pq_begintypsend(&buf); /* Send the array header information */ pq_sendint(&buf, ndim, 4); pq_sendint(&buf, ARR_HASNULL(v) ? 1 : 0, 4); pq_sendint(&buf, element_type, sizeof(Oid)); for (i = 0; i < ndim; i++) { pq_sendint(&buf, ARR_DIMS(v)[i], 4); pq_sendint(&buf, ARR_LBOUND(v)[i], 4); } /* Send the array elements using the element's own sendproc */ p = ARR_DATA_PTR(v); bitmap = ARR_NULLBITMAP(v); bitmask = 1; for (i = 0; i < nitems; i++) { /* Get source element, checking for NULL */ if (bitmap && (*bitmap & bitmask) == 0) { /* -1 length means a NULL */ pq_sendint(&buf, -1, 4); } else { Datum itemvalue; bytea *outputbytes; itemvalue = fetch_att(p, typbyval, typlen); outputbytes = SendFunctionCall(&my_extra->proc, itemvalue); pq_sendint(&buf, VARSIZE(outputbytes) - VARHDRSZ, 4); pq_sendbytes(&buf, VARDATA(outputbytes), VARSIZE(outputbytes) - VARHDRSZ); pfree(outputbytes); p = att_addlength_pointer(p, typlen, p); p = (char *) att_align_nominal(p, typalign); } /* advance bitmap pointer if any */ if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { bitmap++; bitmask = 1; } } } PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } /* * array_ndims : * returns the number of dimensions of the array pointed to by "v" */ Datum array_ndims(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); PG_RETURN_INT32(ARR_NDIM(v)); } /* * array_dims : * returns the dimensions of the array pointed to by "v", as a "text" */ Datum array_dims(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); char *p; int i; int *dimv, *lb; /* * 33 since we assume 15 digits per number + ':' +'[]' * * +1 for trailing null */ char buf[MAXDIM * 33 + 1]; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); dimv = ARR_DIMS(v); lb = ARR_LBOUND(v); p = buf; for (i = 0; i < ARR_NDIM(v); i++) { sprintf(p, "[%d:%d]", lb[i], dimv[i] + lb[i] - 1); p += strlen(p); } PG_RETURN_TEXT_P(cstring_to_text(buf)); } /* * array_lower : * returns the lower dimension, of the DIM requested, for * the array pointed to by "v", as an int4 */ Datum array_lower(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int reqdim = PG_GETARG_INT32(1); int *lb; int result; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > ARR_NDIM(v)) PG_RETURN_NULL(); lb = ARR_LBOUND(v); result = lb[reqdim - 1]; PG_RETURN_INT32(result); } /* * array_upper : * returns the upper dimension, of the DIM requested, for * the array pointed to by "v", as an int4 */ Datum array_upper(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int reqdim = PG_GETARG_INT32(1); int *dimv, *lb; int result; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > ARR_NDIM(v)) PG_RETURN_NULL(); lb = ARR_LBOUND(v); dimv = ARR_DIMS(v); result = dimv[reqdim - 1] + lb[reqdim - 1] - 1; PG_RETURN_INT32(result); } /* * array_length : * returns the length, of the dimension requested, for * the array pointed to by "v", as an int4 */ Datum array_length(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int reqdim = PG_GETARG_INT32(1); int *dimv; int result; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > ARR_NDIM(v)) PG_RETURN_NULL(); dimv = ARR_DIMS(v); result = dimv[reqdim - 1]; PG_RETURN_INT32(result); } /* * array_ref : * This routine takes an array pointer and a subscript array and returns * the referenced item as a Datum. Note that for a pass-by-reference * datatype, the returned Datum is a pointer into the array object. * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * array: the array object (mustn't be NULL) * nSubscripts: number of subscripts supplied * indx[]: the subscript values * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Outputs: * The return value is the element Datum. * *isNull is set to indicate whether the element is NULL. */ Datum array_ref(ArrayType *array, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { int i, ndim, *dim, *lb, offset, fixedDim[1], fixedLb[1]; char *arraydataptr, *retptr; bits8 *arraynullsptr; if (arraytyplen > 0) { /* * fixed-length arrays -- these are assumed to be 1-d, 0-based */ ndim = 1; fixedDim[0] = arraytyplen / elmlen; fixedLb[0] = 0; dim = fixedDim; lb = fixedLb; arraydataptr = (char *) array; arraynullsptr = NULL; } else { /* detoast input array if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); lb = ARR_LBOUND(array); arraydataptr = ARR_DATA_PTR(array); arraynullsptr = ARR_NULLBITMAP(array); } /* * Return NULL for invalid subscript */ if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) { *isNull = true; return (Datum) 0; } for (i = 0; i < ndim; i++) { if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) { *isNull = true; return (Datum) 0; } } /* * Calculate the element number */ offset = ArrayGetOffset(nSubscripts, dim, lb, indx); /* * Check for NULL array element */ if (array_get_isnull(arraynullsptr, offset)) { *isNull = true; return (Datum) 0; } /* * OK, get the element */ *isNull = false; retptr = array_seek(arraydataptr, 0, arraynullsptr, offset, elmlen, elmbyval, elmalign); return ArrayCast(retptr, elmbyval, elmlen); } /* * array_get_slice : * This routine takes an array and a range of indices (upperIndex and * lowerIndx), creates a new array structure for the referred elements * and returns a pointer to it. * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * array: the array object (mustn't be NULL) * nSubscripts: number of subscripts supplied (must be same for upper/lower) * upperIndx[]: the upper subscript values * lowerIndx[]: the lower subscript values * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Outputs: * The return value is the new array Datum (it's never NULL) * * NOTE: we assume it is OK to scribble on the provided subscript arrays * lowerIndx[] and upperIndx[]. These are generally just temporaries. */ ArrayType * array_get_slice(ArrayType *array, int nSubscripts, int *upperIndx, int *lowerIndx, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ArrayType *newarray; int i, ndim, *dim, *lb, *newlb; int fixedDim[1], fixedLb[1]; Oid elemtype; char *arraydataptr; bits8 *arraynullsptr; int32 dataoffset; int bytes, span[MAXDIM]; if (arraytyplen > 0) { /* * fixed-length arrays -- currently, cannot slice these because parser * labels output as being of the fixed-length array type! Code below * shows how we could support it if the parser were changed to label * output as a suitable varlena array type. */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("slices of fixed-length arrays not implemented"))); /* * fixed-length arrays -- these are assumed to be 1-d, 0-based * * XXX where would we get the correct ELEMTYPE from? */ ndim = 1; fixedDim[0] = arraytyplen / elmlen; fixedLb[0] = 0; dim = fixedDim; lb = fixedLb; elemtype = InvalidOid; /* XXX */ arraydataptr = (char *) array; arraynullsptr = NULL; } else { /* detoast input array if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); lb = ARR_LBOUND(array); elemtype = ARR_ELEMTYPE(array); arraydataptr = ARR_DATA_PTR(array); arraynullsptr = ARR_NULLBITMAP(array); } /* * Check provided subscripts. A slice exceeding the current array limits * is silently truncated to the array limits. If we end up with an empty * slice, return an empty array. */ if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) return construct_empty_array(elemtype); for (i = 0; i < nSubscripts; i++) { if (lowerIndx[i] < lb[i]) lowerIndx[i] = lb[i]; if (upperIndx[i] >= (dim[i] + lb[i])) upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) return construct_empty_array(elemtype); } /* fill any missing subscript positions with full array range */ for (; i < ndim; i++) { lowerIndx[i] = lb[i]; upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) return construct_empty_array(elemtype); } mda_get_range(ndim, span, lowerIndx, upperIndx); bytes = array_slice_size(arraydataptr, arraynullsptr, ndim, dim, lb, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); /* * Currently, we put a null bitmap in the result if the source has one; * could be smarter ... */ if (arraynullsptr) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, ArrayGetNItems(ndim, span)); bytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ bytes += ARR_OVERHEAD_NONULLS(ndim); } newarray = (ArrayType *) palloc(bytes); SET_VARSIZE(newarray, bytes); newarray->ndim = ndim; newarray->dataoffset = dataoffset; newarray->elemtype = elemtype; memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int)); /* * Lower bounds of the new array are set to 1. Formerly (before 7.3) we * copied the given lowerIndx values ... but that seems confusing. */ newlb = ARR_LBOUND(newarray); for (i = 0; i < ndim; i++) newlb[i] = 1; array_extract_slice(newarray, ndim, dim, lb, arraydataptr, arraynullsptr, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); return