/*------------------------------------------------------------------------- * * timestamp.c * Functions for the built-in SQL92 types "timestamp" and "interval". * * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/utils/adt/timestamp.c,v 1.83 2003/04/07 15:04:03 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include #include #include "access/hash.h" #include "access/xact.h" #include "catalog/pg_type.h" #include "miscadmin.h" #include "utils/array.h" #include "utils/builtins.h" /* * gcc's -ffast-math switch breaks routines that expect exact results from * expressions like timeval / 3600, where timeval is double. */ #ifdef __FAST_MATH__ #error -ffast-math is known to break this code #endif #ifdef HAVE_INT64_TIMESTAMP static int64 time2t(const int hour, const int min, const int sec, const fsec_t fsec); #else static double time2t(const int hour, const int min, const int sec, const fsec_t fsec); #endif static int EncodeSpecialTimestamp(Timestamp dt, char *str); static Timestamp dt2local(Timestamp dt, int timezone); static void AdjustTimestampForTypmod(Timestamp *time, int32 typmod); static void AdjustIntervalForTypmod(Interval *interval, int32 typmod); /***************************************************************************** * USER I/O ROUTINES * *****************************************************************************/ /* timestamp_in() * Convert a string to internal form. */ Datum timestamp_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); Timestamp result; fsec_t fsec; struct tm tt, *tm = &tt; int tz; int dtype; int nf; char *field[MAXDATEFIELDS]; int ftype[MAXDATEFIELDS]; char lowstr[MAXDATELEN + MAXDATEFIELDS]; if (strlen(str) >= sizeof(lowstr)) elog(ERROR, "Bad timestamp external representation (too long) '%s'", str); if ((ParseDateTime(str, lowstr, field, ftype, MAXDATEFIELDS, &nf) != 0) || (DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz) != 0)) elog(ERROR, "Bad timestamp external representation '%s'", str); switch (dtype) { case DTK_DATE: if (tm2timestamp(tm, fsec, NULL, &result) != 0) elog(ERROR, "TIMESTAMP out of range '%s'", str); break; case DTK_EPOCH: result = SetEpochTimestamp(); break; case DTK_LATE: TIMESTAMP_NOEND(result); break; case DTK_EARLY: TIMESTAMP_NOBEGIN(result); break; case DTK_INVALID: elog(ERROR, "TIMESTAMP '%s' no longer supported", str); TIMESTAMP_NOEND(result); break; default: elog(ERROR, "TIMESTAMP '%s' not parsed; internal coding error", str); TIMESTAMP_NOEND(result); } AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMP(result); } /* timestamp_out() * Convert a timestamp to external form. */ Datum timestamp_out(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); char *result; struct tm tt, *tm = &tt; fsec_t fsec; char *tzn = NULL; char buf[MAXDATELEN + 1]; if (TIMESTAMP_NOT_FINITE(timestamp)) EncodeSpecialTimestamp(timestamp, buf); else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) == 0) EncodeDateTime(tm, fsec, NULL, &tzn, DateStyle, buf); else elog(ERROR, "Unable to format timestamp; internal coding error"); result = pstrdup(buf); PG_RETURN_CSTRING(result); } /* timestamp_scale() * Adjust time type for specified scale factor. * Used by PostgreSQL type system to stuff columns. */ Datum timestamp_scale(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); int32 typmod = PG_GETARG_INT32(1); Timestamp result; result = timestamp; AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMP(result); } static void AdjustTimestampForTypmod(Timestamp *time, int32 typmod) { #ifdef HAVE_INT64_TIMESTAMP static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = { INT64CONST(1000000), INT64CONST(100000), INT64CONST(10000), INT64CONST(1000), INT64CONST(100), INT64CONST(10), INT64CONST(1) }; static const int64 TimestampOffsets[MAX_TIMESTAMP_PRECISION + 1] = { INT64CONST(500000), INT64CONST(50000), INT64CONST(5000), INT64CONST(500), INT64CONST(50), INT64CONST(5), INT64CONST(0) }; #else static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = { 1, 10, 100, 1000, 10000, 100000, 1000000 }; #endif if (!TIMESTAMP_NOT_FINITE(*time) && (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION)) { if ((typmod < 0) || (typmod > MAX_TIMESTAMP_PRECISION)) elog(ERROR, "TIMESTAMP(%d) precision must be between %d and %d", typmod, 0, MAX_TIMESTAMP_PRECISION); /* * Note: this round-to-nearest code is not completely consistent * about rounding values that are exactly halfway between integral * values. On most platforms, rint() will implement round-to-nearest-even, * but the integer code always rounds up (away from zero). Is it * worth trying to be consistent? */ #ifdef HAVE_INT64_TIMESTAMP if (*time >= INT64CONST(0)) { *time = (((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) * TimestampScales[typmod]); } else { *time = - ((((- *time) + TimestampOffsets[typmod]) / TimestampScales[typmod]) * TimestampScales[typmod]); } #else *time = (rint(((double) *time) * TimestampScales[typmod]) / TimestampScales[typmod]); #endif } } /* timestamptz_in() * Convert a string to internal form. */ Datum timestamptz_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); TimestampTz result; fsec_t fsec; struct tm tt, *tm = &tt; int tz; int dtype; int nf; char *field[MAXDATEFIELDS]; int ftype[MAXDATEFIELDS]; char lowstr[MAXDATELEN + MAXDATEFIELDS]; if (strlen(str) >= sizeof(lowstr)) elog(ERROR, "Bad timestamp with time zone" " external representation (too long) '%s'", str); if ((ParseDateTime(str, lowstr, field, ftype, MAXDATEFIELDS, &nf) != 0) || (DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz) != 0)) elog(ERROR, "Bad timestamp external representation '%s'", str); switch (dtype) { case DTK_DATE: if (tm2timestamp(tm, fsec, &tz, &result) != 0) elog(ERROR, "TIMESTAMP WITH TIME ZONE out of range '%s'", str); break; case DTK_EPOCH: result = SetEpochTimestamp(); break; case DTK_LATE: TIMESTAMP_NOEND(result); break; case DTK_EARLY: TIMESTAMP_NOBEGIN(result); break; case DTK_INVALID: elog(ERROR, "TIMESTAMP WITH TIME ZONE '%s' no longer supported", str); TIMESTAMP_NOEND(result); break; default: elog(ERROR, "TIMESTAMP WITH TIME ZONE '%s' not parsed; internal coding error", str); TIMESTAMP_NOEND(result); } AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMPTZ(result); } /* timestamptz_out() * Convert a timestamp to external form. */ Datum timestamptz_out(PG_FUNCTION_ARGS) { TimestampTz dt = PG_GETARG_TIMESTAMP(0); char *result; int tz; struct tm tt, *tm = &tt; fsec_t fsec; char *tzn; char buf[MAXDATELEN + 1]; if (TIMESTAMP_NOT_FINITE(dt)) EncodeSpecialTimestamp(dt, buf); else if (timestamp2tm(dt, &tz, tm, &fsec, &tzn) == 0) EncodeDateTime(tm, fsec, &tz, &tzn, DateStyle, buf); else elog(ERROR, "Unable to format timestamp with time zone; internal coding error"); result = pstrdup(buf); PG_RETURN_CSTRING(result); } /* timestamptz_scale() * Adjust time type for specified scale factor. * Used by PostgreSQL type system to stuff columns. */ Datum timestamptz_scale(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMP(0); int32 typmod = PG_GETARG_INT32(1); TimestampTz result; result = timestamp; AdjustTimestampForTypmod(&result, typmod); PG_RETURN_TIMESTAMPTZ(result); } /* interval_in() * Convert a string to internal form. * * External format(s): * Uses the generic date/time parsing and decoding routines. */ Datum interval_in(PG_FUNCTION_ARGS) { char *str = PG_GETARG_CSTRING(0); #ifdef NOT_USED Oid typelem = PG_GETARG_OID(1); #endif int32 typmod = PG_GETARG_INT32(2); Interval *result; fsec_t fsec; struct tm tt, *tm = &tt; int dtype; int nf; char *field[MAXDATEFIELDS]; int ftype[MAXDATEFIELDS]; char lowstr[MAXDATELEN + MAXDATEFIELDS]; tm->tm_year = 0; tm->tm_mon = 0; tm->tm_mday = 0; tm->tm_hour = 0; tm->tm_min = 0; tm->tm_sec = 0; fsec = 0; if (strlen(str) >= sizeof(lowstr)) elog(ERROR, "Bad interval external representation (too long) '%s'", str); if ((ParseDateTime(str, lowstr, field, ftype, MAXDATEFIELDS, &nf) != 0) || (DecodeInterval(field, ftype, nf, &dtype, tm, &fsec) != 0)) elog(ERROR, "Bad interval external representation '%s'", str); result = (Interval *) palloc(sizeof(Interval)); switch (dtype) { case DTK_DELTA: if (tm2interval(tm, fsec, result) != 0) elog(ERROR, "Bad interval external representation '%s'", str); AdjustIntervalForTypmod(result, typmod); break; case DTK_INVALID: elog(ERROR, "Interval '%s' no longer supported", str); break; default: elog(ERROR, "Interval '%s' not parsed; internal coding error", str); } PG_RETURN_INTERVAL_P(result); } /* interval_out() * Convert a time span to external form. */ Datum