/*------------------------------------------------------------------------- * * nodeGatherMerge.c * Scan a plan in multiple workers, and do order-preserving merge. * * Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/backend/executor/nodeGatherMerge.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/relscan.h" #include "access/xact.h" #include "executor/execdebug.h" #include "executor/execParallel.h" #include "executor/nodeGatherMerge.h" #include "executor/nodeSubplan.h" #include "executor/tqueue.h" #include "lib/binaryheap.h" #include "miscadmin.h" #include "utils/memutils.h" #include "utils/rel.h" /* * Tuple array for each worker */ typedef struct GMReaderTupleBuffer { HeapTuple *tuple; int readCounter; int nTuples; bool done; } GMReaderTupleBuffer; /* * When we read tuples from workers, it's a good idea to read several at once * for efficiency when possible: this minimizes context-switching overhead. * But reading too many at a time wastes memory without improving performance. */ #define MAX_TUPLE_STORE 10 static int32 heap_compare_slots(Datum a, Datum b, void *arg); static TupleTableSlot *gather_merge_getnext(GatherMergeState *gm_state); static HeapTuple gm_readnext_tuple(GatherMergeState *gm_state, int nreader, bool nowait, bool *done); static void gather_merge_init(GatherMergeState *gm_state); static void ExecShutdownGatherMergeWorkers(GatherMergeState *node); static bool gather_merge_readnext(GatherMergeState *gm_state, int reader, bool nowait); static void form_tuple_array(GatherMergeState *gm_state, int reader); /* ---------------------------------------------------------------- * ExecInitGather * ---------------------------------------------------------------- */ GatherMergeState * ExecInitGatherMerge(GatherMerge *node, EState *estate, int eflags) { GatherMergeState *gm_state; Plan *outerNode; bool hasoid; TupleDesc tupDesc; /* Gather merge node doesn't have innerPlan node. */ Assert(innerPlan(node) == NULL); /* * create state structure */ gm_state = makeNode(GatherMergeState); gm_state->ps.plan = (Plan *) node; gm_state->ps.state = estate; /* * Miscellaneous initialization * * create expression context for node */ ExecAssignExprContext(estate, &gm_state->ps); /* * initialize child expressions */ gm_state->ps.qual = ExecInitQual(node->plan.qual, &gm_state->ps); /* * tuple table initialization */ ExecInitResultTupleSlot(estate, &gm_state->ps); /* * now initialize outer plan */ outerNode = outerPlan(node); outerPlanState(gm_state) = ExecInitNode(outerNode, estate, eflags); /* * Initialize result tuple type and projection info. */ ExecAssignResultTypeFromTL(&gm_state->ps); ExecAssignProjectionInfo(&gm_state->ps, NULL); gm_state->gm_initialized = false; /* * initialize sort-key information */ if (node->numCols) { int i; gm_state->gm_nkeys = node->numCols; gm_state->gm_sortkeys = palloc0(sizeof(SortSupportData) * node->numCols); for (i = 0; i < node->numCols; i++) { SortSupport sortKey = gm_state->gm_sortkeys + i; sortKey->ssup_cxt = CurrentMemoryContext; sortKey->ssup_collation = node->collations[i]; sortKey->ssup_nulls_first = node->nullsFirst[i]; sortKey->ssup_attno = node->sortColIdx[i]; /* * We don't perform abbreviated key conversion here, for the same * reasons that it isn't used in MergeAppend */ sortKey->abbreviate = false; PrepareSortSupportFromOrderingOp(node->sortOperators[i], sortKey); } } /* * store the tuple descriptor into gather merge state, so we can use it * later while initializing the gather merge slots. */ if (!ExecContextForcesOids(&gm_state->ps, &hasoid)) hasoid = false; tupDesc = ExecTypeFromTL(outerNode->targetlist, hasoid); gm_state->tupDesc = tupDesc; return gm_state; } /* ---------------------------------------------------------------- * ExecGatherMerge(node) * * Scans the relation via multiple workers and returns * the next qualifying tuple. * ---------------------------------------------------------------- */ TupleTableSlot * ExecGatherMerge(GatherMergeState *node) { TupleTableSlot *slot; ExprContext *econtext; int i; /* * As with Gather, we don't launch workers until this node is actually * executed. */ if (!node->initialized) { EState *estate = node->ps.state; GatherMerge *gm = (GatherMerge *) node->ps.plan; /* * Sometimes