newarray; } /* * array_set : * This routine sets the value of an array element (specified by * a subscript array) to a new value specified by "dataValue". * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * array: the initial array object (mustn't be NULL) * nSubscripts: number of subscripts supplied * indx[]: the subscript values * dataValue: the datum to be inserted at the given position * isNull: whether dataValue is NULL * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Result: * A new array is returned, just like the old except for the one * modified entry. The original array object is not changed. * * For one-dimensional arrays only, we allow the array to be extended * by assigning to a position outside the existing subscript range; any * positions between the existing elements and the new one are set to NULLs. * (XXX TODO: allow a corresponding behavior for multidimensional arrays) * * NOTE: For assignments, we throw an error for invalid subscripts etc, * rather than returning a NULL as the fetch operations do. */ ArrayType * array_set(ArrayType *array, int nSubscripts, int *indx, Datum dataValue, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ArrayType *newarray; int i, ndim, dim[MAXDIM], lb[MAXDIM], offset; char *elt_ptr; bool newhasnulls; bits8 *oldnullbitmap; int oldnitems, newnitems, olddatasize, newsize, olditemlen, newitemlen, overheadlen, oldoverheadlen, addedbefore, addedafter, lenbefore, lenafter; if (arraytyplen > 0) { /* * fixed-length arrays -- these are assumed to be 1-d, 0-based. We * cannot extend them, either. */ if (nSubscripts != 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); if (indx[0] < 0 || indx[0] * elmlen >= arraytyplen) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); if (isNull) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("cannot assign null value to an element of a fixed-length array"))); newarray = (ArrayType *) palloc(arraytyplen); memcpy(newarray, array, arraytyplen); elt_ptr = (char *) newarray + indx[0] * elmlen; ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr); return newarray; } if (nSubscripts <= 0 || nSubscripts > MAXDIM) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* make sure item to be inserted is not toasted */ if (elmlen == -1 && !isNull) dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue)); /* detoast input array if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); ndim = ARR_NDIM(array); /* * if number of dims is zero, i.e. an empty array, create an array with * nSubscripts dimensions, and set the lower bounds to the supplied * subscripts */ if (ndim == 0) { Oid elmtype = ARR_ELEMTYPE(array); for (i = 0; i < nSubscripts; i++) { dim[i] = 1; lb[i] = indx[i]; } return construct_md_array(&dataValue, &isNull, nSubscripts, dim, lb, elmtype, elmlen, elmbyval, elmalign); } if (ndim != nSubscripts) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* copy dim/lb since we may modify them */ memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); newhasnulls = (ARR_HASNULL(array) || isNull); addedbefore = addedafter = 0; /* * Check subscripts */ if (ndim == 1) { if (indx[0] < lb[0]) { addedbefore = lb[0] - indx[0]; dim[0] += addedbefore; lb[0] = indx[0]; if (addedbefore > 1) newhasnulls = true; /* will insert nulls */ } if (indx[0] >= (dim[0] + lb[0])) { addedafter = indx[0] - (dim[0] + lb[0]) + 1; dim[0] += addedafter; if (addedafter > 1) newhasnulls = true; /* will insert nulls */ } } else { /* * XXX currently we do not support extending multi-dimensional arrays * during assignment */ for (i = 0; i < ndim; i++) { if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); } } /* * Compute sizes of items and areas to copy */ newnitems = ArrayGetNItems(ndim, dim); if (newhasnulls) overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, newnitems); else overheadlen = ARR_OVERHEAD_NONULLS(ndim); oldnitems = ArrayGetNItems(ndim, ARR_DIMS(array)); oldnullbitmap = ARR_NULLBITMAP(array); oldoverheadlen = ARR_DATA_OFFSET(array); olddatasize = ARR_SIZE(array) - oldoverheadlen; if (addedbefore) { offset = 0; lenbefore = 0; olditemlen = 0; lenafter = olddatasize; } else if (addedafter) { offset = oldnitems; lenbefore = olddatasize; olditemlen = 0; lenafter = 0; } else { offset = ArrayGetOffset(nSubscripts, dim, lb, indx); elt_ptr = array_seek(ARR_DATA_PTR(array), 0, oldnullbitmap, offset, elmlen, elmbyval, elmalign); lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array)); if (array_get_isnull(oldnullbitmap, offset)) olditemlen = 0; else { olditemlen = att_addlength_pointer(0, elmlen, elt_ptr); olditemlen = att_align_nominal(olditemlen, elmalign); } lenafter = (int) (olddatasize - lenbefore - olditemlen); } if (isNull) newitemlen = 0; else { newitemlen = att_addlength_datum(0, elmlen, dataValue); newitemlen = att_align_nominal(newitemlen, elmalign); } newsize = overheadlen + lenbefore + newitemlen + lenafter; /* * OK, create the new array and fill in header/dimensions */ newarray = (ArrayType *) palloc(newsize); SET_VARSIZE(newarray, newsize); newarray->ndim = ndim; newarray->dataoffset = newhasnulls ? overheadlen : 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); /* * Fill in data */ memcpy((char *) newarray + overheadlen, (char *) array + oldoverheadlen, lenbefore); if (!isNull) ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, (char *) newarray + overheadlen + lenbefore); memcpy((char *) newarray + overheadlen + lenbefore + newitemlen, (char *) array + oldoverheadlen + lenbefore + olditemlen, lenafter); /* * Fill in nulls bitmap if needed * * Note: it's possible we just replaced the last NULL with a non-NULL, and * could get rid of the bitmap. Seems not worth testing for though. */ if (newhasnulls) { bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); /* Zero the bitmap to take care of marking inserted positions null */ MemSet(newnullbitmap, 0, (newnitems + 7) / 8); /* Fix the inserted value */ if (addedafter) array_set_isnull(newnullbitmap, newnitems - 1, isNull); else array_set_isnull(newnullbitmap, offset, isNull); /* Fix the copied range(s) */ if (addedbefore) array_bitmap_copy(newnullbitmap, addedbefore, oldnullbitmap, 0, oldnitems); else { array_bitmap_copy(newnullbitmap, 0, oldnullbitmap, 0, offset); if (addedafter == 0) array_bitmap_copy(newnullbitmap, offset + 1, oldnullbitmap, offset + 1, oldnitems - offset - 1); } } return newarray; } /* * array_set_slice : * This routine sets the value of a range of array locations (specified * by upper and lower subscript values) to new values passed as * another array. * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * array: the initial array object (mustn't be NULL) * nSubscripts: number of subscripts supplied (must be same for upper/lower) * upperIndx[]: the upper subscript values * lowerIndx[]: the lower subscript values * srcArray: the source for the inserted values * isNull: indicates whether srcArray is NULL * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Result: * A new array is returned, just like the old except for the * modified range. The original array object is not changed. * * For one-dimensional arrays only, we allow the array to be extended * by assigning to positions outside the existing subscript range; any * positions between the existing elements and the new ones are set to NULLs. * (XXX TODO: allow a corresponding behavior for multidimensional arrays) * * NOTE: we assume it is OK to scribble on the provided index arrays * lowerIndx[] and upperIndx[]. These are generally just temporaries. * * NOTE: For assignments, we throw an error for silly subscripts etc, * rather than returning a NULL or empty array as the fetch operations do. */ ArrayType * array_set_slice(ArrayType *array, int nSubscripts, int *upperIndx, int *lowerIndx, ArrayType *srcArray, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ArrayType *newarray; int i, ndim, dim[MAXDIM], lb[MAXDIM], span[MAXDIM]; bool newhasnulls; int nitems, nsrcitems, olddatasize, newsize, olditemsize, newitemsize, overheadlen, oldoverheadlen, addedbefore, addedafter, lenbefore, lenafter, itemsbefore, itemsafter, nolditems; /* Currently, assignment from a NULL source array is a no-op */ if (isNull) return array; if (arraytyplen > 0) { /* * fixed-length arrays -- not got round to doing this... */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("updates on slices of fixed-length arrays not implemented"))); } /* detoast arrays if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); srcArray = DatumGetArrayTypeP(PointerGetDatum(srcArray)); /* note: we assume srcArray contains no toasted elements */ ndim = ARR_NDIM(array); /* * if number of dims is zero, i.e. an empty array, create an array with * nSubscripts dimensions, and set the upper and lower bounds to the * supplied subscripts */ if (ndim == 0) { Datum *dvalues; bool *dnulls; int nelems; Oid elmtype = ARR_ELEMTYPE(array); deconstruct_array(srcArray, elmtype, elmlen, elmbyval, elmalign, &dvalues, &dnulls, &nelems); for (i = 0; i < nSubscripts; i++) { dim[i] = 1 + upperIndx[i] - lowerIndx[i]; lb[i] = lowerIndx[i]; } /* complain if too few source items; we ignore extras, however */ if (nelems < ArrayGetNItems(nSubscripts, dim)) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("source array too small"))); return construct_md_array(dvalues, dnulls, nSubscripts, dim, lb, elmtype, elmlen, elmbyval, elmalign); } if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* copy dim/lb since we may modify them */ memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); newhasnulls = (ARR_HASNULL(array) || ARR_HASNULL(srcArray)); addedbefore = addedafter = 0; /* * Check subscripts */ if (ndim == 1) { Assert(nSubscripts == 1); if (lowerIndx[0] > upperIndx[0]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); if (lowerIndx[0] < lb[0]) { if (upperIndx[0] < lb[0] - 1) newhasnulls = true; /* will insert nulls */ addedbefore = lb[0] - lowerIndx[0]; dim[0] += addedbefore; lb[0] = lowerIndx[0]; } if (upperIndx[0] >= (dim[0] + lb[0])) { if (lowerIndx[0] > (dim[0] + lb[0])) newhasnulls = true; /* will insert nulls */ addedafter = upperIndx[0] - (dim[0] + lb[0]) + 1; dim[0] += addedafter; } } else { /* * XXX currently we do not support extending multi-dimensional arrays * during assignment */ for (i = 0; i < nSubscripts; i++) { if (lowerIndx[i] > upperIndx[i]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); if (lowerIndx[i] < lb[i] || upperIndx[i] >= (dim[i] + lb[i])) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); } /* fill any missing subscript positions with full array range */ for (; i < ndim; i++) { lowerIndx[i] = lb[i]; upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); } } /* Do this mainly to check for overflow */ nitems = ArrayGetNItems(ndim, dim); /* * Make sure source array has enough entries. Note we ignore the shape of * the source array and just read entries serially. */ mda_get_range(ndim, span, lowerIndx, upperIndx); nsrcitems = ArrayGetNItems(ndim, span); if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray))) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("source array too small"))); /* * Compute space occupied by new entries, space occupied by replaced * entries, and required space for new array. */ if (newhasnulls) overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, nitems); else overheadlen = ARR_OVERHEAD_NONULLS(ndim); newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), 0, ARR_NULLBITMAP(srcArray), nsrcitems, elmlen, elmbyval, elmalign); oldoverheadlen = ARR_DATA_OFFSET(array); olddatasize = ARR_SIZE(array) - oldoverheadlen; if (ndim > 1) { /* * here we do not need to cope with extension of the array; it would * be a lot more complicated if we had to do so... */ olditemsize = array_slice_size(ARR_DATA_PTR(array), ARR_NULLBITMAP(array), ndim, dim, lb, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); lenbefore = lenafter = 0; /* keep compiler quiet */ itemsbefore = itemsafter = nolditems = 0; } else { /* * here we must allow for possibility of slice larger than orig array */ int oldlb = ARR_LBOUND(array)[0]; int oldub = oldlb + ARR_DIMS(array)[0] - 1; int slicelb = Max(oldlb, lowerIndx[0]); int sliceub = Min(oldub, upperIndx[0]); char *oldarraydata = ARR_DATA_PTR(array); bits8 *oldarraybitmap = ARR_NULLBITMAP(array); itemsbefore = Min(slicelb, oldub + 1) - oldlb; lenbefore = array_nelems_size(oldarraydata, 0, oldarraybitmap, itemsbefore, elmlen, elmbyval, elmalign); if (slicelb > sliceub) { nolditems = 0; olditemsize = 0; } else { nolditems = sliceub - slicelb + 1; olditemsize = array_nelems_size(oldarraydata + lenbefore, itemsbefore, oldarraybitmap, nolditems, elmlen, elmbyval, elmalign); } itemsafter = oldub - sliceub; lenafter = olddatasize - lenbefore - olditemsize; } newsize = overheadlen + olddatasize - olditemsize + newitemsize; newarray = (ArrayType *) palloc(newsize); SET_VARSIZE(newarray, newsize); newarray->ndim = ndim; newarray->dataoffset = newhasnulls ? overheadlen : 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); if (ndim > 1) { /* * here we do not need to cope with extension of the array; it would * be a lot more complicated if we had to do so... */ array_insert_slice(newarray, array, srcArray, ndim, dim, lb, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); } else { /* fill in data */ memcpy((char *) newarray + overheadlen, (char *) array + oldoverheadlen, lenbefore); memcpy((char *) newarray + overheadlen + lenbefore, ARR_DATA_PTR(srcArray), newitemsize); memcpy((char *) newarray + overheadlen + lenbefore + newitemsize, (char *) array + oldoverheadlen + lenbefore + olditemsize, lenafter); /* fill in nulls bitmap if needed */ if (newhasnulls) { bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); bits8 *oldnullbitmap = ARR_NULLBITMAP(array); /* Zero the bitmap to handle marking inserted positions null */ MemSet(newnullbitmap, 0, (nitems + 7) / 8); array_bitmap_copy(newnullbitmap, addedbefore, oldnullbitmap, 0, itemsbefore); array_bitmap_copy(newnullbitmap, lowerIndx[0] - lb[0], ARR_NULLBITMAP(srcArray), 0, nsrcitems); array_bitmap_copy(newnullbitmap, addedbefore + itemsbefore + nolditems, oldnullbitmap, itemsbefore + nolditems, itemsafter); } } return newarray; } /* * array_map() * * Map an array through an arbitrary function. Return a new array with * same dimensions and each source element transformed by fn(). Each * source element is passed as the first argument to fn(); additional * arguments to be passed to fn() can be specified by the caller. * The output array can have a different element type than the input. * * Parameters are: * * fcinfo: a function-call data structure pre-constructed by the caller * to be ready to call the desired function, with everything except the * first argument position filled in. In particular, flinfo identifies * the function fn(), and if nargs > 1 then argument positions after the * first must be preset to the additional values to be passed. The * first argument position initially holds the input array value. * * inpType: OID of element type of input array. This must be the same as, * or binary-compatible with, the first argument type of fn(). * * retType: OID of element type of output array. This must be the same as, * or binary-compatible with, the result type of fn(). * * amstate: workspace for array_map. Must be zeroed by caller before * first call, and not touched after that. * * It is legitimate to pass a freshly-zeroed ArrayMapState on each call, * but better performance can be had if the state can be preserved across * a series of calls. * * NB: caller must assure that input array is not NULL. NULL elements in * the array are OK however. */ Datum array_map(FunctionCallInfo fcinfo, Oid inpType, Oid retType, ArrayMapState *amstate) { ArrayType *v; ArrayType *result; Datum *values; bool *nulls; Datum elt; int *dim; int ndim; int nitems; int i; int32 nbytes = 0; int32 dataoffset; bool hasnulls; int inp_typlen; bool inp_typbyval; char inp_typalign; int typlen; bool typbyval; char typalign; char *s; bits8 *bitmap; int bitmask; ArrayMetaState *inp_extra; ArrayMetaState *ret_extra; /* Get input array */ if (fcinfo->nargs < 1) elog(ERROR, "invalid nargs: %d", fcinfo->nargs); if (PG_ARGISNULL(0)) elog(ERROR, "null input array"); v = PG_GETARG_ARRAYTYPE_P(0); Assert(ARR_ELEMTYPE(v) == inpType); ndim = ARR_NDIM(v); dim = ARR_DIMS(v); nitems = ArrayGetNItems(ndim, dim); /* Check for empty array */ if (nitems <= 0) { /* Return empty array */ PG_RETURN_ARRAYTYPE_P(construct_empty_array(retType)); } /* * We arrange to look up info about input and return element types only * once per series of calls, assuming the element type doesn't change * underneath us. */ inp_extra = &amstate->inp_extra; ret_extra = &amstate->ret_extra; if (inp_extra->element_type != inpType) { get_typlenbyvalalign(inpType, &inp_extra->typlen, &inp_extra->typbyval, &inp_extra->typalign); inp_extra->element_type = inpType; } inp_typlen = inp_extra->typlen; inp_typbyval = inp_extra->typbyval; inp_typalign = inp_extra->typalign; if (ret_extra->element_type != retType) { get_typlenbyvalalign(retType, &ret_extra->typlen, &ret_extra->typbyval, &ret_extra->typalign); ret_extra->element_type = retType; } typlen = ret_extra->typlen; typbyval = ret_extra->typbyval; typalign = ret_extra->typalign; /* Allocate temporary arrays for new values */ values = (Datum *) palloc(nitems * sizeof(Datum)); nulls = (bool *) palloc(nitems * sizeof(bool)); /* Loop over source data */ s = ARR_DATA_PTR(v); bitmap = ARR_NULLBITMAP(v); bitmask = 1; hasnulls = false; for (i = 0; i < nitems; i++) { bool callit = true; /* Get source element, checking for NULL */ if (bitmap && (*bitmap & bitmask) == 0) { fcinfo->argnull[0] = true; } else { elt = fetch_att(s, inp_typbyval, inp_typlen); s = att_addlength_datum(s, inp_typlen, elt); s = (char *) att_align_nominal(s, inp_typalign); fcinfo->arg[0] = elt; fcinfo->argnull[0] = false; } /* * Apply the given function to source elt and extra args. */ if (fcinfo->flinfo->fn_strict) { int j; for (j = 0; j < fcinfo->nargs; j++) { if (fcinfo->argnull[j]) { callit = false; break; } } } if (callit) { fcinfo->isnull = false; values[i] = FunctionCallInvoke(fcinfo); } else fcinfo->isnull = true; nulls[i] = fcinfo->isnull; if (fcinfo->isnull) hasnulls = true; else { /* Ensure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); /* Update total result size */ nbytes = att_addlength_datum(nbytes, typlen, values[i]); nbytes = att_align_nominal(nbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(nbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } /* advance bitmap pointer if any */ if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { bitmap++; bitmask = 1; } } } /* Allocate and initialize the result array */ if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } result = (ArrayType *) palloc(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndim; result->dataoffset = dataoffset; result->elemtype = retType; memcpy(ARR_DIMS(result), ARR_DIMS(v), 2 * ndim * sizeof(int)); /* * Note: do not risk trying to pfree the results of the called function */ CopyArrayEls(result, values, nulls, nitems, typlen, typbyval, typalign, false); pfree(values); pfree(nulls); PG_RETURN_ARRAYTYPE_P(result); } /* * construct_array --- simple method for constructing an array object * * elems: array of Datum items to become the array contents * (NULL element values are not supported). * nelems: number of items * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * * A palloc'd 1-D array object is constructed and returned. Note that * elem values will be copied into the object even if pass-by-ref type. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. */ ArrayType * construct_array(Datum *elems, int nelems, Oid elmtype, int elmlen, bool elmbyval, char elmalign) { int dims[1]; int lbs[1]; dims[0] = nelems; lbs[0] = 1; return construct_md_array(elems, NULL, 1, dims, lbs, elmtype, elmlen, elmbyval, elmalign); } /* * construct_md_array --- simple method for constructing an array object * with arbitrary dimensions and possible NULLs * * elems: array of Datum items to become the array contents * nulls: array of is-null flags (can be NULL if no nulls) * ndims: number of dimensions * dims: integer array with size of each dimension * lbs: integer array with lower bound of each dimension * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * * A palloc'd ndims-D array object is constructed and returned. Note that * elem values will be copied into the object even if pass-by-ref type. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. */ ArrayType * construct_md_array(Datum *elems, bool *nulls, int ndims, int *dims, int *lbs, Oid elmtype, int elmlen, bool elmbyval, char elmalign) { ArrayType *result; bool hasnulls; int32 nbytes; int32 dataoffset; int i; int nelems; if (ndims < 0) /* we do allow zero-dimension arrays */ ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid number of dimensions: %d", ndims))); if (ndims > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndims, MAXDIM))); /* fast track for empty array */ if (ndims == 0) return construct_empty_array(elmtype); nelems = ArrayGetNItems(ndims, dims); /* compute required space */ nbytes = 0; hasnulls = false; for (i = 0; i < nelems; i++) { if (nulls && nulls[i]) { hasnulls = true; continue; } /* make sure data is not toasted */ if (elmlen == -1) elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i])); nbytes = att_addlength_datum(nbytes, elmlen, elems[i]); nbytes = att_align_nominal(nbytes, elmalign); /* check for overflow of total request */ if (!AllocSizeIsValid(nbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } /* Allocate and initialize result array */ if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nelems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndims); } result = (ArrayType *) palloc(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndims; result->dataoffset = dataoffset; result->elemtype = elmtype; memcpy(ARR_DIMS(result), dims, ndims * sizeof(int)); memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int)); CopyArrayEls(result, elems, nulls, nelems, elmlen, elmbyval, elmalign, false); return result; } /* * construct_empty_array --- make a zero-dimensional array of given type */ ArrayType * construct_empty_array(Oid elmtype) { ArrayType *result; result = (ArrayType *) palloc(sizeof(ArrayType)); SET_VARSIZE(result, sizeof(ArrayType)); result->ndim = 0; result->dataoffset = 0; result->elemtype = elmtype; return result; } /* * deconstruct_array --- simple method for extracting data from an array * * array: array object to examine (must not be NULL) * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * elemsp: return value, set to point to palloc'd array of Datum values * nullsp: return value, set to point to palloc'd array of isnull markers * nelemsp: return value, set to number of extracted values * * The caller may pass nullsp == NULL if it does not support NULLs in the * array. Note that this produces a very uninformative error message, * so do it only in cases where a NULL is really not expected. * * If array elements are pass-by-ref data type, the returned Datums will * be pointers into the array object. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, in most current * uses the type is hard-wired into the caller and so we can save a lookup * cycle by hard-wiring the type info as well. */ void deconstruct_array(ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, bool **nullsp, int *nelemsp) { Datum *elems; bool *nulls; int nelems; char *p; bits8 *bitmap; int bitmask; int i; Assert(ARR_ELEMTYPE(array) == elmtype); nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); *elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum)); if (nullsp) *nullsp = nulls = (bool *) palloc(nelems * sizeof(bool)); else nulls = NULL; *nelemsp = nelems; p = ARR_DATA_PTR(array); bitmap = ARR_NULLBITMAP(array); bitmask = 1; for (i = 0; i < nelems; i++) { /* Get source element, checking for NULL */ if (bitmap && (*bitmap & bitmask) == 0) { elems[i] = (Datum) 0; if (nulls) nulls[i] = true; else ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("null array element not allowed in this context"))); } else { elems[i] = fetch_att(p, elmbyval, elmlen); if (nulls) nulls[i] = false; p = att_addlength_pointer(p, elmlen, p); p = (char *) att_align_nominal(p, elmalign); } /* advance bitmap pointer if any */ if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { bitmap++; bitmask = 1; } } } } /* * array_eq : * compares two arrays for equality * result : * returns true if the arrays are equal, false otherwise. * * Note: we do not use array_cmp here, since equality may be meaningful in * datatypes that don't have a total ordering (and hence no btree support). */ Datum array_eq(PG_FUNCTION_ARGS) { ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1); int ndims1 = ARR_NDIM(array1); int ndims2 = ARR_NDIM(array2); int *dims1 = ARR_DIMS(array1); int *dims2 = ARR_DIMS(array2); Oid element_type = ARR_ELEMTYPE(array1); bool result = true; int nitems; TypeCacheEntry *typentry; int typlen; bool typbyval; char typalign; char *ptr1; char *ptr2; bits8 *bitmap1; bits8 *bitmap2; int bitmask; int i; FunctionCallInfoData locfcinfo; if (element_type != ARR_ELEMTYPE(array2)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot compare arrays of different element types"))); /* fast path if the arrays do not have the same dimensionality */ if (ndims1 != ndims2 || memcmp(dims1, dims2, 2 * ndims1 * sizeof(int)) != 0) result = false; else { /* * We arrange to look up the equality function only once per series of * calls, assuming the element type doesn't change underneath us. The * typcache is used so that we have no memory leakage when being used * as an index support function. */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO); if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify an equality operator for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * apply the operator to each pair of array elements. */ InitFunctionCallInfoData(locfcinfo, &typentry->eq_opr_finfo, 2, NULL, NULL); /* Loop over source data */ nitems = ArrayGetNItems(ndims1, dims1); ptr1 = ARR_DATA_PTR(array1); ptr2 = ARR_DATA_PTR(array2); bitmap1 = ARR_NULLBITMAP(array1); bitmap2 = ARR_NULLBITMAP(array2); bitmask = 1; /* use same bitmask for both arrays */ for (i = 0; i < nitems; i++) { Datum elt1; Datum elt2; bool isnull1; bool isnull2; bool oprresult; /* Get elements, checking for NULL */ if (bitmap1 && (*bitmap1 & bitmask) == 0) { isnull1 = true; elt1 = (Datum) 0; } else { isnull1 = false; elt1 = fetch_att(ptr1, typbyval, typlen); ptr1 = att_addlength_pointer(ptr1, typlen, ptr1); ptr1 = (char *) att_align_nominal(ptr1, typalign); } if (bitmap2 && (*bitmap2 & bitmask) == 0) { isnull2 = true; elt2 = (Datum) 0; } else { isnull2 = false; elt2 = fetch_att(ptr2, typbyval, typlen); ptr2 = att_addlength_pointer(ptr2, typlen, ptr2); ptr2 = (char *) att_align_nominal(ptr2, typalign); } /* advance bitmap pointers if any */ bitmask <<= 1; if (bitmask == 0x100) { if (bitmap1) bitmap1++; if (bitmap2) bitmap2++; bitmask = 1; } /* * We consider two NULLs equal; NULL and not-NULL are unequal. */ if (isnull1 && isnull2) continue; if (isnull1 || isnull2) { result = false; break; } /* * Apply the operator to the element pair */ locfcinfo.arg[0] = elt1; locfcinfo.arg[1] = elt2; locfcinfo.argnull[0] = false; locfcinfo.argnull[1] = false; locfcinfo.isnull = false; oprresult = DatumGetBool(FunctionCallInvoke(&locfcinfo)); if (!oprresult) { result = false; break; } } } /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(array1, 0); PG_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } /*----------------------------------------------------------------------------- * array-array bool operators: * Given two arrays, iterate comparison operators * over the array. Uses logic similar to text comparison * functions, except element-by-element instead of * character-by-character. *---------------------------------------------------------------------------- */ Datum array_ne(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(!DatumGetBool(array_eq(fcinfo))); } Datum array_lt(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) < 0); } Datum array_gt(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) > 0); } Datum array_le(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) <= 0); } Datum array_ge(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) >= 0); } Datum btarraycmp(PG_FUNCTION_ARGS) { PG_RETURN_INT32(array_cmp(fcinfo)); } /* * array_cmp() * Internal comparison function for arrays. * * Returns -1, 0 or 1 */ static int array_cmp(FunctionCallInfo fcinfo) { ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1); int ndims1 = ARR_NDIM(array1); int ndims2 = ARR_NDIM(array2); int *dims1 = ARR_DIMS(array1); int *dims2 = ARR_DIMS(array2); int nitems1 = ArrayGetNItems(ndims1, dims1); int nitems2 = ArrayGetNItems(ndims2, dims2); Oid element_type = ARR_ELEMTYPE(array1); int result = 0; TypeCacheEntry *typentry; int typlen; bool typbyval; char typalign; int min_nitems; char *ptr1; char *ptr2; bits8 *bitmap1; bits8 *bitmap2; int bitmask; int i; FunctionCallInfoData locfcinfo; if (element_type != ARR_ELEMTYPE(array2)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot compare arrays of different element types"))); /* * We arrange to look up the comparison function only once per series of * calls, assuming the element type doesn't change underneath us. The * typcache is used so that we have no memory leakage when being used as * an index support function. */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_CMP_PROC_FINFO); if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify a comparison function for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * apply the operator to each pair of array elements. */ InitFunctionCallInfoData(locfcinfo, &typentry->cmp_proc_finfo, 2, NULL, NULL); /* Loop over source data */ min_nitems = Min(nitems1, nitems2); ptr1 = ARR_DATA_PTR(array1); ptr2 = ARR_DATA_PTR(array2); bitmap1 = ARR_NULLBITMAP(array1); bitmap2 = ARR_NULLBITMAP(array2); bitmask = 1; /* use same bitmask for both arrays */ for (i = 0; i < min_nitems; i++) { Datum elt1; Datum elt2; bool isnull1; bool isnull2; int32 cmpresult; /* Get elements, checking for NULL */ if (bitmap1 && (*bitmap1 & bitmask) == 0) { isnull1 = true; elt1 = (Datum) 0; } else { isnull1 = false; elt1 = fetch_att(ptr1, typbyval, typlen); ptr1 = att_addlength_pointer(ptr1, typlen, ptr1); ptr1 = (char *) att_align_nominal(ptr1, typalign); } if (bitmap2 && (*bitmap2 & bitmask) == 0) { isnull2 = true; elt2 = (Datum) 0; } else { isnull2 = false; elt2 = fetch_att(ptr2, typbyval, typlen); ptr2 = att_addlength_pointer(ptr2, typlen, ptr2); ptr2 = (char *) att_align_nominal(ptr2, typalign); } /* advance bitmap pointers if any */ bitmask <<= 1; if (bitmask == 0x100) { if (bitmap1) bitmap1++; if (bitmap2) bitmap2++; bitmask = 1; } /* * We consider two NULLs equal; NULL > not-NULL. */ if (isnull1 && isnull2) continue; if (isnull1) { /* arg1 is greater than arg2 */ result = 1; break; } if (isnull2) { /* arg1 is less than arg2 */ result = -1; break; } /* Compare the pair of elements */ locfcinfo.arg[0] = elt1; locfcinfo.arg[1] = elt2; locfcinfo.argnull[0] = false; locfcinfo.argnull[1] = false; locfcinfo.isnull = false; cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo)); if (cmpresult == 0) continue; /* equal */ if (cmpresult < 0) { /* arg1 is less than arg2 */ result = -1; break; } else { /* arg1 is greater than arg2 */ result = 1; break; } } /* * If arrays contain same data (up to end of shorter one), apply * additional rules to sort by dimensionality. The relative significance * of the different bits of information is historical; mainly we just care * that we don't say "equal" for arrays of different dimensionality. */ if (result == 0) { if (nitems1 != nitems2) result = (nitems1 < nitems2) ? -1 : 1; else if (ndims1 != ndims2) result = (ndims1 < ndims2) ? -1 : 1; else { /* this relies on LB array immediately following DIMS array */ for (i = 0; i < ndims1 * 2; i++) { if (dims1[i] != dims2[i]) { result = (dims1[i] < dims2[i]) ? -1 : 1; break; } } } } /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(array1, 0); PG_FREE_IF_COPY(array2, 1); return result; } /*----------------------------------------------------------------------------- * array overlap/containment comparisons * These use the same methods of comparing array elements as array_eq. * We consider only the elements of the arrays, ignoring dimensionality. *---------------------------------------------------------------------------- */ /* * array_contain_compare : * compares two arrays for overlap/containment * * When matchall is true, return true if all members of array1 are in array2. * When matchall is false, return true if any members of array1 are in array2. */ static bool array_contain_compare(ArrayType *array1, ArrayType *array2, bool matchall, void **fn_extra) { bool result = matchall; Oid element_type = ARR_ELEMTYPE(array1); TypeCacheEntry *typentry; int nelems1; Datum *values2; bool *nulls2; int nelems2; int typlen; bool typbyval; char typalign; char *ptr1; bits8 *bitmap1; int bitmask; int i; int j; FunctionCallInfoData locfcinfo; if (element_type != ARR_ELEMTYPE(array2)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot compare arrays of different element types"))); /* * We arrange to look up the equality function only once per series of * calls, assuming the element type doesn't change underneath us. The * typcache is used so that we have no memory leakage when being used as * an index support function. */ typentry = (TypeCacheEntry *) *fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO); if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify an equality operator for type %s", format_type_be(element_type)))); *fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * Since we probably will need to scan array2 multiple times, it's * worthwhile to use deconstruct_array on it. We scan array1 the hard way * however, since we very likely won't need to look at all of it. */ deconstruct_array(array2, element_type, typlen, typbyval, typalign, &values2, &nulls2, &nelems2); /* * Apply the comparison operator to each pair of array elements. */ InitFunctionCallInfoData(locfcinfo, &typentry->eq_opr_finfo, 2, NULL, NULL); /* Loop over source data */ nelems1 = ArrayGetNItems(ARR_NDIM(array1), ARR_DIMS(array1)); ptr1 = ARR_DATA_PTR(array1); bitmap1 = ARR_NULLBITMAP(array1); bitmask = 1; for (i = 0; i < nelems1; i++) { Datum elt1; bool isnull1; /* Get element, checking for NULL */ if (bitmap1 && (*bitmap1 & bitmask) == 0) { isnull1 = true; elt1 = (Datum) 0; } else { isnull1 = false; elt1 = fetch_att(ptr1, typbyval, typlen); ptr1 = att_addlength_pointer(ptr1, typlen, ptr1); ptr1 = (char *) att_align_nominal(ptr1, typalign); } /* advance bitmap pointer if any */ bitmask <<= 1; if (bitmask == 0x100) { if (bitmap1) bitmap1++; bitmask = 1; } /* * We assume that the comparison operator is strict, so a NULL can't * match anything. XXX this diverges from the "NULL=NULL" behavior of * array_eq, should we act like that? */ if (isnull1) { if (matchall) { result = false; break; } continue; } for (j = 0; j < nelems2; j++) { Datum elt2 = values2[j]; bool isnull2 = nulls2[j]; bool oprresult; if (isnull2) continue; /* can't match */ /* * Apply the operator to the element pair */ locfcinfo.arg[0] = elt1; locfcinfo.arg[1] = elt2; locfcinfo.argnull[0] = false; locfcinfo.argnull[1] = false; locfcinfo.isnull = false; oprresult = DatumGetBool(FunctionCallInvoke(&locfcinfo)); if (oprresult) break; } if (j < nelems2) { /* found a match for elt1 */ if (!matchall) { result = true; break; } } else { /* no match for elt1 */ if (matchall) { result = false; break; } } } pfree(values2); pfree(nulls2); return result; } Datum arrayoverlap(PG_FUNCTION_ARGS) { ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1); bool result; result = array_contain_compare(array1, array2, false, &fcinfo->flinfo->fn_extra); /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(array1, 0); PG_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } Datum arraycontains(PG_FUNCTION_ARGS) { ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1); bool result; result = array_contain_compare(array2, array1, true, &fcinfo->flinfo->fn_extra); /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(array1, 0); PG_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } Datum arraycontained(PG_FUNCTION_ARGS) { ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1); bool result; result = array_contain_compare(array1, array2, true, &fcinfo->flinfo->fn_extra); /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(array1, 0); PG_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } /***************************************************************************/ /******************| Support Routines |*****************/ /***************************************************************************/ /* * Check whether a specific array element is NULL * * nullbitmap: pointer to array's null bitmap (NULL if none) * offset: 0-based linear element number of array element */ static bool array_get_isnull(const bits8 *nullbitmap, int offset) { if (nullbitmap == NULL) return false; /* assume not null */ if (nullbitmap[offset / 8] & (1 << (offset % 8))) return false; /* not null */ return true; } /* * Set a specific array element's null-bitmap entry * * nullbitmap: pointer to array's null bitmap (mustn't be NULL) * offset: 0-based linear element number of array element * isNull: null status to set */ static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull) { int bitmask; nullbitmap += offset / 8; bitmask = 1 << (offset % 8); if (isNull) *nullbitmap &= ~bitmask; else *nullbitmap |= bitmask; } /* * Fetch array element at pointer, converted correctly to a Datum * * Caller must have handled case of NULL element */ static Datum ArrayCast(char *value, bool byval, int len) { return fetch_att(value, byval, len); } /* * Copy datum to *dest and return total space used (including align padding) * * Caller must have handled case of NULL element */ static int ArrayCastAndSet(Datum src, int typlen, bool typbyval, char typalign, char *dest) { int inc; if (typlen > 0) { if (typbyval) store_att_byval(dest, src, typlen); else memmove(dest, DatumGetPointer(src), typlen); inc = att_align_nominal(typlen, typalign); } else { Assert(!typbyval); inc = att_addlength_datum(0, typlen, src); memmove(dest, DatumGetPointer(src), inc); inc = att_align_nominal(inc, typalign); } return inc; } /* * Advance ptr over nitems array elements * * ptr: starting location in array * offset: 0-based linear element number of first element (the one at *ptr) * nullbitmap: start of array's null bitmap, or NULL if none * nitems: number of array elements to advance over (>= 0) * typlen, typbyval, typalign: storage parameters of array element datatype * * It is caller's responsibility to ensure that nitems is within range */ static char * array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign) { int bitmask; int i; /* easy if fixed-size elements and no NULLs */ if (typlen > 0 && !nullbitmap) return ptr + nitems * ((Size) att_align_nominal(typlen, typalign)); /* seems worth having separate loops for NULL and no-NULLs cases */ if (nullbitmap) { nullbitmap += offset / 8; bitmask = 1 << (offset % 8); for (i = 0; i < nitems; i++) { if (*nullbitmap & bitmask) { ptr = att_addlength_pointer(ptr, typlen, ptr); ptr = (char *) att_align_nominal(ptr, typalign); } bitmask <<= 1; if (bitmask == 0x100) { nullbitmap++; bitmask = 1; } } } else { for (i = 0; i < nitems; i++) { ptr = att_addlength_pointer(ptr, typlen, ptr); ptr = (char *) att_align_nominal(ptr, typalign); } } return ptr; } /* * Compute total size of the nitems array elements starting at *ptr * * Parameters same as for array_seek */ static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign) { return array_seek(ptr, offset, nullbitmap, nitems, typlen, typbyval, typalign) - ptr; } /* * Copy nitems array elements from srcptr to destptr * * destptr: starting destination location (must be enough room!) * nitems: number of array elements to copy (>= 0) * srcptr: starting location in source array * offset: 0-based linear element number of first element (the one at *srcptr) * nullbitmap: start of source array's null bitmap, or NULL if none * typlen, typbyval, typalign: storage parameters of array element datatype * * Returns number of bytes copied * * NB: this does not take care of setting up the destination's null bitmap! */ static int array_copy(char *destptr, int nitems, char *srcptr, int offset, bits8 *nullbitmap, int typlen, bool typbyval, char typalign) { int numbytes; numbytes = array_nelems_size(srcptr, offset, nullbitmap, nitems, typlen, typbyval, typalign); memcpy(destptr, srcptr, numbytes); return numbytes; } /* * Copy nitems null-bitmap bits from source to destination * * destbitmap: start of destination array's null bitmap (mustn't be NULL) * destoffset: 0-based linear element number of first dest element * srcbitmap: start of source array's null bitmap, or NULL if none * srcoffset: 0-based linear element number of first source element * nitems: number of bits to copy (>= 0) * * If srcbitmap is NULL then we assume the source is all-non-NULL and * fill 1's into the destination bitmap. Note that only the specified * bits in the destination map are changed, not any before or after. * * Note: this could certainly be optimized using standard bitblt methods. * However, it's not clear that the typical Postgres array has enough elements * to make it worth worrying too much. For the moment, KISS. */ void array_bitmap_copy(bits8 *destbitmap, int destoffset, const bits8 *srcbitmap, int srcoffset, int nitems) { int destbitmask, destbitval, srcbitmask, srcbitval; Assert(destbitmap); if (nitems <= 0) return; /* don't risk fetch off end of memory */ destbitmap += destoffset / 8; destbitmask = 1 << (destoffset % 8); destbitval = *destbitmap; if (srcbitmap) { srcbitmap += srcoffset / 8; srcbitmask = 1 << (srcoffset % 8); srcbitval = *srcbitmap; while (nitems-- > 0) { if (srcbitval & srcbitmask) destbitval |= destbitmask; else destbitval &= ~destbitmask; destbitmask <<= 1; if (destbitmask == 0x100) { *destbitmap++ = destbitval; destbitmask = 1; if (nitems > 0) destbitval = *destbitmap; } srcbitmask <<= 1; if (srcbitmask == 0x100) { srcbitmap++; srcbitmask = 1; if (nitems > 0) srcbitval = *srcbitmap; } } if (destbitmask != 1) *destbitmap = destbitval; } else { while (nitems-- > 0) { destbitval |= destbitmask; destbitmask <<= 1; if (destbitmask == 0x100) { *destbitmap++ = destbitval; destbitmask = 1; if (nitems > 0) destbitval = *destbitmap; } } if (destbitmask != 1) *destbitmap = destbitval; } } /* * Compute space needed for a slice of an array * * We assume the caller has verified that the slice coordinates are valid. */ static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign) { int src_offset, span[MAXDIM], prod[MAXDIM], dist[MAXDIM], indx[MAXDIM]; char *ptr; int i, j, inc; int count = 0; mda_get_range(ndim, span, st, endp); /* Pretty easy for