interval_out(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); char *result; struct tm tt, *tm = &tt; fsec_t fsec; char buf[MAXDATELEN + 1]; if (interval2tm(*span, tm, &fsec) != 0) elog(ERROR, "Unable to encode interval; internal coding error"); if (EncodeInterval(tm, fsec, DateStyle, buf) != 0) elog(ERROR, "Unable to format interval; internal coding error"); result = pstrdup(buf); PG_RETURN_CSTRING(result); } /* interval_scale() * Adjust interval type for specified fields. * Used by PostgreSQL type system to stuff columns. */ Datum interval_scale(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); int32 typmod = PG_GETARG_INT32(1); Interval *result; result = palloc(sizeof(Interval)); *result = *interval; AdjustIntervalForTypmod(result, typmod); PG_RETURN_INTERVAL_P(result); } static void AdjustIntervalForTypmod(Interval *interval, int32 typmod) { #ifdef HAVE_INT64_TIMESTAMP static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = { INT64CONST(1000000), INT64CONST(100000), INT64CONST(10000), INT64CONST(1000), INT64CONST(100), INT64CONST(10), INT64CONST(1) }; static const int64 IntervalOffsets[MAX_INTERVAL_PRECISION + 1] = { INT64CONST(500000), INT64CONST(50000), INT64CONST(5000), INT64CONST(500), INT64CONST(50), INT64CONST(5), INT64CONST(0) }; #else static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = { 1, 10, 100, 1000, 10000, 100000, 1000000 }; #endif /* * Unspecified range and precision? Then not necessary to adjust. * Setting typmod to -1 is the convention for all types. */ if (typmod != -1) { int range = INTERVAL_RANGE(typmod); int precision = INTERVAL_PRECISION(typmod); if (range == INTERVAL_FULL_RANGE) { /* Do nothing... */ } else if (range == INTERVAL_MASK(YEAR)) { interval->month = ((interval->month / 12) * 12); interval->time = 0; } else if (range == INTERVAL_MASK(MONTH)) { interval->month %= 12; interval->time = 0; } /* YEAR TO MONTH */ else if (range == (INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH))) interval->time = 0; else if (range == INTERVAL_MASK(DAY)) { interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP interval->time = (((int) (interval->time / INT64CONST(86400000000))) * INT64CONST(86400000000)); #else interval->time = (((int) (interval->time / 86400)) * 86400); #endif } else if (range == INTERVAL_MASK(HOUR)) { #ifdef HAVE_INT64_TIMESTAMP int64 day; #else double day; #endif interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP day = (interval->time / INT64CONST(86400000000)); interval->time -= (day * INT64CONST(86400000000)); interval->time = ((interval->time / INT64CONST(3600000000)) * INT64CONST(3600000000)); #else TMODULO(interval->time, day, 86400.0); interval->time = (((int) (interval->time / 3600)) * 3600.0); #endif } else if (range == INTERVAL_MASK(MINUTE)) { #ifdef HAVE_INT64_TIMESTAMP int64 hour; #else double hour; #endif interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP hour = (interval->time / INT64CONST(3600000000)); interval->time -= (hour * INT64CONST(3600000000)); interval->time = ((interval->time / INT64CONST(60000000)) * INT64CONST(60000000)); #else TMODULO(interval->time, hour, 3600.0); interval->time = (((int) (interval->time / 60)) * 60); #endif } else if (range == INTERVAL_MASK(SECOND)) { #ifdef HAVE_INT64_TIMESTAMP int64 minute; #else double minute; #endif interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP minute = (interval->time / INT64CONST(60000000)); interval->time -= (minute * INT64CONST(60000000)); #else TMODULO(interval->time, minute, 60.0); /* interval->time = (int)(interval->time); */ #endif } /* DAY TO HOUR */ else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR))) { interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP interval->time = ((interval->time / INT64CONST(3600000000)) * INT64CONST(3600000000)); #else interval->time = (((int) (interval->time / 3600)) * 3600); #endif } /* DAY TO MINUTE */ else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE))) { interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP interval->time = ((interval->time / INT64CONST(60000000)) * INT64CONST(60000000)); #else interval->time = (((int) (interval->time / 60)) * 60); #endif } /* DAY TO SECOND */ else if (range == (INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) interval->month = 0; /* HOUR TO MINUTE */ else if (range == (INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE))) { #ifdef HAVE_INT64_TIMESTAMP int64 day; #else double day; #endif interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP day = (interval->time / INT64CONST(86400000000)); interval->time -= (day * INT64CONST(86400000000)); interval->time = ((interval->time / INT64CONST(60000000)) * INT64CONST(60000000)); #else TMODULO(interval->time, day, 86400.0); interval->time = (((int) (interval->time / 60)) * 60); #endif } /* HOUR TO SECOND */ else if (range == (INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) { #ifdef HAVE_INT64_TIMESTAMP int64 day; #else double day; #endif interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP day = (interval->time / INT64CONST(86400000000)); interval->time -= (day * INT64CONST(86400000000)); #else TMODULO(interval->time, day, 86400.0); #endif } /* MINUTE TO SECOND */ else if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) { #ifdef HAVE_INT64_TIMESTAMP int64 hour; #else double hour; #endif interval->month = 0; #ifdef HAVE_INT64_TIMESTAMP hour = (interval->time / INT64CONST(3600000000)); interval->time -= (hour * INT64CONST(3600000000)); #else TMODULO(interval->time, hour, 3600.0); #endif } else elog(ERROR, "AdjustIntervalForTypmod(): internal coding error"); /* Need to adjust precision? If not, don't even try! */ if (precision != INTERVAL_FULL_PRECISION) { if ((precision < 0) || (precision > MAX_INTERVAL_PRECISION)) elog(ERROR, "INTERVAL(%d) precision must be between %d and %d", precision, 0, MAX_INTERVAL_PRECISION); /* * Note: this round-to-nearest code is not completely consistent * about rounding values that are exactly halfway between integral * values. On most platforms, rint() will implement round-to-nearest-even, * but the integer code always rounds up (away from zero). Is it * worth trying to be consistent? */ #ifdef HAVE_INT64_TIMESTAMP if (interval->time >= INT64CONST(0)) { interval->time = (((interval->time + IntervalOffsets[precision]) / IntervalScales[precision]) * IntervalScales[precision]); } else { interval->time = - (((-interval->time + IntervalOffsets[precision]) / IntervalScales[precision]) * IntervalScales[precision]); } #else interval->time = (rint(((double) interval->time) * IntervalScales[precision]) / IntervalScales[precision]); #endif } } return; } /* EncodeSpecialTimestamp() * Convert reserved timestamp data type to string. */ static int EncodeSpecialTimestamp(Timestamp dt, char *str) { if (TIMESTAMP_IS_NOBEGIN(dt)) strcpy(str, EARLY); else if (TIMESTAMP_IS_NOEND(dt)) strcpy(str, LATE); else return FALSE; return TRUE; } /* EncodeSpecialTimestamp() */ Datum now(PG_FUNCTION_ARGS) { TimestampTz result; AbsoluteTime sec; int usec; sec = GetCurrentTransactionStartTimeUsec(&usec); result = AbsoluteTimeUsecToTimestampTz(sec, usec); PG_RETURN_TIMESTAMPTZ(result); } void dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec) { #ifdef HAVE_INT64_TIMESTAMP int64 time; #else double time; #endif time = jd; #ifdef HAVE_INT64_TIMESTAMP *hour = (time / INT64CONST(3600000000)); time -= ((*hour) * INT64CONST(3600000000)); *min = (time / INT64CONST(60000000)); time -= ((*min) * INT64CONST(60000000)); *sec = (time / INT64CONST(1000000)); *fsec = (time - (*sec * INT64CONST(1000000))); #else *hour = (time / 3600); time -= ((*hour) * 3600); *min = (time / 60); time -= ((*min) * 60); *sec = time; *fsec = JROUND(time - *sec); #endif return; } /* dt2time() */ /* timestamp2tm() * Convert timestamp data type to POSIX time structure. * Note that year is _not_ 1900-based, but is an explicit full value. * Also, month is one-based, _not_ zero-based. * Returns: * 0 on success * -1 on out of range * * For dates within the system-supported time_t range, convert to the * local time zone. If out of this range, leave as GMT. - tgl 97/05/27 */ int timestamp2tm(Timestamp dt, int *tzp, struct tm * tm, fsec_t *fsec, char **tzn) { #ifdef HAVE_INT64_TIMESTAMP int date, date0; int64 time; #else double date, date0; double time; #endif time_t utime; #if defined(HAVE_TM_ZONE) || defined(HAVE_INT_TIMEZONE) struct tm *tx; #endif date0 = POSTGRES_EPOCH_JDATE; /* * If HasCTZSet is true then we have a brute force time zone * specified. Go ahead and rotate to the local time zone