/*------------------------------------------------------------------------- * * heaptuple.c * This file contains heap tuple accessor and mutator routines, as well * as a few various tuple utilities. * * Portions Copyright (c) 1996-2000, PostgreSQL, Inc * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/access/common/heaptuple.c,v 1.65 2000/07/04 02:40:56 tgl Exp $ * * NOTES * The old interface functions have been converted to macros * and moved to heapam.h * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/heapam.h" #include "catalog/pg_type.h" /* Used by heap_getattr() macro, for speed */ long heap_sysoffset[] = { /* Only the first one is pass-by-ref, and is handled specially in the macro */ offsetof(HeapTupleHeaderData, t_ctid), offsetof(HeapTupleHeaderData, t_oid), offsetof(HeapTupleHeaderData, t_xmin), offsetof(HeapTupleHeaderData, t_cmin), offsetof(HeapTupleHeaderData, t_xmax), offsetof(HeapTupleHeaderData, t_cmax) }; /* ---------------------------------------------------------------- * misc support routines * ---------------------------------------------------------------- */ /* ---------------- * ComputeDataSize * ---------------- */ Size ComputeDataSize(TupleDesc tupleDesc, Datum *value, char *nulls) { uint32 data_length; int i; int numberOfAttributes = tupleDesc->natts; Form_pg_attribute *att = tupleDesc->attrs; for (data_length = 0, i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') continue; data_length = att_align(data_length, att[i]->attlen, att[i]->attalign); data_length = att_addlength(data_length, att[i]->attlen, value[i]); } return data_length; } /* ---------------- * DataFill * ---------------- */ void DataFill(char *data, TupleDesc tupleDesc, Datum *value, char *nulls, uint16 *infomask, bits8 *bit) { bits8 *bitP = 0; int bitmask = 0; uint32 data_length; int i; int numberOfAttributes = tupleDesc->natts; Form_pg_attribute *att = tupleDesc->attrs; if (bit != NULL) { bitP = &bit[-1]; bitmask = CSIGNBIT; } *infomask &= HEAP_XACT_MASK; for (i = 0; i < numberOfAttributes; i++) { if (bit != NULL) { if (bitmask != CSIGNBIT) bitmask <<= 1; else { bitP += 1; *bitP = 0x0; bitmask = 1; } if (nulls[i] == 'n') { *infomask |= HEAP_HASNULL; continue; } *bitP |= bitmask; } data = (char *) att_align((long) data, att[i]->attlen, att[i]->attalign); switch (att[i]->attlen) { case -1: *infomask |= HEAP_HASVARLENA; if (VARATT_IS_EXTERNAL(value[i])) *infomask |= HEAP_HASEXTERNAL; if (VARATT_IS_COMPRESSED(value[i])) *infomask |= HEAP_HASCOMPRESSED; data_length = VARATT_SIZE(DatumGetPointer(value[i])); memmove(data, DatumGetPointer(value[i]), data_length); break; case sizeof(char): *data = att[i]->attbyval ? DatumGetChar(value[i]) : *((char *) value[i]); break; case sizeof(int16): *(short *) data = (att[i]->attbyval ? DatumGetInt16(value[i]) : *((short *) value[i])); break; case sizeof(int32): *(int32 *) data = (att[i]->attbyval ? DatumGetInt32(value[i]) : *((int32 *) value[i])); break; default: Assert(att[i]->attlen >= 0); memmove(data, DatumGetPointer(value[i]), (size_t) (att[i]->attlen)); break; } data = (char *) att_addlength((long) data, att[i]->attlen, value[i]); } } /* ---------------------------------------------------------------- * heap tuple interface * ---------------------------------------------------------------- */ /* ---------------- * heap_attisnull - returns 1 iff tuple attribute is not present * ---------------- */ int heap_attisnull(HeapTuple tup, int attnum) { if (attnum > (int) tup->t_data->t_natts) return 1; if (HeapTupleNoNulls(tup)) return 0; if (attnum > 0) return att_isnull(attnum - 