we might have to run without parallelism; but if parallel * mode is active then we can try to fire up some workers. */ if (gm->num_workers > 0 && IsInParallelMode()) { ParallelContext *pcxt; /* Initialize data structures for workers. */ if (!node->pei) node->pei = ExecInitParallelPlan(node->ps.lefttree, estate, gm->num_workers); /* Try to launch workers. */ pcxt = node->pei->pcxt; LaunchParallelWorkers(pcxt); node->nworkers_launched = pcxt->nworkers_launched; /* Set up tuple queue readers to read the results. */ if (pcxt->nworkers_launched > 0) { node->nreaders = 0; node->reader = palloc(pcxt->nworkers_launched * sizeof(TupleQueueReader *)); Assert(gm->numCols); for (i = 0; i < pcxt->nworkers_launched; ++i) { shm_mq_set_handle(node->pei->tqueue[i], pcxt->worker[i].bgwhandle); node->reader[node->nreaders++] = CreateTupleQueueReader(node->pei->tqueue[i], node->tupDesc); } } else { /* No workers? Then never mind. */ ExecShutdownGatherMergeWorkers(node); } } /* always allow leader to participate */ node->need_to_scan_locally = true; node->initialized = true; } /* * Reset per-tuple memory context to free any expression evaluation * storage allocated in the previous tuple cycle. */ econtext = node->ps.ps_ExprContext; ResetExprContext(econtext); /* * Get next tuple, either from one of our workers, or by running the * plan ourselves. */ slot = gather_merge_getnext(node); if (TupIsNull(slot)) return NULL; /* * form the result tuple using ExecProject(), and return it --- unless * the projection produces an empty set, in which case we must loop * back around for another tuple */ econtext->ecxt_outertuple = slot; return ExecProject(node->ps.ps_ProjInfo); } /* ---------------------------------------------------------------- * ExecEndGatherMerge * * frees any storage allocated through C routines. * ---------------------------------------------------------------- */ void ExecEndGatherMerge(GatherMergeState *node) { ExecEndNode(outerPlanState(node)); /* let children clean up first */ ExecShutdownGatherMerge(node); ExecFreeExprContext(&node->ps); ExecClearTuple(node->ps.ps_ResultTupleSlot); } /* ---------------------------------------------------------------- * ExecShutdownGatherMerge * * Destroy the setup for parallel workers including parallel context. * Collect all the stats after workers are stopped, else some work * done by workers won't be accounted. * ---------------------------------------------------------------- */ void ExecShutdownGatherMerge(GatherMergeState *node) { ExecShutdownGatherMergeWorkers(node); /* Now destroy the parallel context. */ if (node->pei != NULL) { ExecParallelCleanup(node->pei); node->pei = NULL; } } /* ---------------------------------------------------------------- * ExecShutdownGatherMergeWorkers * * Destroy the parallel workers. Collect all the stats after * workers are stopped, else some work done by workers won't be * accounted. * ---------------------------------------------------------------- */ static void ExecShutdownGatherMergeWorkers(GatherMergeState *node) { /* Shut down tuple queue readers before shutting down workers. */ if (node->reader != NULL) { int i; for (i = 0; i < node->nreaders; ++i) if (node->reader[i]) DestroyTupleQueueReader(node->reader[i]); pfree(node->reader); node->reader = NULL; } /* Now shut down the workers. */ if (node->pei != NULL) ExecParallelFinish(node->pei); } /* ---------------------------------------------------------------- * ExecReScanGatherMerge * * Re-initialize the workers and rescans a relation via them. * ---------------------------------------------------------------- */ void ExecReScanGatherMerge(GatherMergeState *node) { /* * Re-initialize the parallel workers to perform rescan of relation. We * want to gracefully shutdown all the workers so that they should be able * to propagate any error or other information to master backend before * dying. Parallel context will be reused for rescan. */ ExecShutdownGatherMergeWorkers(node); node->initialized = false; if (node->pei) ExecParallelReinitialize(node->pei); ExecReScan(node->ps.lefttree); } /* * Initialize the Gather merge tuple read. * * Pull at least a single tuple from each worker + leader and set up the heap. */ static void gather_merge_init(GatherMergeState *gm_state) { int nreaders = gm_state->nreaders; bool initialize = true; int i; /* * Allocate gm_slots for the number of worker + one more slot for leader. * Last slot is always for leader. Leader always calls ExecProcNode() to * read the tuple which will return the TupleTableSlot. Later it will * directly get assigned to gm_slot. So just initialize leader gm_slot * with NULL. For other slots below code will call * ExecInitExtraTupleSlot() which will do the initialization of worker * slots. */ gm_state->gm_slots = palloc((gm_state->nreaders + 1) * sizeof(TupleTableSlot *)); gm_state->gm_slots[gm_state->nreaders] = NULL; /* Initialize the tuple slot and tuple array for each worker */ gm_state->gm_tuple_buffers = (GMReaderTupleBuffer *) palloc0(sizeof(GMReaderTupleBuffer) * (gm_state->nreaders + 1)); for (i = 0; i < gm_state->nreaders; i++) { /* Allocate the tuple array with MAX_TUPLE_STORE size */ gm_state->gm_tuple_buffers[i].tuple = (HeapTuple *) palloc0(sizeof(HeapTuple) * MAX_TUPLE_STORE); /* Initialize slot for worker */ gm_state->gm_slots[i] = ExecInitExtraTupleSlot(gm_state->ps.state); ExecSetSlotDescriptor(gm_state->gm_slots[i], gm_state->tupDesc); } /* Allocate the resources for the merge */ gm_state->gm_heap = binaryheap_allocate(gm_state->nreaders + 1, heap_compare_slots, gm_state); /* * First, try to read a tuple from each worker (including leader) in * nowait mode, so that we initialize read from each worker as well as * leader. After this, if all active workers are unable to produce a * tuple, then re-read and this time use wait mode. For workers that were * able to produce a tuple in the earlier loop and are still active, just * try to fill the tuple array if more tuples are avaiable. */ reread: for (i = 0; i < nreaders + 1; i++) { if (!gm_state->gm_tuple_buffers[i].done && (TupIsNull(gm_state->gm_slots[i]) || gm_state->gm_slots[i]->tts_isempty)) { if (gather_merge_readnext(gm_state, i, initialize)) { binaryheap_add_unordered(gm_state->gm_heap, Int32GetDatum(i)); } } else form_tuple_array(gm_state, i); } initialize = false; for (i = 0; i < nreaders; i++) if (!gm_state->gm_tuple_buffers[i].done && (TupIsNull(gm_state->gm_slots[i]) || gm_state->gm_slots[i]->tts_isempty)) goto reread; binaryheap_build(gm_state->gm_heap); gm_state->gm_initialized = true; } /* * Clear out the tuple table slots for each gather merge input. */ static void gather_merge_clear_slots(GatherMergeState *gm_state) { int i; for (i = 0; i < gm_state->nreaders; i++) { pfree(gm_state->gm_tuple_buffers[i].tuple); gm_state->gm_slots[i] = ExecClearTuple(gm_state->gm_slots[i]); } /* Free tuple array as we don't need it any more */ pfree(gm_state->gm_tuple_buffers); /* Free the binaryheap, which was created for sort */ binaryheap_free(gm_state->gm_heap); } /* * Read the next tuple for gather merge. * * Fetch the sorted tuple out of the heap. */ static TupleTableSlot * gather_merge_getnext(GatherMergeState *gm_state) { int i; if (!gm_state->gm_initialized) { /* * First time through: pull the first tuple from each participant, and * set up the heap. */ gather_merge_init(gm_state); } else { /* * Otherwise, pull the next tuple from whichever participant we * returned from last time, and reinsert that participant's index into * the heap, because it might now compare differently against the * other elements of the heap. */ i = DatumGetInt32(binaryheap_first(gm_state->gm_heap)); if (gather_merge_readnext(gm_state, i, false)) binaryheap_replace_first(gm_state->gm_heap, Int32GetDatum(i)); else (void) binaryheap_remove_first(gm_state->gm_heap); } if (binaryheap_empty(gm_state->gm_heap)) { /* All the queues are exhausted, and so is the heap */ gather_merge_clear_slots(gm_state); return NULL; } else { /* Return next tuple from whichever participant has the leading one */ i = DatumGetInt32(binaryheap_first(gm_state->gm_heap)); return gm_state->gm_slots[i]; } } /* * Read the tuple for given reader in nowait mode, and form the tuple array. */ static void form_tuple_array(GatherMergeState *gm_state, int reader) { GMReaderTupleBuffer *tuple_buffer = &gm_state->gm_tuple_buffers[reader]; int i; /* Last slot is for leader and we don't build tuple array for leader */ if (reader == gm_state->nreaders) return; /* * We here because we already read all the tuples from the tuple array, so * initialize the counter to zero. */ if (tuple_buffer->nTuples == tuple_buffer->readCounter) tuple_buffer->nTuples = tuple_buffer->readCounter = 0; /* Tuple array is already full? */ if (tuple_buffer->nTuples == MAX_TUPLE_STORE) return; for (i = tuple_buffer->nTuples; i < MAX_TUPLE_STORE; i++) { tuple_buffer->tuple[i] = heap_copytuple(gm_readnext_tuple(gm_state, reader, false, &tuple_buffer->done)); if (!HeapTupleIsValid(tuple_buffer->tuple[i])) break; tuple_buffer->nTuples++; } } /* * Store the next tuple for a given reader into the appropriate slot. * * Returns false if the reader is exhausted, and true otherwise. */ static bool gather_merge_readnext(GatherMergeState *gm_state, int reader, bool nowait) { GMReaderTupleBuffer *tuple_buffer; HeapTuple tup = NULL; /* * If we're being asked to generate a tuple from the leader, then we * just call ExecProcNode as normal to produce one. */ if (gm_state->nreaders == reader) { if (gm_state->need_to_scan_locally) { PlanState *outerPlan = outerPlanState(gm_state); TupleTableSlot *outerTupleSlot; outerTupleSlot = ExecProcNode(outerPlan); if (!TupIsNull(outerTupleSlot)) { gm_state->gm_slots[reader] = outerTupleSlot; return true; } gm_state->gm_tuple_buffers[reader].done = true; gm_state->need_to_scan_locally = false; } return false; } /* Otherwise, check the state of the relevant tuple buffer. */ tuple_buffer = &gm_state->gm_tuple_buffers[reader]; if (tuple_buffer->nTuples > tuple_buffer->readCounter) { /* Return any tuple previously read that is still buffered. */ tuple_buffer = &gm_state->gm_tuple_buffers[reader]; tup = tuple_buffer->tuple[tuple_buffer->readCounter++]; } else if (tuple_buffer->done) { /* Reader is known to be exhausted. */ DestroyTupleQueueReader(gm_state->reader[reader]); gm_state->reader[reader] = NULL; return false; } else { /* Read and buffer next tuple. */ tup = heap_copytuple(gm_readnext_tuple(gm_state, reader, nowait, &tuple_buffer->done)); /* * Attempt to read more tuples in nowait mode and store them in * the tuple array. */ if (HeapTupleIsValid(tup)) form_tuple_array(gm_state, reader); else return false; } Assert(HeapTupleIsValid(tup)); /* Build the TupleTableSlot for the given tuple */ ExecStoreTuple(tup, /* tuple to store */ gm_state->gm_slots[reader], /* slot in which to store the * tuple */ InvalidBuffer, /* buffer associated with this tuple */ true); /* pfree this pointer if not from heap */ return true; } /* * Attempt to read a tuple from given reader. */ static HeapTuple gm_readnext_tuple(GatherMergeState *gm_state, int nreader, bool nowait, bool *done) { TupleQueueReader *reader; HeapTuple tup = NULL; MemoryContext oldContext; MemoryContext tupleContext; tupleContext = gm_state->ps.ps_ExprContext->ecxt_per_tuple_memory; if (done != NULL) *done = false; /* Check for async events, particularly messages from workers. */ CHECK_FOR_INTERRUPTS(); /* Attempt to read a tuple. */ reader = gm_state->reader[nreader]; /* Run TupleQueueReaders in per-tuple context */ oldContext = MemoryContextSwitchTo(tupleContext); tup = TupleQueueReaderNext(reader, nowait, done); MemoryContextSwitchTo(oldContext); return tup; } /* * We have one slot for each item in the heap array. We use SlotNumber * to store slot indexes. This doesn't actually provide any formal * type-safety, but it makes the code more self-documenting. */ typedef int32 SlotNumber; /* * Compare the tuples in the two given slots. */ static int32 heap_compare_slots(Datum a, Datum b, void *arg) { GatherMergeState *node = (GatherMergeState *) arg; SlotNumber slot1 = DatumGetInt32(a); SlotNumber slot2 = DatumGetInt32(b); TupleTableSlot *s1 = node->gm_slots[slot1]; TupleTableSlot *s2 = node->gm_slots[slot2]; int nkey; Assert(!TupIsNull(s1)); Assert(!TupIsNull(s2)); for (nkey = 0; nkey < node->gm_nkeys; nkey++) { SortSupport sortKey = node->gm_sortkeys + nkey; AttrNumber attno = sortKey->ssup_attno; Datum datum1, datum2; bool isNull1, isNull2; int compare; datum1 = slot_getattr(s1, attno, &isNull1); datum2 = slot_getattr(s2, attno, &isNull2); compare = ApplySortComparator(datum1, isNull1, datum2, isNull2, sortKey); if (compare != 0) return -compare; } return 0; }