since we will * later bypass any calls which adjust the tm fields. */ if (HasCTZSet && (tzp != NULL)) { #ifdef HAVE_INT64_TIMESTAMP dt -= (CTimeZone * INT64CONST(1000000)); #else dt -= CTimeZone; #endif } time = dt; #ifdef HAVE_INT64_TIMESTAMP TMODULO(time, date, INT64CONST(86400000000)); if (time < INT64CONST(0)) { time += INT64CONST(86400000000); date -= 1; } #else TMODULO(time, date, 86400e0); if (time < 0) { time += 86400; date -= 1; } #endif /* Julian day routine does not work for negative Julian days */ if (date < -date0) return -1; /* add offset to go from J2000 back to standard Julian date */ date += date0; j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec); if (tzp != NULL) { /* * We have a brute force time zone per SQL99? Then use it without * change since we have already rotated to the time zone. */ if (HasCTZSet) { *tzp = CTimeZone; tm->tm_isdst = 0; #if defined(HAVE_TM_ZONE) tm->tm_gmtoff = CTimeZone; tm->tm_zone = NULL; #endif if (tzn != NULL) *tzn = NULL; } /* * Does this fall within the capabilities of the localtime() * interface? Then use this to rotate to the local time zone. */ else if (IS_VALID_UTIME(tm->tm_year, tm->tm_mon, tm->tm_mday)) { #ifdef HAVE_INT64_TIMESTAMP utime = ((dt / INT64CONST(1000000)) + ((date0 - UNIX_EPOCH_JDATE) * INT64CONST(86400))); #else utime = (dt + ((date0 - UNIX_EPOCH_JDATE) * 86400)); #endif #if defined(HAVE_TM_ZONE) || defined(HAVE_INT_TIMEZONE) tx = localtime(&utime); tm->tm_year = tx->tm_year + 1900; tm->tm_mon = tx->tm_mon + 1; tm->tm_mday = tx->tm_mday; tm->tm_hour = tx->tm_hour; tm->tm_min = tx->tm_min; #if NOT_USED /* XXX HACK * Argh! My Linux box puts in a 1 second offset for dates less than 1970 * but only if the seconds field was non-zero. So, don't copy the seconds * field and instead carry forward from the original - thomas 97/06/18 * Note that GNU/Linux uses the standard freeware zic package as do * many other platforms so this may not be GNU/Linux/ix86-specific. * Still shows a problem on my up to date Linux box - thomas 2001-01-17 */ tm->tm_sec = tx->tm_sec; #endif tm->tm_isdst = tx->tm_isdst; #if defined(HAVE_TM_ZONE) tm->tm_gmtoff = tx->tm_gmtoff; tm->tm_zone = tx->tm_zone; *tzp = -(tm->tm_gmtoff); /* tm_gmtoff is Sun/DEC-ism */ if (tzn != NULL) *tzn = (char *) tm->tm_zone; #elif defined(HAVE_INT_TIMEZONE) *tzp = ((tm->tm_isdst > 0) ? (TIMEZONE_GLOBAL - 3600) : TIMEZONE_GLOBAL); if (tzn != NULL) *tzn = tzname[(tm->tm_isdst > 0)]; #endif #else /* not (HAVE_TM_ZONE || HAVE_INT_TIMEZONE) */ *tzp = 0; /* Mark this as *no* time zone available */ tm->tm_isdst = -1; if (tzn != NULL) *tzn = NULL; #endif } else { *tzp = 0; /* Mark this as *no* time zone available */ tm->tm_isdst = -1; if (tzn != NULL) *tzn = NULL; } } else { tm->tm_isdst = -1; if (tzn != NULL) *tzn = NULL; } return 0; } /* timestamp2tm() */ /* tm2timestamp() * Convert a tm structure to a timestamp data type. * Note that year is _not_ 1900-based, but is an explicit full value. * Also, month is one-based, _not_ zero-based. */ int tm2timestamp(struct tm * tm, fsec_t fsec, int *tzp, Timestamp *result) { #ifdef HAVE_INT64_TIMESTAMP int date; int64 time; #else double date, time; #endif /* Julian day routines are not correct for negative Julian days */ if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday)) return -1; date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE; time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec); #ifdef HAVE_INT64_TIMESTAMP *result = ((date * INT64CONST(86400000000)) + time); if ((*result < 0 && date >= 0) || (*result >= 0 && date < 0)) elog(ERROR, "TIMESTAMP out of range '%04d-%02d-%02d'", tm->tm_year, tm->tm_mon, tm->tm_mday); #else *result = ((date * 86400) + time); #endif if (tzp != NULL) *result = dt2local(*result, -(*tzp)); return 0; } /* tm2timestamp() */ /* interval2tm() * Convert a interval data type to a tm structure. */ int interval2tm(Interval span, struct tm * tm, fsec_t *fsec) { #ifdef HAVE_INT64_TIMESTAMP int64 time; #else double time; #endif if (span.month != 0) { tm->tm_year = span.month / 12; tm->tm_mon = span.month % 12; } else { tm->tm_year = 0; tm->tm_mon = 0; } time = span.time; #ifdef HAVE_INT64_TIMESTAMP tm->tm_mday = (time / INT64CONST(86400000000)); time -= (tm->tm_mday * INT64CONST(86400000000)); tm->tm_hour = (time / INT64CONST(3600000000)); time -= (tm->tm_hour * INT64CONST(3600000000)); tm->tm_min = (time / INT64CONST(60000000)); time -= (tm->tm_min * INT64CONST(60000000)); tm->tm_sec = (time / INT64CONST(1000000)); *fsec = (time - (tm->tm_sec * INT64CONST(1000000))); #else TMODULO(time, tm->tm_mday, 86400e0); TMODULO(time, tm->tm_hour, 3600e0); TMODULO(time, tm->tm_min, 60e0); TMODULO(time, tm->tm_sec, 1e0); *fsec = time; #endif return 0; } /* interval2tm() */ int tm2interval(struct tm * tm, fsec_t fsec, Interval *span) { span->month = ((tm->tm_year * 12) + tm->tm_mon); #ifdef HAVE_INT64_TIMESTAMP span->time = ((((((((tm->tm_mday * INT64CONST(24)) + tm->tm_hour) * INT64CONST(60)) + tm->tm_min) * INT64CONST(60)) + tm->tm_sec) * INT64CONST(1000000)) + fsec); #else span->time = ((((((tm->tm_mday * 24.0) + tm->tm_hour) * 60.0) + tm->tm_min) * 60.0) + tm->tm_sec); span->time = JROUND(span->time + fsec); #endif return 0; } /* tm2interval() */ #ifdef HAVE_INT64_TIMESTAMP static int64 time2t(const int hour, const int min, const int sec, const fsec_t fsec) { return ((((((hour * 60) + min) * 60) + sec) * INT64CONST(1000000)) + fsec); } /* time2t() */ #else static double time2t(const int hour, const int min, const int sec, const fsec_t fsec) { return ((((hour * 60) + min) * 60) + sec + fsec); } /* time2t() */ #endif static Timestamp dt2local(Timestamp dt, int tz) { #ifdef HAVE_INT64_TIMESTAMP dt -= (tz * INT64CONST(1000000)); #else dt -= tz; dt = JROUND(dt); #endif return dt; } /* dt2local() */ /***************************************************************************** * PUBLIC ROUTINES * *****************************************************************************/ Datum timestamp_finite(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); PG_RETURN_BOOL(!TIMESTAMP_NOT_FINITE(timestamp)); } Datum interval_finite(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(true); } /*---------------------------------------------------------- * Relational operators for timestamp. *---------------------------------------------------------*/ void GetEpochTime(struct tm * tm) { struct tm *t0; time_t epoch = 0; t0 = gmtime(&epoch); tm->tm_year = t0->tm_year; tm->tm_mon = t0->tm_mon; tm->tm_mday = t0->tm_mday; tm->tm_hour = t0->tm_hour; tm->tm_min = t0->tm_min; tm->tm_sec = t0->tm_sec; if (tm->tm_year < 1900) tm->tm_year += 1900; tm->tm_mon++; return; } /* GetEpochTime() */ Timestamp SetEpochTimestamp(void) { Timestamp dt; struct tm tt, *tm = &tt; GetEpochTime(tm); tm2timestamp(tm, 0, NULL, &dt); return dt; } /* SetEpochTimestamp() */ /* * timestamp_relop - is timestamp1 relop timestamp2 * * collate invalid timestamp at the end */ static int timestamp_cmp_internal(Timestamp dt1, Timestamp dt2) { return ((dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0)); } Datum timestamp_eq(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0); } Datum timestamp_ne(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0); } Datum timestamp_lt(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0); } Datum timestamp_gt(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0); } Datum timestamp_le(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0); } Datum timestamp_ge(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0); } Datum timestamp_cmp(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2)); } /* * interval_relop - is interval1 relop interval2 * * collate invalid interval at the end */ static int interval_cmp_internal(Interval *interval1, Interval *interval2) { #ifdef HAVE_INT64_TIMESTAMP int64 span1, span2; #else double span1, span2; #endif span1 = interval1->time; span2 = interval2->time; #ifdef HAVE_INT64_TIMESTAMP if (interval1->month != 0) span1 += ((interval1->month * INT64CONST(30) * INT64CONST(86400000000))); if (interval2->month != 0) span2 += ((interval2->month * INT64CONST(30) * INT64CONST(86400000000))); #else if (interval1->month != 0) span1 += (interval1->month * (30.0 * 86400)); if (interval2->month != 0) span2 += (interval2->month * (30.0 * 86400)); #endif return ((span1 < span2) ? -1 : (span1 > span2) ? 