1, tup->t_data->t_bits); else switch (attnum) { case TableOidAttributeNumber: case SelfItemPointerAttributeNumber: case ObjectIdAttributeNumber: case MinTransactionIdAttributeNumber: case MinCommandIdAttributeNumber: case MaxTransactionIdAttributeNumber: case MaxCommandIdAttributeNumber: break; case 0: elog(ERROR, "heap_attisnull: zero attnum disallowed"); default: elog(ERROR, "heap_attisnull: undefined negative attnum"); } return 0; } /* ---------------------------------------------------------------- * system attribute heap tuple support * ---------------------------------------------------------------- */ /* ---------------- * heap_sysattrlen * * This routine returns the length of a system attribute. * ---------------- */ int heap_sysattrlen(AttrNumber attno) { HeapTupleHeader f = NULL; switch (attno) { case TableOidAttributeNumber: return sizeof f->t_oid; case SelfItemPointerAttributeNumber: return sizeof f->t_ctid; case ObjectIdAttributeNumber: return sizeof f->t_oid; case MinTransactionIdAttributeNumber: return sizeof f->t_xmin; case MinCommandIdAttributeNumber: return sizeof f->t_cmin; case MaxTransactionIdAttributeNumber: return sizeof f->t_xmax; case MaxCommandIdAttributeNumber: return sizeof f->t_cmax; default: elog(ERROR, "sysattrlen: System attribute number %d unknown.", attno); return 0; } } /* ---------------- * heap_sysattrbyval * * This routine returns the "by-value" property of a system attribute. * ---------------- */ bool heap_sysattrbyval(AttrNumber attno) { bool byval; switch (attno) { case TableOidAttributeNumber: byval = true; break; case SelfItemPointerAttributeNumber: byval = false; break; case ObjectIdAttributeNumber: byval = true; break; case MinTransactionIdAttributeNumber: byval = true; break; case MinCommandIdAttributeNumber: byval = true; break; case MaxTransactionIdAttributeNumber: byval = true; break; case MaxCommandIdAttributeNumber: byval = true; break; default: byval = true; elog(ERROR, "sysattrbyval: System attribute number %d unknown.", attno); break; } return byval; } #ifdef NOT_USED /* ---------------- * heap_getsysattr * ---------------- */ Datum heap_getsysattr(HeapTuple tup, Buffer b, int attnum) { switch (attnum) { case TableOidAttributeNumber: return (Datum) &tup->t_tableoid; case SelfItemPointerAttributeNumber: return (Datum) &tup->t_ctid; case ObjectIdAttributeNumber: return (Datum) (long) tup->t_oid; case MinTransactionIdAttributeNumber: return (Datum) (long) tup->t_xmin; case MinCommandIdAttributeNumber: return (Datum) (long) tup->t_cmin; case MaxTransactionIdAttributeNumber: return (Datum) (long) tup->t_xmax; case MaxCommandIdAttributeNumber: return (Datum) (long) tup->t_cmax; default: elog(ERROR, "heap_getsysattr: undefined attnum %d", attnum); } return (Datum) NULL; } #endif /* ---------------- * nocachegetattr * * This only gets called from fastgetattr() macro, in cases where * we can't use a cacheoffset and the value is not null. * * This caches attribute offsets in the attribute descriptor. * * An alternate way to speed things up would be to cache offsets * with the tuple, but that seems more difficult unless you take * the storage hit of actually putting those offsets into the * tuple you send to disk. Yuck. * * This scheme will be slightly slower than that, but should * perform well for queries which hit large #'s of tuples. After * you cache the offsets once, examining all the other tuples using * the same attribute descriptor will go much quicker. -cim 5/4/91 * ---------------- */ Datum nocachegetattr(HeapTuple tuple, int attnum, TupleDesc tupleDesc, bool *isnull) { char *tp; /* ptr to att in tuple */ HeapTupleHeader tup = tuple->t_data; bits8 *bp = tup->t_bits; /* ptr to att in tuple */ Form_pg_attribute *att = tupleDesc->attrs; int slow = 0; /* do we have to walk nulls? */ (void) isnull; /* not used */ #ifdef IN_MACRO /* This is handled in the macro */ Assert(attnum > 0); if (isnull) *isnull = false; #endif attnum--; /* ---------------- * Three cases: * * 1: No nulls and no variable length attributes. * 2: Has a null or a varlena AFTER att. * 3: Has nulls or varlenas BEFORE att. * ---------------- */ if (HeapTupleNoNulls(tuple)) { #ifdef IN_MACRO /* This is handled in the macro */ if (att[attnum]->attcacheoff != -1) { return (Datum) fetchatt(&(att[attnum]), (char *) tup + tup->t_hoff + att[attnum]->attcacheoff); } else if (attnum == 0) { /* * first attribute is always at position zero */ return (Datum) fetchatt(&(att[0]), (char *) tup + tup->t_hoff); } #endif } else { /* * there's a null somewhere in the tuple */ /* ---------------- * check to see if desired att is null * ---------------- */ #ifdef IN_MACRO /* This is handled in the macro */ if (att_isnull(attnum, bp)) { if (isnull) *isnull = true; return (Datum) NULL; } #endif /* ---------------- * Now check to see if any preceding bits are null... * ---------------- */ { int byte = attnum >> 3; int finalbit = attnum & 0x07; /* check for nulls "before" final bit of last byte */ if ((~bp[byte]) & ((1 << finalbit) - 1)) slow = 1; else { /* check for nulls in any "earlier" bytes */ int i; for (i = 0; i < byte; i++) { if (bp[i] != 0xFF) { slow = 1; break; } } } } } tp = (char *) tup + tup->t_hoff; /* * now check for any non-fixed length attrs before our attribute */ if (!slow) { if (att[attnum]->attcacheoff != -1) { return (Datum) fetchatt(&(att[attnum]), tp + att[attnum]->attcacheoff); } else if (attnum == 0) return (Datum) fetchatt(&(att[0]), tp); else if (!HeapTupleAllFixed(tuple)) { int j; /* * In for(), we make this <= and not < because we want to test * if we can go past it in initializing offsets. */ for (j = 0; j <= attnum; j++) { if (att[j]->attlen < 1 && !VARLENA_FIXED_SIZE(att[j])) { slow = 1; break; } } } } /* * If slow is zero, and we got here, we know that we have a tuple with * no nulls or varlenas before the target attribute. If possible, we * also want to initialize the remainder of the attribute cached * offset values. */ if (!slow) { int j = 1; long off; /* * need to set cache for some atts */ att[0]->attcacheoff = 0; while (att[j]->attcacheoff > 0) j++; if (!VARLENA_FIXED_SIZE(att[j - 1])) off = att[j - 1]->attcacheoff + att[j - 1]->attlen; else off = att[j - 1]->attcacheoff + att[j - 1]->atttypmod; for (; j <= attnum || /* Can we compute more? We will probably need them */ (j < tup->t_natts && att[j]->attcacheoff == -1 && (HeapTupleNoNulls(tuple) || !att_isnull(j, bp)) && (HeapTupleAllFixed(tuple) || att[j]->attlen > 0 || VARLENA_FIXED_SIZE(att[j]))); j++) { /* * Fix me when going to a machine with more than a four-byte * word! */ off = att_align(off, att[j]->attlen, att[j]->attalign); att[j]->attcacheoff = off; off = att_addlength(off, att[j]->attlen, tp + off); } return (Datum) fetchatt(&(att[attnum]), tp + att[attnum]->attcacheoff); } else { bool usecache = true; int off = 0; int i; /* * Now we know that we have to walk the tuple CAREFULLY. * * Note - This loop is a little tricky. On iteration i we first set * the offset for attribute i and figure out how much the offset * should be incremented. Finally, we need to align the offset * based on the size of attribute i+1 (for which the offset has * been computed). -mer 