fixed element length without nulls ... */ if (typlen > 0 && !arraynullsptr) return ArrayGetNItems(ndim, span) * att_align_nominal(typlen, typalign); /* Else gotta do it the hard way */ src_offset = ArrayGetOffset(ndim, dim, lb, st); ptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, typlen, typbyval, typalign); mda_get_prod(ndim, dim, prod); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; j = ndim - 1; do { if (dist[j]) { ptr = array_seek(ptr, src_offset, arraynullsptr, dist[j], typlen, typbyval, typalign); src_offset += dist[j]; } if (!array_get_isnull(arraynullsptr, src_offset)) { inc = att_addlength_pointer(0, typlen, ptr); inc = att_align_nominal(inc, typalign); ptr += inc; count += inc; } src_offset++; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); return count; } /* * Extract a slice of an array into consecutive elements in the destination * array. * * We assume the caller has verified that the slice coordinates are valid, * allocated enough storage for the result, and initialized the header * of the new array. */ static void array_extract_slice(ArrayType *newarray, int ndim, int *dim, int *lb, char *arraydataptr, bits8 *arraynullsptr, int *st, int *endp, int typlen, bool typbyval, char typalign) { char *destdataptr = ARR_DATA_PTR(newarray); bits8 *destnullsptr = ARR_NULLBITMAP(newarray); char *srcdataptr; int src_offset, dest_offset, prod[MAXDIM], span[MAXDIM], dist[MAXDIM], indx[MAXDIM]; int i, j, inc; src_offset = ArrayGetOffset(ndim, dim, lb, st); srcdataptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, typlen, typbyval, typalign); mda_get_prod(ndim, dim, prod); mda_get_range(ndim, span, st, endp); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; dest_offset = 0; j = ndim - 1; do { if (dist[j]) { /* skip unwanted elements */ srcdataptr = array_seek(srcdataptr, src_offset, arraynullsptr, dist[j], typlen, typbyval, typalign); src_offset += dist[j]; } inc = array_copy(destdataptr, 1, srcdataptr, src_offset, arraynullsptr, typlen, typbyval, typalign); if (destnullsptr) array_bitmap_copy(destnullsptr, dest_offset, arraynullsptr, src_offset, 1); destdataptr += inc; srcdataptr += inc; src_offset++; dest_offset++; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); } /* * Insert a slice into an array. * * ndim/dim[]/lb[] are dimensions of the original array. A new array with * those same dimensions is to be constructed. destArray must already * have been allocated and its header initialized. * * st[]/endp[] identify the slice to be replaced. Elements within the slice * volume are taken from consecutive elements of the srcArray; elements * outside it are copied from origArray. * * We assume the caller has verified that the slice coordinates are valid. */ static void array_insert_slice(ArrayType *destArray, ArrayType *origArray, ArrayType *srcArray, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign) { char *destPtr = ARR_DATA_PTR(destArray); char *origPtr = ARR_DATA_PTR(origArray); char *srcPtr = ARR_DATA_PTR(srcArray); bits8 *destBitmap = ARR_NULLBITMAP(destArray); bits8 *origBitmap = ARR_NULLBITMAP(origArray); bits8 *srcBitmap = ARR_NULLBITMAP(srcArray); int orignitems = ArrayGetNItems(ARR_NDIM(origArray), ARR_DIMS(origArray)); int dest_offset, orig_offset, src_offset, prod[MAXDIM], span[MAXDIM], dist[MAXDIM], indx[MAXDIM]; int i, j, inc; dest_offset = ArrayGetOffset(ndim, dim, lb, st); /* copy items before the slice start */ inc = array_copy(destPtr, dest_offset, origPtr, 0, origBitmap, typlen, typbyval, typalign); destPtr += inc; origPtr += inc; if (destBitmap) array_bitmap_copy(destBitmap, 0, origBitmap, 0, dest_offset); orig_offset = dest_offset; mda_get_prod(ndim, dim, prod); mda_get_range(ndim, span, st, endp); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; src_offset = 0; j = ndim - 1; do { /* Copy/advance over elements between here and next part of slice */ if (dist[j]) { inc = array_copy(destPtr, dist[j], origPtr, orig_offset, origBitmap, typlen, typbyval, typalign); destPtr += inc; origPtr += inc; if (destBitmap) array_bitmap_copy(destBitmap, dest_offset, origBitmap, orig_offset, dist[j]); dest_offset += dist[j]; orig_offset += dist[j]; } /* Copy new element at this slice position */ inc = array_copy(destPtr, 1, srcPtr, src_offset, srcBitmap, typlen, typbyval, typalign); if (destBitmap) array_bitmap_copy(destBitmap, dest_offset, srcBitmap, src_offset, 1); destPtr += inc; srcPtr += inc; dest_offset++; src_offset++; /* Advance over old element at this slice position */ origPtr = array_seek(origPtr, orig_offset, origBitmap, 1, typlen, typbyval, typalign); orig_offset++; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); /* don't miss any data at the end */ array_copy(destPtr, orignitems - orig_offset, origPtr, orig_offset, origBitmap, typlen, typbyval, typalign); if (destBitmap) array_bitmap_copy(destBitmap, dest_offset, origBitmap, orig_offset, orignitems - orig_offset); } /* * accumArrayResult - accumulate one (more) Datum for an array result * * astate is working state (NULL on first call) * rcontext is where to keep working state */ ArrayBuildState * accumArrayResult(ArrayBuildState *astate, Datum dvalue, bool disnull, Oid element_type, MemoryContext rcontext) { MemoryContext arr_context, oldcontext; if (astate == NULL) { /* First time through --- initialize */ /* Make a temporary context to hold all the junk */ arr_context = AllocSetContextCreate(rcontext, "accumArrayResult", ALLOCSET_DEFAULT_MINSIZE, ALLOCSET_DEFAULT_INITSIZE, ALLOCSET_DEFAULT_MAXSIZE); oldcontext = MemoryContextSwitchTo(arr_context); astate = (ArrayBuildState *) palloc(sizeof(ArrayBuildState)); astate->mcontext = arr_context; astate->alen = 64; /* arbitrary starting array size */ astate->dvalues = (Datum *) palloc(astate->alen * sizeof(Datum)); astate->dnulls = (bool *) palloc(astate->alen * sizeof(bool)); astate->nelems = 0; astate->element_type = element_type; get_typlenbyvalalign(element_type, &astate->typlen, &astate->typbyval, &astate->typalign); } else { oldcontext = MemoryContextSwitchTo(astate->mcontext); Assert(astate->element_type == element_type); /* enlarge dvalues[]/dnulls[] if needed */ if (astate->nelems >= astate->alen) { astate->alen *= 2; astate->dvalues = (Datum *) repalloc(astate->dvalues, astate->alen * sizeof(Datum)); astate->dnulls = (bool *) repalloc(astate->dnulls, astate->alen * sizeof(bool)); } } /* Use datumCopy to ensure pass-by-ref stuff is copied into mcontext */ if (!disnull && !astate->typbyval) dvalue = datumCopy(dvalue, astate->typbyval, astate->typlen); astate->dvalues[astate->nelems] = dvalue; astate->dnulls[astate->nelems] = disnull; astate->nelems++; MemoryContextSwitchTo(oldcontext); return astate; } /* * makeArrayResult - produce 1-D final result of accumArrayResult * * astate is working state (not NULL) * rcontext is where to construct result */ Datum makeArrayResult(ArrayBuildState *astate, MemoryContext rcontext) { int dims[1]; int lbs[1]; dims[0] = astate->nelems; lbs[0] = 1; return makeMdArrayResult(astate, 1, dims, lbs, rcontext, true); } /* * makeMdArrayResult - produce multi-D final result of accumArrayResult * * beware: no check that specified dimensions match the number of values * accumulated. * * astate is working state (not NULL) * rcontext is where to construct result * release is true if okay to release working state */ Datum makeMdArrayResult(ArrayBuildState *astate, int ndims, int *dims, int *lbs, MemoryContext rcontext, bool release) { ArrayType *result; MemoryContext oldcontext; /* Build the final array result in rcontext */ oldcontext = MemoryContextSwitchTo(rcontext); result = construct_md_array(astate->dvalues, astate->dnulls, ndims, dims, lbs, astate->element_type, astate->typlen, astate->typbyval, astate->typalign); MemoryContextSwitchTo(oldcontext); /* Clean up all the junk */ if (release) MemoryContextDelete(astate->mcontext); return PointerGetDatum(result); } Datum array_larger(PG_FUNCTION_ARGS) { ArrayType *v1, *v2, *result; v1 = PG_GETARG_ARRAYTYPE_P(0); v2 = PG_GETARG_ARRAYTYPE_P(1); result = ((array_cmp(fcinfo) > 0) ? v1 : v2); PG_RETURN_ARRAYTYPE_P(result); } Datum array_smaller(PG_FUNCTION_ARGS) { ArrayType *v1, *v2, *result; v1 = PG_GETARG_ARRAYTYPE_P(0); v2 = PG_GETARG_ARRAYTYPE_P(1); result = ((array_cmp(fcinfo) < 0) ? v1 : v2); PG_RETURN_ARRAYTYPE_P(result); } typedef struct generate_subscripts_fctx { int4 lower; int4 upper; bool reverse; } generate_subscripts_fctx; /* * generate_subscripts(array anyarray, dim int [, reverse bool]) * Returns all subscripts of the array for any dimension */ Datum generate_subscripts(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; MemoryContext