/*------------------------------------------------------------------------- * * execGrouping.c * executor utility routines for grouping, hashing, and aggregation * * Note: we currently assume that equality and hashing functions are not * collation-sensitive, so the code in this file has no support for passing * collation settings through from callers. That may have to change someday. * * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/executor/execGrouping.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/hash.h" #include "access/parallel.h" #include "executor/executor.h" #include "miscadmin.h" #include "utils/lsyscache.h" #include "utils/memutils.h" static uint32 TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple); static int TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2); /* * Define parameters for tuple hash table code generation. The interface is * *also* declared in execnodes.h (to generate the types, which are externally * visible). */ #define SH_PREFIX tuplehash #define SH_ELEMENT_TYPE TupleHashEntryData #define SH_KEY_TYPE MinimalTuple #define SH_KEY firstTuple #define SH_HASH_KEY(tb, key) TupleHashTableHash(tb, key) #define SH_EQUAL(tb, a, b) TupleHashTableMatch(tb, a, b) == 0 #define SH_SCOPE extern #define SH_STORE_HASH #define SH_GET_HASH(tb, a) a->hash #define SH_DEFINE #include "lib/simplehash.h" /***************************************************************************** * Utility routines for grouping tuples together *****************************************************************************/ /* * execTuplesMatch * Return true if two tuples match in all the indicated fields. * * This actually implements SQL's notion of "not distinct". Two nulls * match, a null and a not-null don't match. * * slot1, slot2: the tuples to compare (must have same columns!) * numCols: the number of attributes to be examined * matchColIdx: array of attribute column numbers * eqFunctions: array of fmgr lookup info for the equality functions to use * evalContext: short-term memory context for executing the functions * * NB: evalContext is reset each time! */ bool execTuplesMatch(TupleTableSlot *slot1, TupleTableSlot *slot2, int numCols, AttrNumber *matchColIdx, FmgrInfo *eqfunctions, MemoryContext evalContext) { MemoryContext oldContext; bool result; int i; /* Reset and switch into the temp context. */ MemoryContextReset(evalContext); oldContext = MemoryContextSwitchTo(evalContext); /* * We cannot report a match without checking all the fields, but we can * report a non-match as soon as we find unequal fields. So, start * comparing at the last field (least significant sort key). That's the * most likely to be different if we are dealing with sorted input. */ result = true; for (i = numCols; --i >= 0;) { AttrNumber att = matchColIdx[i]; Datum attr1, attr2; bool isNull1, isNull2; attr1 = slot_getattr(slot1, att, &isNull1); attr2 = slot_getattr(slot2, att, &isNull2); if (isNull1 != isNull2) { result = false; /* one null and one not; they aren't equal */ break; } if (isNull1) continue; /* both are null, treat as equal */ /* Apply the type-specific equality function */ if (!DatumGetBool(FunctionCall2(&eqfunctions[i], attr1, attr2))) { result = false; /* they aren't equal */ break; } } MemoryContextSwitchTo(oldContext); return result; } /* * execTuplesUnequal * Return true if two tuples are definitely unequal in the indicated * fields. * * Nulls are neither equal nor unequal to anything else. A true result * is obtained only if there are non-null fields that compare not-equal. * * Parameters are identical to execTuplesMatch. */ bool execTuplesUnequal(TupleTableSlot *slot1, TupleTableSlot *slot2, int numCols, AttrNumber *matchColIdx, FmgrInfo *eqfunctions, MemoryContext evalContext) { MemoryContext oldContext; bool result; int i; /* Reset and switch into the temp context. */ MemoryContextReset(evalContext); oldContext = MemoryContextSwitchTo(evalContext); /* * We cannot report a match without checking all the fields, but we can * report a non-match as soon as we find unequal fields. So, start * comparing at the last field (least significant sort key). That's the * most likely to be different if we are dealing with sorted input. */ result = false; for (i = numCols; --i >= 0;) { AttrNumber att = matchColIdx[i]; Datum attr1, attr2; bool isNull1, isNull2; attr1 = slot_getattr(slot1, att, &isNull1); if (isNull1) continue; /* can't prove anything here */ attr2 = slot_getattr(slot2, att, &isNull2); if (isNull2) continue; /* can't prove anything here */ /* Apply the type-specific equality function */ if (!DatumGetBool(FunctionCall2(&eqfunctions[i], attr1, attr2))) { result = true; /* they are unequal */ break; } } MemoryContextSwitchTo(oldContext); return result; } /* * execTuplesMatchPrepare * Look up the equality functions needed for execTuplesMatch or * execTuplesUnequal, given an array of equality operator OIDs. * * The result is a palloc'd array. */ FmgrInfo * execTuplesMatchPrepare(int numCols, Oid *eqOperators) { FmgrInfo *eqFunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo)); int i; for (i = 0; i < numCols; i++) { Oid eq_opr = eqOperators[i]; Oid eq_function; eq_function = get_opcode(eq_opr); fmgr_info(eq_function, &eqFunctions[i]); } return eqFunctions; } /* * execTuplesHashPrepare * Look up the equality and hashing functions needed for a TupleHashTable. * * This is similar to execTuplesMatchPrepare, but we also need to find the * hash functions associated with the equality operators. *eqFunctions and * *hashFunctions receive the palloc'd result arrays. * * Note: we expect that the given operators are not cross-type comparisons. */ void execTuplesHashPrepare(int numCols, Oid *eqOperators, FmgrInfo **eqFunctions, FmgrInfo **hashFunctions) { int i; *eqFunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo)); *hashFunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo)); for (i = 0; i < numCols; i++) { Oid eq_opr = eqOperators[i]; Oid eq_function; Oid left_hash_function; Oid right_hash_function; eq_function = get_opcode(eq_opr); if (!get_op_hash_functions(eq_opr, &left_hash_function, &right_hash_function)) elog(ERROR, "could not find hash function for hash operator %u", eq_opr); /* We're not supporting cross-type cases here */ Assert(left_hash_function == right_hash_function); fmgr_info(eq_function, &(*eqFunctions)[i]); fmgr_info(right_hash_function, &(*hashFunctions)[i]); } } /***************************************************************************** * Utility routines for all-in-memory hash tables * * These routines build hash tables for grouping tuples together (eg, for * hash aggregation). There is one entry for each not-distinct set of tuples * presented. *****************************************************************************/ /* * Construct an empty TupleHashTable * * numCols, keyColIdx: identify the tuple fields to use as lookup key * eqfunctions: equality comparison functions to use * hashfunctions: datatype-specific hashing functions to use * nbuckets: initial estimate of hashtable size * additionalsize: size of data stored in ->additional * tablecxt: memory context in which to store table and table entries * tempcxt: short-lived context for evaluation hash and comparison functions * * The function arrays may be made with execTuplesHashPrepare(). Note they * are not cross-type functions, but expect to see the table datatype(s) * on both sides. * * Note that keyColIdx, eqfunctions, and hashfunctions must be allocated in * storage that will live as long as the hashtable does. */ TupleHashTable BuildTupleHashTable(int numCols, AttrNumber *keyColIdx, FmgrInfo *eqfunctions, FmgrInfo *hashfunctions, long nbuckets, Size additionalsize, MemoryContext tablecxt, MemoryContext tempcxt, bool use_variable_hash_iv) { TupleHashTable hashtable; Size entrysize = sizeof(TupleHashEntryData) + additionalsize; Assert(nbuckets > 0); /* Limit initial table size request to not more than work_mem */ nbuckets = Min(nbuckets, (long) ((work_mem * 1024L) / entrysize)); hashtable = (TupleHashTable) MemoryContextAlloc(tablecxt, sizeof(TupleHashTableData)); hashtable->numCols = numCols; hashtable->keyColIdx = keyColIdx; hashtable->tab_hash_funcs = hashfunctions; hashtable->tab_eq_funcs = eqfunctions; hashtable->tablecxt = tablecxt; hashtable->tempcxt = tempcxt; hashtable->entrysize = entrysize; hashtable->tableslot = NULL; /* will be made on first lookup */ hashtable->inputslot = NULL; hashtable->in_hash_funcs = NULL; hashtable->cur_eq_funcs = NULL; /* * If parallelism is in use, even if the master backend is performing the * scan itself, we don't want to create the hashtable exactly the same way * in all workers. As hashtables are iterated over in keyspace-order, * doing so in all processes in the same way is likely to lead to * "unbalanced" hashtables when the table size initially is * underestimated. */ if (use_variable_hash_iv) hashtable->hash_iv = hash_uint32(ParallelWorkerNumber); else hashtable->hash_iv = 0; hashtable->hashtab = tuplehash_create(tablecxt, nbuckets, hashtable); return hashtable; } /* * Find or create a hashtable entry for the tuple group containing the * given tuple. The tuple must be the same type as the hashtable entries. * * If isnew is NULL, we do not create new entries; we return NULL if no * match is found. * * If isnew isn't NULL, then a new entry is created if no existing entry * matches. On return, *isnew is true if the entry is newly created, * false if it existed already. ->additional_data in the new entry has * been zeroed. */ TupleHashEntry LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot, bool *isnew) { TupleHashEntryData *entry; MemoryContext oldContext; bool found; MinimalTuple key; /* If first time through, clone the input slot to make table slot */ if (hashtable->tableslot == NULL) { TupleDesc tupdesc; oldContext = MemoryContextSwitchTo(hashtable->tablecxt); /* * We copy the input tuple descriptor just for safety --- we assume * all input tuples will have equivalent descriptors. */ tupdesc = CreateTupleDescCopy(slot->tts_tupleDescriptor); hashtable->tableslot = MakeSingleTupleTableSlot(tupdesc); MemoryContextSwitchTo(oldContext); } /* Need to run the hash functions in short-lived context */ oldContext = MemoryContextSwitchTo(hashtable->tempcxt); /* set up data needed by hash and match functions */ hashtable->inputslot = slot; hashtable->in_hash_funcs = hashtable->tab_hash_funcs; hashtable->cur_eq_funcs = hashtable->tab_eq_funcs; key = NULL; /* flag to reference inputslot */ if (isnew) { entry = tuplehash_insert(hashtable->hashtab, key, &found); if (found) { /* found pre-existing entry */ *isnew = false; } else { /* created new entry */ *isnew = true; /* zero caller data */ entry->additional = NULL; MemoryContextSwitchTo(hashtable->tablecxt); /* Copy the first tuple into the table context */ entry->firstTuple = ExecCopySlotMinimalTuple(slot); } } else { entry = tuplehash_lookup(hashtable->hashtab, key); } MemoryContextSwitchTo(oldContext); return entry; } /* * Search for a hashtable entry matching the given tuple. No entry is * created if there's not a match. This is similar to the non-creating * case of LookupTupleHashEntry, except that it supports cross-type * comparisons, in which the given tuple is not of the same type as the * table entries. The caller must provide the hash functions to use for * the input tuple, as well as the equality functions, since these may be * different from the table's internal functions. */ TupleHashEntry FindTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot, FmgrInfo *eqfunctions, FmgrInfo *hashfunctions) { TupleHashEntry entry; MemoryContext oldContext; MinimalTuple key; /* Need to run the hash functions in short-lived context */ oldContext = MemoryContextSwitchTo(hashtable->tempcxt); /* Set up data needed by hash and match functions */ hashtable->inputslot = slot; hashtable->in_hash_funcs = hashfunctions; hashtable->cur_eq_funcs = eqfunctions; /* Search the hash table */ key = NULL; /* flag to reference inputslot */ entry = tuplehash_lookup(hashtable->hashtab, key); MemoryContextSwitchTo(oldContext); return entry; } /* * Compute the hash value for a tuple * * The passed-in key is a pointer to TupleHashEntryData. In an actual hash * table entry, the firstTuple field points to a tuple (in MinimalTuple * format). LookupTupleHashEntry sets up a dummy TupleHashEntryData with a * NULL firstTuple field --- that cues us to look at the inputslot instead. * This convention avoids the need to materialize virtual input tuples unless * they actually need to get copied into the table. * * Also, the caller must select an appropriate memory context for running * the hash functions. (dynahash.c doesn't change CurrentMemoryContext.) */ static uint32 TupleHashTableHash(struct tuplehash_hash *tb, const MinimalTuple tuple) { TupleHashTable hashtable = (TupleHashTable) tb->private_data; int numCols = hashtable->numCols; AttrNumber *keyColIdx = hashtable->keyColIdx; uint32 hashkey = hashtable->hash_iv; TupleTableSlot *slot; FmgrInfo *hashfunctions; int i; if (tuple == NULL) { /* Process the current input tuple for the table */ slot = hashtable->inputslot; hashfunctions = hashtable->in_hash_funcs; } else { /* * Process a tuple already stored in the table. * * (this case never actually occurs due to the way simplehash.h is * used, as the hash-value is stored in the entries) */ slot = hashtable->tableslot; ExecStoreMinimalTuple(tuple, slot, false); hashfunctions = hashtable->tab_hash_funcs; } for (i = 0; i < numCols; i++) { AttrNumber att = keyColIdx[i]; Datum attr; bool isNull; /* rotate hashkey left 1 bit at each step */ hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0); attr = slot_getattr(slot, att, &isNull); if (!isNull) /* treat nulls as having hash key 0 */ { uint32 hkey; hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i], attr)); hashkey ^= hkey; } } return hashkey; } /* * See whether two tuples (presumably of the same hash value) match * * As above, the passed pointers are pointers to TupleHashEntryData. * * Also, the caller must select an appropriate memory context for running * the compare functions. (dynahash.c doesn't change CurrentMemoryContext.) */ static int TupleHashTableMatch(struct tuplehash_hash *tb, const MinimalTuple tuple1, const MinimalTuple tuple2) { TupleTableSlot *slot1; TupleTableSlot *slot2; TupleHashTable hashtable = (TupleHashTable) tb->private_data; /* * We assume that simplehash.h will only ever call us with the first * argument being an actual table entry, and the second argument being * LookupTupleHashEntry's dummy TupleHashEntryData. The other direction * could be supported too, but is not currently required. */ Assert(tuple1 != NULL); slot1 = hashtable->tableslot; ExecStoreMinimalTuple(tuple1, slot1, false); Assert(tuple2 == NULL); slot2 = hashtable->inputslot; /* For crosstype comparisons, the inputslot must be first */ if (execTuplesMatch(slot2, slot1, hashtable->numCols, hashtable->keyColIdx, hashtable->cur_eq_funcs, hashtable->tempcxt)) return 0; else return 1; }