1 : 0); } Datum interval_eq(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0); } Datum interval_ne(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) != 0); } Datum interval_lt(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) < 0); } Datum interval_gt(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) > 0); } Datum interval_le(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) <= 0); } Datum interval_ge(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) >= 0); } Datum interval_cmp(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); PG_RETURN_INT32(interval_cmp_internal(interval1, interval2)); } /* * interval, being an unusual size, needs a specialized hash function. */ Datum interval_hash(PG_FUNCTION_ARGS) { Interval *key = PG_GETARG_INTERVAL_P(0); /* * Specify hash length as sizeof(double) + sizeof(int4), not as * sizeof(Interval), so that any garbage pad bytes in the structure * won't be included in the hash! */ return hash_any((unsigned char *) key, sizeof(key->time) + sizeof(key->month)); } /* overlaps_timestamp() --- implements the SQL92 OVERLAPS operator. * * Algorithm is per SQL92 spec. This is much harder than you'd think * because the spec requires us to deliver a non-null answer in some cases * where some of the inputs are null. */ Datum overlaps_timestamp(PG_FUNCTION_ARGS) { /* * The arguments are Timestamps, but we leave them as generic Datums * to avoid unnecessary conversions between value and reference forms * --- not to mention possible dereferences of null pointers. */ Datum ts1 = PG_GETARG_DATUM(0); Datum te1 = PG_GETARG_DATUM(1); Datum ts2 = PG_GETARG_DATUM(2); Datum te2 = PG_GETARG_DATUM(3); bool ts1IsNull = PG_ARGISNULL(0); bool te1IsNull = PG_ARGISNULL(1); bool ts2IsNull = PG_ARGISNULL(2); bool te2IsNull = PG_ARGISNULL(3); #define TIMESTAMP_GT(t1,t2) \ DatumGetBool(DirectFunctionCall2(timestamp_gt,t1,t2)) #define TIMESTAMP_LT(t1,t2) \ DatumGetBool(DirectFunctionCall2(timestamp_lt,t1,t2)) /* * If both endpoints of interval 1 are null, the result is null * (unknown). If just one endpoint is null, take ts1 as the non-null * one. Otherwise, take ts1 as the lesser endpoint. */ if (ts1IsNull) { if (te1IsNull) PG_RETURN_NULL(); /* swap null for non-null */ ts1 = te1; te1IsNull = true; } else if (!te1IsNull) { if (TIMESTAMP_GT(ts1, te1)) { Datum tt = ts1; ts1 = te1; te1 = tt; } } /* Likewise for interval 2. */ if (ts2IsNull) { if (te2IsNull) PG_RETURN_NULL(); /* swap null for non-null */ ts2 = te2; te2IsNull = true; } else if (!te2IsNull) { if (TIMESTAMP_GT(ts2, te2)) { Datum tt = ts2; ts2 = te2; te2 = tt; } } /* * At this point neither ts1 nor ts2 is null, so we can consider three * cases: ts1 > ts2, ts1 < ts2, ts1 = ts2 */ if (TIMESTAMP_GT(ts1, ts2)) { /* * This case is ts1 < te2 OR te1 < te2, which may look redundant * but in the presence of nulls it's not quite completely so. */ if (te2IsNull) PG_RETURN_NULL(); if (TIMESTAMP_LT(ts1, te2)) PG_RETURN_BOOL(true); if (te1IsNull) PG_RETURN_NULL(); /* * If te1 is not null then we had ts1 <= te1 above, and we just * found ts1 >= te2, hence te1 >= te2. */ PG_RETURN_BOOL(false); } else if (TIMESTAMP_LT(ts1, ts2)) { /* This case is ts2 < te1 OR te2 < te1 */ if (te1IsNull) PG_RETURN_NULL(); if (TIMESTAMP_LT(ts2, te1)) PG_RETURN_BOOL(true); if (te2IsNull) PG_RETURN_NULL(); /* * If te2 is not null then we had ts2 <= te2 above, and we just * found ts2 >= te1, hence te2 >= te1. */ PG_RETURN_BOOL(false); } else { /* * For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a * rather silly way of saying "true if both are nonnull, else * null". */ if (te1IsNull || te2IsNull) PG_RETURN_NULL(); PG_RETURN_BOOL(true); } #undef TIMESTAMP_GT #undef TIMESTAMP_LT } /*---------------------------------------------------------- * "Arithmetic" operators on date/times. *---------------------------------------------------------*/ /* We are currently sharing some code between timestamp and timestamptz. * The comparison functions are among them. - thomas 2001-09-25 */ Datum timestamp_smaller(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Timestamp result; result = ((dt2 < dt1) ? dt2 : dt1); PG_RETURN_TIMESTAMP(result); } Datum timestamp_larger(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Timestamp result; result = ((dt2 > dt1) ? dt2 : dt1); PG_RETURN_TIMESTAMP(result); } Datum timestamp_mi(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Interval *result; result = (Interval *) palloc(sizeof(Interval)); if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2)) { elog(ERROR, "Unable to subtract non-finite timestamps"); result->time = 0; } else #ifdef HAVE_INT64_TIMESTAMP result->time = (dt1 - dt2); #else result->time = JROUND(dt1 - dt2); #endif result->month = 0; PG_RETURN_INTERVAL_P(result); } /* timestamp_pl_span() * Add a interval to a timestamp data type. * Note that interval has provisions for qualitative year/month * units, so try to do the right thing with them. * To add a month, increment the month, and use the same day of month. * Then, if the next month has fewer days, set the day of month * to the last day of month. * Lastly, add in the "quantitative time". */ Datum timestamp_pl_span(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); Interval *span = PG_GETARG_INTERVAL_P(1); Timestamp result; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (span->month != 0) { struct tm tt, *tm = &tt; fsec_t fsec; if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) == 0) { tm->tm_mon += span->month; if (tm->tm_mon > 12) { tm->tm_year += ((tm->tm_mon - 1) / 12); tm->tm_mon = (((tm->tm_mon - 1) % 12) + 1); } else if (tm->tm_mon < 1) { tm->tm_year += ((tm->tm_mon / 12) - 1); tm->tm_mon = ((tm->tm_mon % 12) + 12); } /* adjust for end of month boundary problems... */ if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]); if (tm2timestamp(tm, fsec, NULL, ×tamp) != 0) { elog(ERROR, "Unable to add TIMESTAMP and INTERVAL" "\n\ttimestamp_pl_span() internal error encoding timestamp"); PG_RETURN_NULL(); } } else { elog(ERROR, "Unable to add TIMESTAMP and INTERVAL" "\n\ttimestamp_pl_span() internal error decoding timestamp"); PG_RETURN_NULL(); } } timestamp += span->time; result = timestamp; } PG_RETURN_TIMESTAMP(result); } Datum timestamp_mi_span(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); Interval *span = PG_GETARG_INTERVAL_P(1); Interval tspan; tspan.month = -span->month; tspan.time = -span->time; return DirectFunctionCall2(timestamp_pl_span, TimestampGetDatum(timestamp), PointerGetDatum(&tspan)); } /* timestamptz_pl_span() * Add a interval to a timestamp with time zone data type. * Note that interval has provisions for qualitative year/month * units, so try to do the right thing with them. * To add a month, increment the month, and use the same day of month. * Then, if the next month has fewer days, set the day of month * to the last day of month. * Lastly, add in the "quantitative time". */ Datum timestamptz_pl_span(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMP(0); Interval *span = PG_GETARG_INTERVAL_P(1); TimestampTz result; int tz; char *tzn; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (span->month != 0) { struct tm tt, *tm = &tt; fsec_t fsec; if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn) == 0) { tm->tm_mon += span->month; if (tm->tm_mon > 12) { tm->tm_year += ((tm->tm_mon - 1) / 12); tm->tm_mon = (((tm->tm_mon - 1) % 12) + 1); } else if (tm->tm_mon < 1) { tm->tm_year += ((tm->tm_mon / 12) - 1); tm->tm_mon = ((tm->tm_mon % 12) + 12); } /* adjust for end of month boundary problems... */ if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]); tz = DetermineLocalTimeZone(tm); if (tm2timestamp(tm, fsec, &tz, ×tamp) != 0) elog(ERROR, "Unable to add TIMESTAMP and INTERVAL" "\n\ttimestamptz_pl_span() internal error encoding timestamp"); } else { elog(ERROR, "Unable to add TIMESTAMP and INTERVAL" "\n\ttimestamptz_pl_span() internal error decoding timestamp"); } } timestamp += span->time; result = timestamp; } PG_RETURN_TIMESTAMP(result); } Datum timestamptz_mi_span(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMP(0); Interval *span = PG_GETARG_INTERVAL_P(1); Interval tspan; tspan.month = -span->month; tspan.time = -span->time; return DirectFunctionCall2(timestamptz_pl_span, TimestampGetDatum(timestamp), PointerGetDatum(&tspan)); } Datum interval_um(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); Interval *result; result = (Interval *) palloc(sizeof(Interval)); result->time = -(interval->time); result->month = -(interval->month); PG_RETURN_INTERVAL_P(result); } Datum interval_smaller(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); Interval *result; #ifdef HAVE_INT64_TIMESTAMP int64 span1, span2; #else double