/*------------------------------------------------------------------------- * * arrayfuncs.c * Support functions for arrays. * * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/utils/adt/arrayfuncs.c,v 1.88 2003/05/08 22:19:56 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "access/tupmacs.h" #include "catalog/catalog.h" #include "catalog/pg_type.h" #include "parser/parse_coerce.h" #include "utils/array.h" #include "utils/builtins.h" #include "utils/memutils.h" #include "utils/lsyscache.h" #include "utils/syscache.h" /*---------- * A standard varlena array has the following internal structure: * - total number of bytes (also, TOAST info flags) * - number of dimensions of the array * - bit mask of flags * - element type OID * - size of each array axis (C array of int) * - lower boundary of each dimension (C array of int) * - whatever is the stored data * The actual data starts on a MAXALIGN boundary. Individual items in the * array are aligned as specified by the array element type. * * NOTE: it is important that array elements of toastable datatypes NOT be * toasted, since the tupletoaster won't know they are there. (We could * support compressed toasted items; only out-of-line items are dangerous. * However, it seems preferable to store such items uncompressed and allow * the toaster to compress the whole array as one input.) * * There is currently no support for NULL elements in arrays, either. * A reasonable (and backwards-compatible) way to add support would be to * add a nulls bitmap following the array, which would be present * if needed; and its presence would be signaled by a bit in the flags word. * * * There are also some "fixed-length array" datatypes, such as NAME and * OIDVECTOR. These are simply a sequence of a fixed number of items each * of a fixed-length datatype, with no overhead; the item size must be * a multiple of its alignment requirement, because we do no padding. * We support subscripting on these types, but array_in() and array_out() * only work with varlena arrays. *---------- */ /* ---------- * Local definitions * ---------- */ #define ASSGN "=" #define RETURN_NULL(type) do { *isNull = true; return (type) 0; } while (0) static int ArrayCount(char *str, int *dim, char typdelim); static Datum *ReadArrayStr(char *arrayStr, int nitems, int ndim, int *dim, FmgrInfo *inputproc, Oid typelem, int32 typmod, char typdelim, int typlen, bool typbyval, char typalign, int *nbytes); static void CopyArrayEls(char *p, Datum *values, int nitems, int typlen, bool typbyval, char typalign, bool freedata); static void system_cache_lookup(Oid element_type, bool input, int *typlen, bool *typbyval, char *typdelim, Oid *typelem, Oid *proc, char *typalign); static Datum ArrayCast(char *value, bool byval, int len); static int ArrayCastAndSet(Datum src, int typlen, bool typbyval, char typalign, char *dest); static int array_nelems_size(char *ptr, int nitems, int typlen, bool typbyval, char typalign); static char *array_seek(char *ptr, int nitems, int typlen, bool typbyval, char typalign); static int array_copy(char *destptr, int nitems, char *srcptr, int typlen, bool typbyval, char typalign); static int array_slice_size(int ndim, int *dim, int *lb, char *arraydataptr, int *st, int *endp, int typlen, bool typbyval, char typalign); static void array_extract_slice(int ndim, int *dim, int *lb, char *arraydataptr, int *st, int *endp, char *destPtr, int typlen, bool typbyval, char typalign); static void array_insert_slice(int ndim, int *dim, int *lb, char *origPtr, int origdatasize, char *destPtr, int *st, int *endp, char *srcPtr, int typlen, bool typbyval, char typalign); /*--------------------------------------------------------------------- * array_in : * converts an array from the external format in "string" to * its internal format. * return value : * the internal representation of the input array *-------------------------------------------------------------------- */ Datum array_in(PG_FUNCTION_ARGS) { char *string = PG_GETARG_CSTRING(0); /* external form */ Oid element_type = PG_GETARG_OID(1); /* type of an array * element */ int32 typmod = PG_GETARG_INT32(2); /* typmod for array * elements */ int typlen; bool typbyval; char typdelim; Oid typinput; Oid typelem; char *string_save, *p; FmgrInfo inputproc; int i, nitems; int32 nbytes; Datum *dataPtr; ArrayType *retval; int ndim, dim[MAXDIM], lBound[MAXDIM]; char typalign; /* Get info about element type, including its input conversion proc */ system_cache_lookup(element_type, true, &typlen, &typbyval, &typdelim, &typelem, &typinput, &typalign); fmgr_info(typinput, &inputproc); /* Make a modifiable copy of the input */ /* XXX why are we allocating an extra 2 bytes here? */ string_save = (char *) palloc(strlen(string) + 3); strcpy(string_save, string); /* * If the input string starts with dimension info, read and use that. * Otherwise, we require the input to be in curly-brace style, and we * prescan the input to determine dimensions. * * Dimension info takes the form of one or more [n] or [m:n] items. The * outer loop iterates once per dimension item. */ p = string_save; ndim = 0; for (;;) { char *q; int ub; /* * Note: we currently allow whitespace between, but not within, * dimension items. */ while (isspace((unsigned char) *p)) p++; if (*p != '[') break; /* no more dimension items */ p++; if (ndim >= MAXDIM) elog(ERROR, "array_in: more than %d dimensions", MAXDIM); for (q = p; isdigit((unsigned char) *q); q++); if (q == p) /* no digits? */ elog(ERROR, "array_in: missing dimension value"); if (*q == ':') { /* [m:n] format */ *q = '\0'; lBound[ndim] = atoi(p); p = q + 1; for (q = p; isdigit((unsigned char) *q); q++); if (q == p) /* no digits? */ elog(ERROR, "array_in: missing dimension value"); } else { /* [n] format */ lBound[ndim] = 1; } if (*q != ']') elog(ERROR, "array_in: missing ']' in array declaration"); *q = '\0'; ub = atoi(p); p = q + 1; if (ub < lBound[ndim]) elog(ERROR, "array_in: upper_bound cannot be < lower_bound"); dim[ndim] = ub - lBound[ndim] + 1; ndim++; } if (ndim == 0) { /* No array dimensions, so intuit dimensions from brace structure */ if (*p != '{') elog(ERROR, "array_in: Need to specify dimension"); ndim = ArrayCount(p, dim, typdelim); for (i = 0; i < ndim; i++) lBound[i] = 1; } else { /* If array dimensions are given, expect '=' operator */ if (strncmp(p, ASSGN, strlen(ASSGN)) != 0) elog(ERROR, "array_in: missing assignment operator"); p += strlen(ASSGN); while (isspace((unsigned char) *p)) p++; } #ifdef ARRAYDEBUG printf("array_in- ndim %d (", ndim); for (i = 0; i < ndim; i++) { printf(" %d", dim[i]); }; printf(") for %s\n", string); #endif nitems = ArrayGetNItems(ndim, dim); if (nitems == 0) { /* Return empty array */ retval = (ArrayType *) palloc0(sizeof(ArrayType)); retval->size = sizeof(ArrayType); retval->elemtype = element_type; PG_RETURN_ARRAYTYPE_P(retval); } if (*p != '{') elog(ERROR, "array_in: missing left brace"); dataPtr = ReadArrayStr(p, nitems, ndim, dim, &inputproc, typelem, typmod, typdelim, typlen, typbyval, typalign, &nbytes); nbytes += ARR_OVERHEAD(ndim); retval = (ArrayType *) palloc0(nbytes); retval->size = nbytes; retval->ndim = ndim; retval->elemtype = element_type; memcpy((char *) ARR_DIMS(retval), (char *) dim, ndim * sizeof(int)); memcpy((char *) ARR_LBOUND(retval), (char *) lBound, ndim * sizeof(int)); CopyArrayEls(ARR_DATA_PTR(retval), dataPtr, nitems, typlen, typbyval, typalign, true); pfree(dataPtr); pfree(string_save); PG_RETURN_ARRAYTYPE_P(retval); } /*----------------------------------------------------------------------------- * ArrayCount * Counts the number of dimensions and the *dim array for an array string. * The syntax for array input is C-like nested curly braces *----------------------------------------------------------------------------- */ static int ArrayCount(char *str, int *dim, char typdelim) { int nest_level = 0, i; int ndim = 1, temp[MAXDIM]; bool scanning_string = false; bool