12 Dec 1991 */ for (i = 0; i < attnum; i++) { if (!HeapTupleNoNulls(tuple)) { if (att_isnull(i, bp)) { usecache = false; continue; } } /* If we know the next offset, we can skip the rest */ if (usecache && att[i]->attcacheoff != -1) off = att[i]->attcacheoff; else { off = att_align(off, att[i]->attlen, att[i]->attalign); if (usecache) att[i]->attcacheoff = off; } off = att_addlength(off, att[i]->attlen, tp + off); if (usecache && att[i]->attlen == -1 && !VARLENA_FIXED_SIZE(att[i])) usecache = false; } off = att_align(off, att[attnum]->attlen, att[attnum]->attalign); return (Datum) fetchatt(&(att[attnum]), tp + off); } } /* ---------------- * heap_copytuple * * returns a copy of an entire tuple * ---------------- */ HeapTuple heap_copytuple(HeapTuple tuple) { HeapTuple newTuple; if (!HeapTupleIsValid(tuple) || tuple->t_data == NULL) return NULL; newTuple = (HeapTuple) palloc(HEAPTUPLESIZE + tuple->t_len); newTuple->t_len = tuple->t_len; newTuple->t_self = tuple->t_self; newTuple->t_datamcxt = CurrentMemoryContext; newTuple->t_data = (HeapTupleHeader) ((char *) newTuple + HEAPTUPLESIZE); memmove((char *) newTuple->t_data, (char *) tuple->t_data, tuple->t_len); return newTuple; } /* ---------------- * heap_copytuple_with_tuple * * returns a copy of an tuple->t_data * ---------------- */ void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest) { if (!HeapTupleIsValid(src) || src->t_data == NULL) { dest->t_data = NULL; return; } dest->t_len = src->t_len; dest->t_self = src->t_self; dest->t_datamcxt = CurrentMemoryContext; dest->t_data = (HeapTupleHeader) palloc(src->t_len); memmove((char *) dest->t_data, (char *) src->t_data, src->t_len); return; } #ifdef NOT_USED /* ---------------- * heap_deformtuple * * the inverse of heap_formtuple (see below) * ---------------- */ void heap_deformtuple(HeapTuple tuple, TupleDesc tdesc, Datum *values, char *nulls) { int i; int natts; Assert(HeapTupleIsValid(tuple)); natts = tuple->t_natts; for (i = 0; i < natts; i++) { bool isnull; values[i] = heap_getattr(tuple, i + 1, tdesc, &isnull); if (isnull) nulls[i] = 'n'; else nulls[i] = ' '; } } #endif /* ---------------- * heap_formtuple * * constructs a tuple from the given *value and *null arrays * * old comments * Handles alignment by aligning 2 byte attributes on short boundries * and 3 or 4 byte attributes on long word boundries on a vax; and * aligning non-byte attributes on short boundries on a sun. Does * not properly align fixed length arrays of 1 or 2 byte types (yet). * * Null attributes are indicated by a 'n' in the appropriate byte * of the *null. Non-null attributes are indicated by a ' ' (space). * * Fix me. (Figure that must keep context if debug--allow give oid.) * Assumes in order. * ---------------- */ HeapTuple heap_formtuple(TupleDesc tupleDescriptor, Datum *value, char *nulls) { HeapTuple tuple; /* return tuple */ HeapTupleHeader td; /* tuple data */ int bitmaplen; unsigned long len; int hoff; bool hasnull = false; int i; int numberOfAttributes = tupleDescriptor->natts; len = offsetof(HeapTupleHeaderData, t_bits); for (i = 0; i < numberOfAttributes && !hasnull; i++) { if (nulls[i] != ' ') hasnull = true; } if (numberOfAttributes > MaxHeapAttributeNumber) elog(ERROR, "heap_formtuple: numberOfAttributes of %d > %d", numberOfAttributes, MaxHeapAttributeNumber); if (hasnull) { bitmaplen = BITMAPLEN(numberOfAttributes); len += bitmaplen; } hoff = len = MAXALIGN(len); /* be conservative here */ len += ComputeDataSize(tupleDescriptor, value, nulls); tuple = (HeapTuple) palloc(HEAPTUPLESIZE + len); tuple->t_datamcxt = CurrentMemoryContext; td = tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); MemSet((char *) td, 0, len); tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); td->t_natts = numberOfAttributes; td->t_hoff = hoff; DataFill((char *) td + td->t_hoff, tupleDescriptor, value, nulls, &td->t_infomask, (hasnull ? td->t_bits : NULL)); td->t_infomask |= HEAP_XMAX_INVALID; return tuple; } /* ---------------- * heap_modifytuple * * forms a new tuple from an old tuple and a set of replacement values. * returns a new palloc'ed tuple. * ---------------- */ HeapTuple heap_modifytuple(HeapTuple tuple, Relation relation, Datum *replValue, char *replNull, char *repl) { int attoff; int numberOfAttributes; Datum *value; char *nulls; bool isNull; HeapTuple newTuple; uint8 infomask; /* ---------------- * sanity checks * ---------------- */ Assert(HeapTupleIsValid(tuple)); Assert(RelationIsValid(relation)); Assert(PointerIsValid(replValue)); Assert(PointerIsValid(replNull)); Assert(PointerIsValid(repl)); numberOfAttributes = RelationGetForm(relation)->relnatts; /* ---------------- * allocate and fill *value and *nulls arrays from either * the tuple or the repl information, as appropriate. * ---------------- */ value = (Datum *) palloc(numberOfAttributes * sizeof *value); nulls = (char *) palloc(numberOfAttributes * sizeof *nulls); for (attoff = 0; attoff < numberOfAttributes; attoff += 1) { if (repl[attoff] == ' ') { value[attoff] = heap_getattr(tuple, AttrOffsetGetAttrNumber(attoff), RelationGetDescr(relation), &isNull); nulls[attoff] = (isNull) ? 'n' : ' '; } else if (repl[attoff] != 'r') elog(ERROR, "heap_modifytuple: repl is \\%3d", repl[attoff]); else { /* == 'r' */ value[attoff] = replValue[attoff]; nulls[attoff] = replNull[attoff]; } } /* ---------------- * create a new tuple from the *values and *nulls arrays * ---------------- */ newTuple = heap_formtuple(RelationGetDescr(relation), value, nulls); /* ---------------- * copy the header except for t_len, t_natts, t_hoff, t_bits, t_infomask * ---------------- */ infomask = newTuple->t_data->t_infomask; memmove((char *) &newTuple->t_data->t_oid, /* XXX */ (char *) &tuple->t_data->t_oid, ((char *) &tuple->t_data->t_hoff - (char *) &tuple->t_data->t_oid)); /* XXX */ newTuple->t_data->t_infomask = infomask; newTuple->t_data->t_natts = numberOfAttributes; newTuple->t_self = tuple->t_self; return newTuple; } /* ---------------- * heap_freetuple * ---------------- */ void heap_freetuple(HeapTuple htup) { if (htup->t_data != NULL) if (htup->t_datamcxt != NULL && (char *) (htup->t_data) != ((char *) htup + HEAPTUPLESIZE)) pfree(htup->t_data); pfree(htup); } /* ---------------------------------------------------------------- * other misc functions * ---------------------------------------------------------------- */ HeapTuple heap_addheader(uint32 natts, /* max domain index */ int structlen, /* its length */ char *structure) /* pointer to the struct */ { HeapTuple tuple; HeapTupleHeader td; /* tuple data */ unsigned long len; int hoff; AssertArg(natts > 0); len = offsetof(HeapTupleHeaderData, t_bits); hoff = len = MAXALIGN(len); /* be conservative */ len += structlen; tuple = (HeapTuple) palloc(HEAPTUPLESIZE + len); tuple->t_datamcxt = CurrentMemoryContext; td = tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); MemSet((char *) td, 0, len); tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); td->t_hoff = hoff; td->t_natts = natts; td->t_infomask = 0; td->t_infomask |= HEAP_XMAX_INVALID; if (structlen > 0) memmove((char *) td + hoff, structure, (size_t) structlen); return tuple; }