span1, span2; #endif result = (Interval *) palloc(sizeof(Interval)); span1 = interval1->time; span2 = interval2->time; #ifdef HAVE_INT64_TIMESTAMP if (interval1->month != 0) span1 += ((interval1->month * INT64CONST(30) * INT64CONST(86400000000))); if (interval2->month != 0) span2 += ((interval2->month * INT64CONST(30) * INT64CONST(86400000000))); #else if (interval1->month != 0) span1 += (interval1->month * (30.0 * 86400)); if (interval2->month != 0) span2 += (interval2->month * (30.0 * 86400)); #endif if (span2 < span1) { result->time = interval2->time; result->month = interval2->month; } else { result->time = interval1->time; result->month = interval1->month; } PG_RETURN_INTERVAL_P(result); } Datum interval_larger(PG_FUNCTION_ARGS) { Interval *interval1 = PG_GETARG_INTERVAL_P(0); Interval *interval2 = PG_GETARG_INTERVAL_P(1); Interval *result; #ifdef HAVE_INT64_TIMESTAMP int64 span1, span2; #else double span1, span2; #endif result = (Interval *) palloc(sizeof(Interval)); span1 = interval1->time; span2 = interval2->time; #ifdef HAVE_INT64_TIMESTAMP if (interval1->month != 0) span1 += ((interval1->month * INT64CONST(30) * INT64CONST(86400000000))); if (interval2->month != 0) span2 += ((interval2->month * INT64CONST(30) * INT64CONST(86400000000))); #else if (interval1->month != 0) span1 += (interval1->month * (30.0 * 86400)); if (interval2->month != 0) span2 += (interval2->month * (30.0 * 86400)); #endif if (span2 > span1) { result->time = interval2->time; result->month = interval2->month; } else { result->time = interval1->time; result->month = interval1->month; } PG_RETURN_INTERVAL_P(result); } Datum interval_pl(PG_FUNCTION_ARGS) { Interval *span1 = PG_GETARG_INTERVAL_P(0); Interval *span2 = PG_GETARG_INTERVAL_P(1); Interval *result; result = (Interval *) palloc(sizeof(Interval)); result->month = (span1->month + span2->month); #ifdef HAVE_INT64_TIMESTAMP result->time = (span1->time + span2->time); #else result->time = JROUND(span1->time + span2->time); #endif PG_RETURN_INTERVAL_P(result); } Datum interval_mi(PG_FUNCTION_ARGS) { Interval *span1 = PG_GETARG_INTERVAL_P(0); Interval *span2 = PG_GETARG_INTERVAL_P(1); Interval *result; result = (Interval *) palloc(sizeof(Interval)); result->month = (span1->month - span2->month); #ifdef HAVE_INT64_TIMESTAMP result->time = (span1->time - span2->time); #else result->time = JROUND(span1->time - span2->time); #endif PG_RETURN_INTERVAL_P(result); } Datum interval_mul(PG_FUNCTION_ARGS) { Interval *span1 = PG_GETARG_INTERVAL_P(0); float8 factor = PG_GETARG_FLOAT8(1); Interval *result; #ifdef HAVE_INT64_TIMESTAMP int64 months; #else double months; #endif result = (Interval *) palloc(sizeof(Interval)); months = (span1->month * factor); #ifdef HAVE_INT64_TIMESTAMP result->month = months; result->time = (span1->time * factor); result->time += ((months - result->month) * INT64CONST(30) * INT64CONST(86400000000)); #else result->month = rint(months); result->time = JROUND(span1->time * factor); /* evaluate fractional months as 30 days */ result->time += JROUND((months - result->month) * 30 * 86400); #endif PG_RETURN_INTERVAL_P(result); } Datum mul_d_interval(PG_FUNCTION_ARGS) { /* Args are float8 and Interval *, but leave them as generic Datum */ Datum factor = PG_GETARG_DATUM(0); Datum span1 = PG_GETARG_DATUM(1); return DirectFunctionCall2(interval_mul, span1, factor); } Datum interval_div(PG_FUNCTION_ARGS) { Interval *span = PG_GETARG_INTERVAL_P(0); float8 factor = PG_GETARG_FLOAT8(1); Interval *result; #ifndef HAVE_INT64_TIMESTAMP double months; #endif result = (Interval *) palloc(sizeof(Interval)); if (factor == 0.0) elog(ERROR, "division by zero"); #ifdef HAVE_INT64_TIMESTAMP result->month = (span->month / factor); result->time = (span->time / factor); /* evaluate fractional months as 30 days */ result->time += (((span->month - (result->month * factor)) * INT64CONST(30) * INT64CONST(86400000000)) / factor); #else months = (span->month / factor); result->month = rint(months); result->time = JROUND(span->time / factor); /* evaluate fractional months as 30 days */ result->time += JROUND((months - result->month) * 30 * 86400); #endif PG_RETURN_INTERVAL_P(result); } /* * interval_accum and interval_avg implement the AVG(interval) aggregate. * * The transition datatype for this aggregate is a 2-element array of * intervals, where the first is the running sum and the second contains * the number of values so far in its 'time' field. This is a bit ugly * but it beats inventing a specialized datatype for the purpose. */ Datum interval_accum(PG_FUNCTION_ARGS) { ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Interval *newval = PG_GETARG_INTERVAL_P(1); Datum *transdatums; int ndatums; Interval sumX, N; Interval *newsum; ArrayType *result; /* We assume the input is array of interval */ deconstruct_array(transarray, INTERVALOID, 12, false, 'd', &transdatums, &ndatums); if (ndatums != 2) elog(ERROR, "interval_accum: expected 2-element interval array"); /* * XXX memcpy, instead of just extracting a pointer, to work around * buggy array code: it won't ensure proper alignment of Interval * objects on machines where double requires 8-byte alignment. That * should be fixed, but in the meantime... * * Note: must use DatumGetPointer here, not DatumGetIntervalP, else some * compilers optimize into double-aligned load/store anyway. */ memcpy((void *) &sumX, DatumGetPointer(transdatums[0]), sizeof(Interval)); memcpy((void *) &N, DatumGetPointer(transdatums[1]), sizeof(Interval)); newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl, IntervalPGetDatum(&sumX), IntervalPGetDatum(newval))); N.time += 1; transdatums[0] = IntervalPGetDatum(newsum); transdatums[1] = IntervalPGetDatum(&N); result = construct_array(transdatums, 2, INTERVALOID, 12, false, 'd'); PG_RETURN_ARRAYTYPE_P(result); } Datum interval_avg(PG_FUNCTION_ARGS) { ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum *transdatums; int ndatums; Interval sumX, N; /* We assume the input is array of interval */ deconstruct_array(transarray, INTERVALOID, 12, false, 'd', &transdatums, &ndatums); if (ndatums != 2) elog(ERROR, "interval_avg: expected 2-element interval array"); /* * XXX memcpy, instead of just extracting a pointer, to work around * buggy array code: it won't ensure proper alignment of Interval * objects on machines where double requires 8-byte alignment. That * should be fixed, but in the meantime... * * Note: must use DatumGetPointer here, not DatumGetIntervalP, else some * compilers optimize into double-aligned load/store anyway. */ memcpy((void *) &sumX, DatumGetPointer(transdatums[0]), sizeof(Interval)); memcpy((void *) &N, DatumGetPointer(transdatums[1]), sizeof(Interval)); /* SQL92 defines AVG of no values to be NULL */ if (N.time == 0) PG_RETURN_NULL(); return DirectFunctionCall2(interval_div, IntervalPGetDatum(&sumX), Float8GetDatum(N.time)); } /* timestamp_age() * Calculate time difference while retaining year/month fields. * Note that this does not result in an accurate absolute time span * since year and month are out of context once the arithmetic * is done. */ Datum timestamp_age(PG_FUNCTION_ARGS) { Timestamp dt1 = PG_GETARG_TIMESTAMP(0); Timestamp dt2 = PG_GETARG_TIMESTAMP(1); Interval *result; fsec_t fsec, fsec1, fsec2; struct tm tt, *tm = &tt; struct tm tt1, *tm1 = &tt1; struct tm tt2, *tm2 = &tt2; result = (Interval *) palloc(sizeof(Interval)); if ((timestamp2tm(dt1, NULL, tm1, &fsec1, NULL) == 0) && (timestamp2tm(dt2, NULL, tm2, &fsec2, NULL) == 0)) { fsec = (fsec1 - fsec2); tm->tm_sec = (tm1->tm_sec - tm2->tm_sec); tm->tm_min = (tm1->tm_min - tm2->tm_min); tm->tm_hour = (tm1->tm_hour - tm2->tm_hour); tm->tm_mday = (tm1->tm_mday - tm2->tm_mday); tm->tm_mon = (tm1->tm_mon - tm2->tm_mon); tm->tm_year = (tm1->tm_year - tm2->tm_year); /* flip sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } if (tm->tm_sec < 0) { tm->tm_sec += 60; tm->tm_min--; } if (tm->tm_min < 0) { tm->tm_min += 60; tm->tm_hour--; } if (tm->tm_hour < 0) { tm->tm_hour += 24; tm->tm_mday--; } if (tm->tm_mday < 0) { if (dt1 < dt2) { tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1]; tm->tm_mon--; } else { tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1]; tm->tm_mon--; } } if (tm->tm_mon < 0) { tm->tm_mon += 12; tm->tm_year--; } /* recover sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } if (tm2interval(tm, fsec, result) != 0) elog(ERROR, "Unable to encode INTERVAL" "\n\ttimestamp_age() internal coding error"); } else elog(ERROR, "Unable to decode TIMESTAMP" "\n\ttimestamp_age() internal coding