oldcontext; generate_subscripts_fctx *fctx; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int reqdim = PG_GETARG_INT32(1); int *lb, *dimv; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) SRF_RETURN_DONE(funcctx); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > ARR_NDIM(v)) SRF_RETURN_DONE(funcctx); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); fctx = (generate_subscripts_fctx *) palloc(sizeof(generate_subscripts_fctx)); lb = ARR_LBOUND(v); dimv = ARR_DIMS(v); fctx->lower = lb[reqdim - 1]; fctx->upper = dimv[reqdim - 1] + lb[reqdim - 1] - 1; fctx->reverse = (PG_NARGS() < 3) ? false : PG_GETARG_BOOL(2); funcctx->user_fctx = fctx; MemoryContextSwitchTo(oldcontext); } funcctx = SRF_PERCALL_SETUP(); fctx = funcctx->user_fctx; if (fctx->lower <= fctx->upper) { if (!fctx->reverse) SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->lower++)); else SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->upper--)); } else /* done when there are no more elements left */ SRF_RETURN_DONE(funcctx); } /* * generate_subscripts_nodir * Implements the 2-argument version of generate_subscripts */ Datum generate_subscripts_nodir(PG_FUNCTION_ARGS) { /* just call the other one -- it can handle both cases */ return generate_subscripts(fcinfo); } /* * array_fill_with_lower_bounds * Create and fill array with defined lower bounds. */ Datum array_fill_with_lower_bounds(PG_FUNCTION_ARGS) { ArrayType *dims; ArrayType *lbs; ArrayType *result; Oid elmtype; Datum value; bool isnull; if (PG_ARGISNULL(1) || PG_ARGISNULL(2)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension array or low bound array cannot be NULL"))); dims = PG_GETARG_ARRAYTYPE_P(1); lbs = PG_GETARG_ARRAYTYPE_P(2); if (!PG_ARGISNULL(0)) { value = PG_GETARG_DATUM(0); isnull = false; } else { value = 0; isnull = true; } elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); if (!OidIsValid(elmtype)) elog(ERROR, "could not determine data type of input"); result = array_fill_internal(dims, lbs, value, isnull, elmtype, fcinfo); PG_RETURN_ARRAYTYPE_P(result); } /* * array_fill * Create and fill array with default lower bounds. */ Datum array_fill(PG_FUNCTION_ARGS) { ArrayType *dims; ArrayType *result; Oid elmtype; Datum value; bool isnull; if (PG_ARGISNULL(1)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension array or low bound array cannot be NULL"))); dims = PG_GETARG_ARRAYTYPE_P(1); if (!PG_ARGISNULL(0)) { value = PG_GETARG_DATUM(0); isnull = false; } else { value = 0; isnull = true; } elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); if (!OidIsValid(elmtype)) elog(ERROR, "could not determine data type of input"); result = array_fill_internal(dims, NULL, value, isnull, elmtype, fcinfo); PG_RETURN_ARRAYTYPE_P(result); } static ArrayType * create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes, Oid elmtype, int dataoffset) { ArrayType *result; result = (ArrayType *) palloc0(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndims; result->dataoffset = dataoffset; result->elemtype = elmtype; memcpy(ARR_DIMS(result), dimv, ndims * sizeof(int)); memcpy(ARR_LBOUND(result), lbsv, ndims * sizeof(int)); return result; } static ArrayType * array_fill_internal(ArrayType *dims, ArrayType *lbs, Datum value, bool isnull, Oid elmtype, FunctionCallInfo fcinfo) { ArrayType *result; int *dimv; int *lbsv; int ndims; int nitems; int deflbs[MAXDIM]; int16 elmlen; bool elmbyval; char elmalign; ArrayMetaState *my_extra; /* * Params checks */ if (ARR_NDIM(dims) != 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"), errdetail("Dimension array must be one dimensional."))); if (ARR_LBOUND(dims)[0] != 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong range of array_subscripts"), errdetail("Lower bound of dimension array must be one."))); if (ARR_HASNULL(dims)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension values cannot be null"))); dimv = (int *) ARR_DATA_PTR(dims); ndims = ARR_DIMS(dims)[0]; if (ndims < 0) /* we do allow zero-dimension arrays */ ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid number of dimensions: %d", ndims))); if (ndims > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndims, MAXDIM))); if (lbs != NULL) { if (ARR_NDIM(lbs) != 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"), errdetail("Dimension array must be one dimensional."))); if (ARR_LBOUND(lbs)[0] != 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong range of array_subscripts"), errdetail("Lower bound of dimension array must be one."))); if (ARR_HASNULL(lbs)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension values cannot be null"))); if (ARR_DIMS(lbs)[0] != ndims) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array_subscripts"), errdetail("Low bound array has different size than dimensions array."))); lbsv = (int *) ARR_DATA_PTR(lbs); } else { int i; for (i = 0; i < MAXDIM; i++) deflbs[i] = 1; lbsv = deflbs; } /* fast track for empty array */ if (ndims == 0) return construct_empty_array(elmtype); nitems = ArrayGetNItems(ndims, dimv); /* * We arrange to look up info about element type only once per series of * calls, assuming the element type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = InvalidOid; } if (my_extra->element_type != elmtype) { /* Get info about element type */ get_typlenbyvalalign(elmtype, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign); my_extra->element_type = elmtype; } elmlen = my_extra->typlen; elmbyval = my_extra->typbyval; elmalign = my_extra->typalign; /* compute required space */ if (!isnull) { int i; char *p; int nbytes; int totbytes; /* make sure data is not toasted */ if (elmlen == -1) value = PointerGetDatum(PG_DETOAST_DATUM(value)); nbytes = att_addlength_datum(0, elmlen, value); nbytes = att_align_nominal(nbytes, elmalign); Assert(nbytes > 0); totbytes = nbytes * nitems; /* check for overflow of multiplication or total request */ if (totbytes / nbytes != nitems || !AllocSizeIsValid(totbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); /* * This addition can't overflow, but it might cause us to go past * MaxAllocSize. We leave it to palloc to complain in that case. */ totbytes += ARR_OVERHEAD_NONULLS(ndims); result = create_array_envelope(ndims, dimv, lbsv, totbytes, elmtype, 0); p = ARR_DATA_PTR(result); for (i = 0; i < nitems; i++) p += ArrayCastAndSet(value, elmlen, elmbyval, elmalign, p); } else { int nbytes; int dataoffset; dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems); nbytes = dataoffset; result = create_array_envelope(ndims, dimv, lbsv, nbytes, elmtype, dataoffset); /* create_array_envelope already zeroed the bitmap, so we're done */ } return result; } /* * UNNEST */ Datum array_unnest(PG_FUNCTION_ARGS) { typedef struct { ArrayType *arr; int nextelem; int numelems; char *elemdataptr; /* this moves with nextelem */ bits8 *arraynullsptr; /* this does not */ int16 elmlen; bool elmbyval; char elmalign; } array_unnest_fctx; FuncCallContext *funcctx; array_unnest_fctx *fctx; MemoryContext oldcontext; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { ArrayType *arr; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* * Get the array value and detoast if needed. We can't do this * earlier because if we have to detoast, we want the detoasted * copy to be in multi_call_memory_ctx, so it will go away when * we're done and not before. (If no detoast happens, we assume * the originally passed array will stick around till then.) */ arr = PG_GETARG_ARRAYTYPE_P(0); /* allocate memory for user context */ fctx = (array_unnest_fctx *) palloc(sizeof(array_unnest_fctx)); /* initialize state */ fctx->arr = arr; fctx->nextelem = 0; fctx->numelems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr)); fctx->elemdataptr = ARR_DATA_PTR(arr); fctx->arraynullsptr = ARR_NULLBITMAP(arr); get_typlenbyvalalign(ARR_ELEMTYPE(arr), &fctx->elmlen, &fctx->elmbyval, &fctx->elmalign); funcctx->user_fctx = fctx; MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); fctx = funcctx->user_fctx; if (fctx->nextelem < fctx->numelems) { int offset = fctx->nextelem++; Datum elem; /* * Check for NULL array element */ if (array_get_isnull(fctx->arraynullsptr, offset)) { fcinfo->isnull = true; elem = (Datum) 0; /* elemdataptr does not move */ } else { /* * OK, get the element */ char *ptr = fctx->elemdataptr; fcinfo->isnull = false; elem = ArrayCast(ptr, fctx->elmbyval, fctx->elmlen); /* * Advance elemdataptr over it */ ptr = att_addlength_pointer(ptr, fctx->elmlen, ptr); ptr = (char *) att_align_nominal(ptr, fctx->elmalign); fctx->elemdataptr = ptr; } SRF_RETURN_NEXT(funcctx, elem); } else { /* do when there is no more left */ SRF_RETURN_DONE(funcctx); } }