error"); PG_RETURN_INTERVAL_P(result); } /* timestamptz_age() * Calculate time difference while retaining year/month fields. * Note that this does not result in an accurate absolute time span * since year and month are out of context once the arithmetic * is done. */ Datum timestamptz_age(PG_FUNCTION_ARGS) { TimestampTz dt1 = PG_GETARG_TIMESTAMP(0); TimestampTz dt2 = PG_GETARG_TIMESTAMP(1); Interval *result; fsec_t fsec, fsec1, fsec2; struct tm tt, *tm = &tt; struct tm tt1, *tm1 = &tt1; struct tm tt2, *tm2 = &tt2; result = (Interval *) palloc(sizeof(Interval)); if ((timestamp2tm(dt1, NULL, tm1, &fsec1, NULL) == 0) && (timestamp2tm(dt2, NULL, tm2, &fsec2, NULL) == 0)) { fsec = (fsec1 - fsec2); tm->tm_sec = (tm1->tm_sec - tm2->tm_sec); tm->tm_min = (tm1->tm_min - tm2->tm_min); tm->tm_hour = (tm1->tm_hour - tm2->tm_hour); tm->tm_mday = (tm1->tm_mday - tm2->tm_mday); tm->tm_mon = (tm1->tm_mon - tm2->tm_mon); tm->tm_year = (tm1->tm_year - tm2->tm_year); /* flip sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } if (tm->tm_sec < 0) { tm->tm_sec += 60; tm->tm_min--; } if (tm->tm_min < 0) { tm->tm_min += 60; tm->tm_hour--; } if (tm->tm_hour < 0) { tm->tm_hour += 24; tm->tm_mday--; } if (tm->tm_mday < 0) { if (dt1 < dt2) { tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1]; tm->tm_mon--; } else { tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1]; tm->tm_mon--; } } if (tm->tm_mon < 0) { tm->tm_mon += 12; tm->tm_year--; } /* recover sign if necessary... */ if (dt1 < dt2) { fsec = -fsec; tm->tm_sec = -tm->tm_sec; tm->tm_min = -tm->tm_min; tm->tm_hour = -tm->tm_hour; tm->tm_mday = -tm->tm_mday; tm->tm_mon = -tm->tm_mon; tm->tm_year = -tm->tm_year; } if (tm2interval(tm, fsec, result) != 0) elog(ERROR, "Unable to decode TIMESTAMP"); } else elog(ERROR, "Unable to decode TIMESTAMP"); PG_RETURN_INTERVAL_P(result); } /*---------------------------------------------------------- * Conversion operators. *---------------------------------------------------------*/ /* timestamp_text() * Convert timestamp to text data type. */ Datum timestamp_text(PG_FUNCTION_ARGS) { /* Input is a Timestamp, but may as well leave it in Datum form */ Datum timestamp = PG_GETARG_DATUM(0); text *result; char *str; int len; str = DatumGetCString(DirectFunctionCall1(timestamp_out, timestamp)); len = (strlen(str) + VARHDRSZ); result = palloc(len); VARATT_SIZEP(result) = len; memmove(VARDATA(result), str, (len - VARHDRSZ)); pfree(str); PG_RETURN_TEXT_P(result); } /* text_timestamp() * Convert text string to timestamp. * Text type is not null terminated, so use temporary string * then call the standard input routine. */ Datum text_timestamp(PG_FUNCTION_ARGS) { text *str = PG_GETARG_TEXT_P(0); int i; char *sp, *dp, dstr[MAXDATELEN + 1]; if (VARSIZE(str) - VARHDRSZ > MAXDATELEN) elog(ERROR, "TIMESTAMP bad external representation (too long)"); sp = VARDATA(str); dp = dstr; for (i = 0; i < (VARSIZE(str) - VARHDRSZ); i++) *dp++ = *sp++; *dp = '\0'; return DirectFunctionCall3(timestamp_in, CStringGetDatum(dstr), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); } /* timestamptz_text() * Convert timestamp with time zone to text data type. */ Datum timestamptz_text(PG_FUNCTION_ARGS) { /* Input is a Timestamp, but may as well leave it in Datum form */ Datum timestamp = PG_GETARG_DATUM(0); text *result; char *str; int len; str = DatumGetCString(DirectFunctionCall1(timestamptz_out, timestamp)); len = (strlen(str) + VARHDRSZ); result = palloc(len); VARATT_SIZEP(result) = len; memmove(VARDATA(result), str, (len - VARHDRSZ)); pfree(str); PG_RETURN_TEXT_P(result); } /* text_timestamptz() * Convert text string to timestamp with time zone. * Text type is not null terminated, so use temporary string * then call the standard input routine. */ Datum text_timestamptz(PG_FUNCTION_ARGS) { text *str = PG_GETARG_TEXT_P(0); int i; char *sp, *dp, dstr[MAXDATELEN + 1]; if (VARSIZE(str) - VARHDRSZ > MAXDATELEN) elog(ERROR, "TIMESTAMP WITH TIME ZONE bad external representation (too long)"); sp = VARDATA(str); dp = dstr; for (i = 0; i < (VARSIZE(str) - VARHDRSZ); i++) *dp++ = *sp++; *dp = '\0'; return DirectFunctionCall3(timestamptz_in, CStringGetDatum(dstr), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); } /* interval_text() * Convert interval to text data type. */ Datum interval_text(PG_FUNCTION_ARGS) { Interval *interval = PG_GETARG_INTERVAL_P(0); text *result; char *str; int len; str = DatumGetCString(DirectFunctionCall1(interval_out, IntervalPGetDatum(interval))); len = (strlen(str) + VARHDRSZ); result = palloc(len); VARATT_SIZEP(result) = len; memmove(VARDATA(result), str, (len - VARHDRSZ)); pfree(str); PG_RETURN_TEXT_P(result); } /* text_interval() * Convert text string to interval. * Text type may not be null terminated, so copy to temporary string * then call the standard input routine. */ Datum text_interval(PG_FUNCTION_ARGS) { text *str = PG_GETARG_TEXT_P(0); int i; char *sp, *dp, dstr[MAXDATELEN + 1]; if (VARSIZE(str) - VARHDRSZ > MAXDATELEN) elog(ERROR, "INTERVAL bad external representation (too long)"); sp = VARDATA(str); dp = dstr; for (i = 0; i < (VARSIZE(str) - VARHDRSZ); i++) *dp++ = *sp++; *dp = '\0'; return DirectFunctionCall3(interval_in, CStringGetDatum(dstr), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); } /* timestamp_trunc() * Truncate timestamp to specified units. */ Datum timestamp_trunc(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_P(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); Timestamp result; int type, val; int i; char *up, *lp, lowunits[MAXDATELEN + 1]; fsec_t fsec; struct tm tt, *tm = &tt; if (VARSIZE(units) - VARHDRSZ > MAXDATELEN) elog(ERROR, "TIMESTAMP units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); up = VARDATA(units); lp = lowunits; for (i = 0; i < (VARSIZE(units) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeUnits(0, lowunits, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMP(timestamp); if ((type == UNITS) && (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) == 0)) { switch (val) { case DTK_MILLENNIUM: tm->tm_year = (tm->tm_year / 1000) * 1000; case DTK_CENTURY: tm->tm_year = (tm->tm_year / 100) * 100; case DTK_DECADE: tm->tm_year = (tm->tm_year / 10) * 10; case DTK_YEAR: tm->tm_mon = 1; case DTK_QUARTER: tm->tm_mon = (3 * (tm->tm_mon / 4)) + 1; case DTK_MONTH: tm->tm_mday = 1; case DTK_DAY: tm->tm_hour = 0; case DTK_HOUR: tm->tm_min = 0; case DTK_MINUTE: tm->tm_sec = 0; case DTK_SECOND: fsec = 0; break; case DTK_MILLISEC: #ifdef HAVE_INT64_TIMESTAMP fsec = ((fsec / 1000) * 1000); #else fsec = rint(fsec * 1000) / 1000; #endif break; case DTK_MICROSEC: #ifndef HAVE_INT64_TIMESTAMP fsec = rint(fsec * 1000000) / 1000000; #endif break; default: elog(ERROR, "TIMESTAMP units '%s' not supported", lowunits); result = 0; } if (tm2timestamp(tm, fsec, NULL, &result) != 0) elog(ERROR, "Unable to truncate TIMESTAMP to '%s'", lowunits); } else { elog(ERROR, "TIMESTAMP units '%s' not recognized", lowunits); result = 0; } PG_RETURN_TIMESTAMP(result); } /* timestamptz_trunc() * Truncate timestamp to specified units. */ Datum timestamptz_trunc(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_P(0); TimestampTz timestamp = PG_GETARG_TIMESTAMP(1); TimestampTz result; int tz; int type, val; int i; char *up, *lp, lowunits[MAXDATELEN + 1]; fsec_t fsec; char *tzn; struct tm tt, *tm = &tt; if (VARSIZE(units) - VARHDRSZ > MAXDATELEN) elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); up = VARDATA(units); lp = lowunits; for (i = 0; i < (VARSIZE(units) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeUnits(0, lowunits, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); if ((type == UNITS) && (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn) == 0)) { switch (val) { case DTK_MILLENNIUM: tm->tm_year = (tm->tm_year / 1000) * 1000; case DTK_CENTURY: tm->tm_year = (tm->tm_year / 100) * 100; case DTK_DECADE: tm->tm_year = (tm->tm_year / 10) * 10; case DTK_YEAR: tm->tm_mon = 1; case DTK_QUARTER: tm->tm_mon = (3 * (tm->tm_mon / 4)) + 1; case DTK_MONTH: tm->tm_mday = 1; case DTK_DAY: tm->tm_hour = 0; case DTK_HOUR: tm->tm_min = 0; case DTK_MINUTE: tm->tm_sec = 0; case DTK_SECOND: fsec = 0; break; case DTK_MILLISEC: #ifdef HAVE_INT64_TIMESTAMP fsec = ((fsec / 1000) * 1000); #else fsec = rint(fsec * 1000) / 1000; #endif break; case DTK_MICROSEC: #ifndef HAVE_INT64_TIMESTAMP fsec = rint(fsec * 1000000) / 1000000; #endif break; default: elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not supported", lowunits); result = 0; } tz = DetermineLocalTimeZone(tm); if (tm2timestamp(tm, fsec, &tz, &result) != 0) elog(ERROR, "Unable to truncate TIMESTAMP WITH TIME ZONE to '%s'", lowunits); } else { elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not recognized", lowunits); PG_RETURN_NULL(); } PG_RETURN_TIMESTAMPTZ(result); } /* interval_trunc() * Extract specified field from interval. */ Datum interval_trunc(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_P(0); Interval *interval = PG_GETARG_INTERVAL_P(1); Interval *result; int type, val; int i; char *up, *lp, lowunits[MAXDATELEN + 1]; fsec_t fsec; struct tm tt, *tm = &tt; result = (Interval *) palloc(sizeof(Interval)); if (VARSIZE(units) - VARHDRSZ > MAXDATELEN) elog(ERROR, "INTERVAL units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); up = VARDATA(units); lp = lowunits; for (i = 0; i < (VARSIZE(units) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeUnits(0, lowunits, &val); if (type == UNITS) { if (interval2tm(*interval, tm, &fsec) == 0) { switch (val) { case DTK_MILLENNIUM: tm->tm_year = (tm->tm_year / 1000) * 1000; case DTK_CENTURY: tm->tm_year = (tm->tm_year / 100) * 100; case DTK_DECADE: tm->tm_year = (tm->tm_year / 10) * 10; case DTK_YEAR: tm->tm_mon = 0; case DTK_QUARTER: tm->tm_mon = (3 * (tm->tm_mon / 4)); case DTK_MONTH: tm->tm_mday = 0; case DTK_DAY: tm->tm_hour = 0; case DTK_HOUR: tm->tm_min = 0; case DTK_MINUTE: tm->tm_sec = 0; case DTK_SECOND: fsec = 0; break; case DTK_MILLISEC: #ifdef HAVE_INT64_TIMESTAMP fsec = ((fsec / 1000) * 1000); #else fsec = rint(fsec * 1000) / 1000; #endif break; case DTK_MICROSEC: #ifndef HAVE_INT64_TIMESTAMP fsec = rint(fsec * 1000000) / 1000000; #endif break; default: elog(ERROR, "INTERVAL units '%s' not supported", lowunits); } if (tm2interval(tm, fsec, result) != 0) elog(ERROR, "Unable to truncate INTERVAL to '%s'", lowunits); } else { elog(WARNING, "Unable to decode INTERVAL; internal coding error"); *result = *interval; } } else { elog(ERROR, "INTERVAL units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); *result = *interval; } PG_RETURN_INTERVAL_P(result); } /* isoweek2date() * Convert ISO week of year number to date. * The year field must be specified! * karel 2000/08/07 */ void isoweek2date(int woy, int *year, int *mon, int *mday) { int day0, day4, dayn; if (!*year) elog(ERROR, "isoweek2date(): can't convert without year information"); /* fourth day of current year */ day4 = date2j(*year, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); dayn = ((woy - 1) * 7) + (day4 - day0); j2date(dayn, year, mon, mday); } /* date2isoweek() * * Returns ISO week number of year. */ int date2isoweek(int year, int mon, int mday) { float8 result; int day0, day4, dayn; /* current day */ dayn = date2j(year, mon, mday); /* fourth day of current year */ day4 = date2j(year, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); /* * We need the first week containing a Thursday, otherwise this day * falls into the previous year for purposes of counting weeks */ if (dayn < (day4 - day0)) { day4 = date2j(year - 1, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); } result = (((dayn - (day4 - day0)) / 7) + 1); /* * Sometimes the last few days in a year will fall into the first week * of the next year, so check for this. */ if (result >= 53) { day4 = date2j(year + 1, 1, 4); /* day0 == offset to first day of week (Monday) */ day0 = j2day(day4 - 1); if (dayn >= (day4 - day0)) result = (((dayn - (day4 - day0)) / 7) + 1); } return (int) result; } /* timestamp_part() * Extract specified field from timestamp. */ Datum timestamp_part(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_P(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); float8 result; int type, val; int i; char *up, *lp, lowunits[MAXDATELEN + 1]; fsec_t fsec; struct tm tt, *tm = &tt; if (VARSIZE(units) - VARHDRSZ > MAXDATELEN) elog(ERROR, "TIMESTAMP units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); up = VARDATA(units); lp = lowunits; for (i = 0; i < (VARSIZE(units) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeUnits(0, lowunits, &val); if (type == UNKNOWN_FIELD) type = DecodeSpecial(0, lowunits, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) { result = 0; PG_RETURN_FLOAT8(result); } if ((type == UNITS) && (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) == 0)) { switch (val) { case DTK_MICROSEC: #ifdef HAVE_INT64_TIMESTAMP result = ((tm->tm_sec * 1000000e0) + fsec); #else result = (tm->tm_sec + fsec) * 1000000; #endif break; case DTK_MILLISEC: #ifdef HAVE_INT64_TIMESTAMP result = ((tm->tm_sec * 1000e0) + (fsec / 1000e0)); #else result = (tm->tm_sec + fsec) * 1000; #endif break; case DTK_SECOND: #ifdef HAVE_INT64_TIMESTAMP result = (tm->tm_sec + (fsec / 1000000e0)); #else result = (tm->tm_sec + fsec); #endif break; case DTK_MINUTE: result = tm->tm_min; break; case DTK_HOUR: result = tm->tm_hour; break; case DTK_DAY: result = tm->tm_mday; break; case DTK_MONTH: result = tm->tm_mon; break; case DTK_QUARTER: result = ((tm->tm_mon - 1) / 3) + 1; break; case DTK_WEEK: result = (float8) date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday); break; case DTK_YEAR: result = tm->tm_year; break; case DTK_DECADE: result = (tm->tm_year / 10); break; case DTK_CENTURY: result = (tm->tm_year / 100); break; case DTK_MILLENNIUM: result = (tm->tm_year / 1000); break; case DTK_JULIAN: result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday); #ifdef HAVE_INT64_TIMESTAMP result += (((((tm->tm_hour * 60) + tm->tm_min) * 60) + tm->tm_sec + (fsec / 1000000e0)) / 86400e0); #else result += (((((tm->tm_hour * 60) + tm->tm_min) * 60) + tm->tm_sec + fsec) / 86400e0); #endif break; case DTK_TZ: case DTK_TZ_MINUTE: case DTK_TZ_HOUR: default: elog(ERROR, "TIMESTAMP units '%s' not supported", lowunits); result = 0; } } else if (type == RESERV) { switch (val) { case DTK_EPOCH: { int tz; TimestampTz timestamptz; /* convert to timestamptz to produce consistent results */ if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) != 0) elog(ERROR, "Unable to convert TIMESTAMP to TIMESTAMP WITH TIME ZONE (tm)"); tz = DetermineLocalTimeZone(tm); if (tm2timestamp(tm, fsec, &tz, ×tamptz) != 0) elog(ERROR, "Unable to convert TIMESTAMP to TIMESTAMP WITH TIME ZONE"); #ifdef HAVE_INT64_TIMESTAMP result = ((timestamptz - SetEpochTimestamp()) / 1000000e0); #else result = timestamptz - SetEpochTimestamp(); #endif break; } case DTK_DOW: if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) != 0) elog(ERROR, "Unable to encode TIMESTAMP"); result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)); break; case DTK_DOY: if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) != 0) elog(ERROR, "Unable to encode TIMESTAMP"); result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(tm->tm_year, 1, 1) + 1); break; default: elog(ERROR, "TIMESTAMP units '%s' not supported", lowunits); result = 0; } } else { elog(ERROR, "TIMESTAMP units '%s' not recognized", lowunits); result = 0; } PG_RETURN_FLOAT8(result); } /* timestamptz_part() * Extract specified field from timestamp with time zone. */ Datum timestamptz_part(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_P(0); TimestampTz timestamp = PG_GETARG_TIMESTAMP(1); float8 result; int tz; int type, val; int i; char *up, *lp, lowunits[MAXDATELEN + 1]; double dummy; fsec_t fsec; char *tzn; struct tm tt, *tm = &tt; if (VARSIZE(units) - VARHDRSZ > MAXDATELEN) elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); up = VARDATA(units); lp = lowunits; for (i = 0; i < (VARSIZE(units) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeUnits(0, lowunits, &val); if (type == UNKNOWN_FIELD) type = DecodeSpecial(0, lowunits, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) { result = 0; PG_RETURN_FLOAT8(result); } if ((type == UNITS) && (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn) == 0)) { switch (val) { case DTK_TZ: result = tz; break; case DTK_TZ_MINUTE: result = tz / 60; TMODULO(result, dummy, 60e0); break; case DTK_TZ_HOUR: dummy = tz; TMODULO(dummy, result, 3600e0); break; case DTK_MICROSEC: #ifdef HAVE_INT64_TIMESTAMP result = ((tm->tm_sec * 1000000e0) + fsec); #else result = (tm->tm_sec + fsec) * 1000000; #endif break; case DTK_MILLISEC: #ifdef HAVE_INT64_TIMESTAMP result = ((tm->tm_sec * 1000e0) + (fsec / 1000e0)); #else result = (tm->tm_sec + fsec) * 1000; #endif break; case DTK_SECOND: #ifdef HAVE_INT64_TIMESTAMP result = (tm->tm_sec + (fsec / 1000000e0)); #else result = (tm->tm_sec + fsec); #endif break; case DTK_MINUTE: result = tm->tm_min; break; case DTK_HOUR: result = tm->tm_hour; break; case DTK_DAY: result = tm->tm_mday; break; case DTK_MONTH: result = tm->tm_mon; break; case DTK_QUARTER: result = ((tm->tm_mon - 1) / 3) + 1; break; case DTK_WEEK: result = (float8) date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday); break; case DTK_YEAR: result = tm->tm_year; break; case DTK_DECADE: result = (tm->tm_year / 10); break; case DTK_CENTURY: result = (tm->tm_year / 100); break; case DTK_MILLENNIUM: result = (tm->tm_year / 1000); break; case DTK_JULIAN: result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday); #ifdef HAVE_INT64_TIMESTAMP result += (((((tm->tm_hour * 60) + tm->tm_min) * 60) + tm->tm_sec + (fsec / 1000000e0)) / 86400e0); #else result += (((((tm->tm_hour * 60) + tm->tm_min) * 60) + tm->tm_sec + fsec) / 86400e0); #endif break; default: elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not supported", lowunits); result = 0; } } else if (type == RESERV) { switch (val) { case DTK_EPOCH: #ifdef HAVE_INT64_TIMESTAMP result = ((timestamp - SetEpochTimestamp()) / 1000000e0); #else result = timestamp - SetEpochTimestamp(); #endif break; case DTK_DOW: if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn) != 0) elog(ERROR, "Unable to encode TIMESTAMP WITH TIME ZONE"); result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)); break; case DTK_DOY: if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn) != 0) elog(ERROR, "Unable to encode TIMESTAMP WITH TIME ZONE"); result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - date2j(tm->tm_year, 1, 1) + 1); break; default: elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not supported", lowunits); result = 0; } } else { elog(ERROR, "TIMESTAMP WITH TIME ZONE units '%s' not recognized", lowunits); result = 0; } PG_RETURN_FLOAT8(result); } /* interval_part() * Extract specified field from interval. */ Datum interval_part(PG_FUNCTION_ARGS) { text *units = PG_GETARG_TEXT_P(0); Interval *interval = PG_GETARG_INTERVAL_P(1); float8 result; int type, val; int i; char *up, *lp, lowunits[MAXDATELEN + 1]; fsec_t fsec; struct tm tt, *tm = &tt; if (VARSIZE(units) - VARHDRSZ > MAXDATELEN) elog(ERROR, "INTERVAL units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); up = VARDATA(units); lp = lowunits; for (i = 0; i < (VARSIZE(units) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeUnits(0, lowunits, &val); if (type == UNKNOWN_FIELD) type = DecodeSpecial(0, lowunits, &val); if (type == UNITS) { if (interval2tm(*interval, tm, &fsec) == 0) { switch (val) { case DTK_MICROSEC: #ifdef HAVE_INT64_TIMESTAMP result = ((tm->tm_sec * 1000000e0) + fsec); #else result = (tm->tm_sec + fsec) * 1000000; #endif break; case DTK_MILLISEC: #ifdef HAVE_INT64_TIMESTAMP result = ((tm->tm_sec * 1000e0) + (fsec / 1000e0)); #else result = (tm->tm_sec + fsec) * 1000; #endif break; case DTK_SECOND: #ifdef HAVE_INT64_TIMESTAMP result = (tm->tm_sec + (fsec / 1000000e0)); #else result = (tm->tm_sec + fsec); #endif break; case DTK_MINUTE: result = tm->tm_min; break; case DTK_HOUR: result = tm->tm_hour; break; case DTK_DAY: result = tm->tm_mday; break; case DTK_MONTH: result = tm->tm_mon; break; case DTK_QUARTER: result = (tm->tm_mon / 4) + 1; break; case DTK_YEAR: result = tm->tm_year; break; case DTK_DECADE: result = (tm->tm_year / 10); break; case DTK_CENTURY: result = (tm->tm_year / 100); break; case DTK_MILLENNIUM: result = (tm->tm_year / 1000); break; default: elog(ERROR, "INTERVAL units '%s' not supported", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); result = 0; } } else { elog(WARNING, "Unable to decode INTERVAL" "\n\tinterval_part() internal coding error"); result = 0; } } else if ((type == RESERV) && (val == DTK_EPOCH)) { #ifdef HAVE_INT64_TIMESTAMP result = (interval->time / 1000000e0); #else result = interval->time; #endif if (interval->month != 0) { result += ((365.25 * 86400) * (interval->month / 12)); result += ((30.0 * 86400) * (interval->month % 12)); } } else { elog(ERROR, "INTERVAL units '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(units)))); result = 0; } PG_RETURN_FLOAT8(result); } /* timestamp_zone() * Encode timestamp type with specified time zone. * Returns timestamp with time zone, with the input * rotated from local time to the specified zone. */ Datum timestamp_zone(PG_FUNCTION_ARGS) { text *zone = PG_GETARG_TEXT_P(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); TimestampTz result; int tz; int type, val; int i; char *up, *lp, lowzone[MAXDATELEN + 1]; if (VARSIZE(zone) - VARHDRSZ > MAXDATELEN) elog(ERROR, "Time zone '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(zone)))); if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); up = VARDATA(zone); lp = lowzone; for (i = 0; i < (VARSIZE(zone) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeSpecial(0, lowzone, &val); if ((type == TZ) || (type == DTZ)) { tz = -(val * 60); result = dt2local(timestamp, tz); } else { elog(ERROR, "Time zone '%s' not recognized", lowzone); PG_RETURN_NULL(); } PG_RETURN_TIMESTAMPTZ(result); } /* timestamp_zone() */ /* timestamp_izone() * Encode timestamp type with specified time interval as time zone. */ Datum timestamp_izone(PG_FUNCTION_ARGS) { Interval *zone = PG_GETARG_INTERVAL_P(0); Timestamp timestamp = PG_GETARG_TIMESTAMP(1); TimestampTz result; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_TIMESTAMPTZ(timestamp); if (zone->month != 0) elog(ERROR, "INTERVAL time zone '%s' not legal (month specified)", DatumGetCString(DirectFunctionCall1(interval_out, PointerGetDatum(zone)))); #ifdef HAVE_INT64_TIMESTAMP tz = (zone->time / INT64CONST(1000000)); #else tz = (zone->time); #endif result = dt2local(timestamp, tz); PG_RETURN_TIMESTAMPTZ(result); } /* timestamp_izone() */ /* timestamp_timestamptz() * Convert local timestamp to timestamp at GMT */ Datum timestamp_timestamptz(PG_FUNCTION_ARGS) { Timestamp timestamp = PG_GETARG_TIMESTAMP(0); TimestampTz result; struct tm tt, *tm = &tt; fsec_t fsec; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL) != 0) elog(ERROR, "Unable to convert TIMESTAMP to TIMESTAMP WITH TIME ZONE (tm)"); tz = DetermineLocalTimeZone(tm); if (tm2timestamp(tm, fsec, &tz, &result) != 0) elog(ERROR, "Unable to convert TIMESTAMP to TIMESTAMP WITH TIME ZONE"); } PG_RETURN_TIMESTAMPTZ(result); } /* timestamptz_timestamp() * Convert timestamp at GMT to local timestamp */ Datum timestamptz_timestamp(PG_FUNCTION_ARGS) { TimestampTz timestamp = PG_GETARG_TIMESTAMP(0); Timestamp result; struct tm tt, *tm = &tt; fsec_t fsec; char *tzn; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) result = timestamp; else { if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn) != 0) elog(ERROR, "Unable to convert TIMESTAMP WITH TIME ZONE to TIMESTAMP (tm)"); if (tm2timestamp(tm, fsec, NULL, &result) != 0) elog(ERROR, "Unable to convert TIMESTAMP WITH TIME ZONE to TIMESTAMP"); } PG_RETURN_TIMESTAMP(result); } /* timestamptz_zone() * Evaluate timestamp with time zone type at the specified time zone. * Returns a timestamp without time zone. */ Datum timestamptz_zone(PG_FUNCTION_ARGS) { text *zone = PG_GETARG_TEXT_P(0); TimestampTz timestamp = PG_GETARG_TIMESTAMP(1); Timestamp result; int tz; int type, val; int i; char *up, *lp, lowzone[MAXDATELEN + 1]; if (VARSIZE(zone) - VARHDRSZ > MAXDATELEN) elog(ERROR, "Time zone '%s' not recognized", DatumGetCString(DirectFunctionCall1(textout, PointerGetDatum(zone)))); up = VARDATA(zone); lp = lowzone; for (i = 0; i < (VARSIZE(zone) - VARHDRSZ); i++) *lp++ = tolower((unsigned char) *up++); *lp = '\0'; type = DecodeSpecial(0, lowzone, &val); if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_NULL(); if ((type == TZ) || (type == DTZ)) { tz = val * 60; result = dt2local(timestamp, tz); } else { elog(ERROR, "Time zone '%s' not recognized", lowzone); PG_RETURN_NULL(); } PG_RETURN_TIMESTAMP(result); } /* timestamptz_zone() */ /* timestamptz_izone() * Encode timestamp with time zone type with specified time interval as time zone. * Returns a timestamp without time zone. */ Datum timestamptz_izone(PG_FUNCTION_ARGS) { Interval *zone = PG_GETARG_INTERVAL_P(0); TimestampTz timestamp = PG_GETARG_TIMESTAMP(1); Timestamp result; int tz; if (TIMESTAMP_NOT_FINITE(timestamp)) PG_RETURN_NULL(); if (zone->month != 0) elog(ERROR, "INTERVAL time zone '%s' not legal (month specified)", DatumGetCString(DirectFunctionCall1(interval_out, PointerGetDatum(zone)))); #ifdef HAVE_INT64_TIMESTAMP tz = -(zone->time / INT64CONST(1000000)); #else tz = -(zone->time); #endif result = dt2local(timestamp, tz); PG_RETURN_TIMESTAMP(result); } /* timestamptz_izone() */