eoArray = false; char *ptr; for (i = 0; i < MAXDIM; ++i) temp[i] = dim[i] = 0; if (strncmp(str, "{}", 2) == 0) return 0; ptr = str; while (!eoArray) { bool itemdone = false; while (!itemdone) { switch (*ptr) { case '\0': /* Signal a premature end of the string */ elog(ERROR, "malformed array constant: %s", str); break; case '\\': /* skip the escaped character */ if (*(ptr + 1)) ptr++; else elog(ERROR, "malformed array constant: %s", str); break; case '\"': scanning_string = !scanning_string; break; case '{': if (!scanning_string) { if (nest_level >= MAXDIM) elog(ERROR, "array_in: illformed array constant"); temp[nest_level] = 0; nest_level++; if (ndim < nest_level) ndim = nest_level; } break; case '}': if (!scanning_string) { if (nest_level == 0) elog(ERROR, "array_in: illformed array constant"); nest_level--; if (nest_level == 0) eoArray = itemdone = true; else { /* * We don't set itemdone here; see comments in * ReadArrayStr */ temp[nest_level - 1]++; } } break; default: if (*ptr == typdelim && !scanning_string) itemdone = true; break; } if (!itemdone) ptr++; } temp[ndim - 1]++; ptr++; } for (i = 0; i < ndim; ++i) dim[i] = temp[i]; return ndim; } /*--------------------------------------------------------------------------- * ReadArrayStr : * parses the array string pointed by "arrayStr" and converts it to * internal format. The external format expected is like C array * declaration. Unspecified elements are initialized to zero for fixed length * base types and to empty varlena structures for variable length base * types. (This is pretty bogus; NULL would be much safer.) * result : * returns a palloc'd array of Datum representations of the array elements. * If element type is pass-by-ref, the Datums point to palloc'd values. * *nbytes is set to the amount of data space needed for the array, * including alignment padding but not including array header overhead. * CAUTION: the contents of "arrayStr" may be modified! *--------------------------------------------------------------------------- */ static Datum * ReadArrayStr(char *arrayStr, int nitems, int ndim, int *dim, FmgrInfo *inputproc, Oid typelem, int32 typmod, char typdelim, int typlen, bool typbyval, char typalign, int *nbytes) { int i, nest_level = 0; Datum *values; char *ptr; bool scanning_string = false; bool eoArray = false; int indx[MAXDIM], prod[MAXDIM]; mda_get_prod(ndim, dim, prod); values = (Datum *) palloc0(nitems * sizeof(Datum)); MemSet(indx, 0, sizeof(indx)); /* read array enclosed within {} */ ptr = arrayStr; while (!eoArray) { bool itemdone = false; int i = -1; char *itemstart; /* skip leading whitespace */ while (isspace((unsigned char) *ptr)) ptr++; itemstart = ptr; while (!itemdone) { switch (*ptr) { case '\0': /* Signal a premature end of the string */ elog(ERROR, "malformed array constant: %s", arrayStr); break; case '\\': { char *cptr; /* Crunch the string on top of the backslash. */ for (cptr = ptr; *cptr != '\0'; cptr++) *cptr = *(cptr + 1); if (*ptr == '\0') elog(ERROR, "malformed array constant: %s", arrayStr); break; } case '\"': { char *cptr; scanning_string = !scanning_string; /* Crunch the string on top of the quote. */ for (cptr = ptr; *cptr != '\0'; cptr++) *cptr = *(cptr + 1); /* Back up to not miss following character. */ ptr--; break; } case '{': if (!scanning_string) { if (nest_level >= ndim) elog(ERROR, "array_in: illformed array constant"); nest_level++; indx[nest_level - 1] = 0; /* skip leading whitespace */ while (isspace((unsigned char) *(ptr + 1))) ptr++; itemstart = ptr + 1; } break; case '}': if (!scanning_string) { if (nest_level == 0) elog(ERROR, "array_in: illformed array constant"); if (i == -1) i = ArrayGetOffset0(ndim, indx, prod); indx[nest_level - 1] = 0; nest_level--; if (nest_level == 0) eoArray = itemdone = true; else { /* * tricky coding: terminate item value string * at first '}', but don't process it till we * see a typdelim char or end of array. This * handles case where several '}'s appear * successively in a multidimensional array. */ *ptr = '\0'; indx[nest_level - 1]++; } } break; default: if (*ptr == typdelim && !scanning_string) { if (i == -1) i = ArrayGetOffset0(ndim, indx, prod); itemdone = true; indx[ndim - 1]++; } break; } if (!itemdone) ptr++; } *ptr++ = '\0'; if (i < 0 || i >= nitems) elog(ERROR, "array_in: illformed array constant"); values[i] = FunctionCall3(inputproc, CStringGetDatum(itemstart), ObjectIdGetDatum(typelem), Int32GetDatum(typmod)); } /* * Initialize any unset items and compute total data space needed */ if (typlen > 0) { *nbytes = nitems * att_align(typlen, typalign); if (!typbyval) for (i = 0; i < nitems; i++) if (values[i] == (Datum) 0) values[i] = PointerGetDatum(palloc0(typlen)); } else { Assert(!typbyval); *nbytes = 0; for (i = 0; i < nitems; i++) { if (values[i] != (Datum) 0) { /* let's just make sure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); *nbytes = att_addlength(*nbytes, typlen, values[i]); *nbytes = att_align(*nbytes, typalign); } else if (typlen == -1) { /* dummy varlena value (XXX bogus, see notes above) */ values[i] = PointerGetDatum(palloc(sizeof(int32))); VARATT_SIZEP(DatumGetPointer(values[i])) = sizeof(int32); *nbytes += sizeof(int32); *nbytes = att_align(*nbytes, typalign); } else { /* dummy cstring value */ Assert(typlen == -2); values[i] = PointerGetDatum(palloc(1)); *((char *) DatumGetPointer(values[i])) = '\0'; *nbytes += 1; *nbytes = att_align(*nbytes, typalign); } } } return values; } /*---------- * Copy data into an array object from a temporary array of Datums. * * p: pointer to start of array data area * values: array of Datums to be copied * nitems: number of Datums to be copied * typbyval, typlen, typalign: info about element datatype * freedata: if TRUE and element type is pass-by-ref, pfree data values * referenced by Datums after copying them. * * If the input data is of varlena type, the caller must have ensured that * the values are not toasted. (Doing it here doesn't work since the * caller has already allocated space for the array...) *---------- */ static void CopyArrayEls(char *p, Datum *values, int nitems, int typlen, bool typbyval, char typalign, bool freedata) { int i; if (typbyval) freedata = false; for (i = 0; i < nitems; i++) { p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p); if (freedata) pfree(DatumGetPointer(values[i])); } } /*------------------------------------------------------------------------- * array_out : * takes the internal representation of an array and returns a string * containing the array in its external format. *------------------------------------------------------------------------- */ Datum array_out(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); Oid element_type; int typlen; bool typbyval; char typdelim; Oid typoutput, typelem; FmgrInfo outputproc; char typalign; char *p, *tmp, *retval, **values; bool *needquotes; int nitems, overall_length, i, j, k, indx[MAXDIM]; int ndim, *dim; element_type = ARR_ELEMTYPE(v); system_cache_lookup(element_type, false, &typlen, &typbyval, &typdelim, &typelem, &typoutput, &typalign); fmgr_info(typoutput, &outputproc); ndim = ARR_NDIM(v); dim = ARR_DIMS(v); nitems = ArrayGetNItems(ndim, dim); if (nitems == 0) { retval = pstrdup("{}"); PG_RETURN_CSTRING(retval); } /* * Convert all values to string form, count total space needed * (including any overhead such as escaping backslashes), and detect * whether each item needs double quotes. */ values = (char **) palloc(nitems * sizeof(char *)); needquotes = (bool *) palloc(nitems * sizeof(bool)); p = ARR_DATA_PTR(v); overall_length = 1; /* [TRH] don't forget to count \0 at end. */ for (i = 0; i < nitems; i++) { Datum itemvalue; bool nq; itemvalue = fetch_att(p, typbyval, typlen); values[i] = DatumGetCString(FunctionCall3(&outputproc, itemvalue, ObjectIdGetDatum(typelem), Int32GetDatum(-1))); p = att_addlength(p, typlen, PointerGetDatum(p)); p = (char *) att_align(p, typalign); /* count data plus backslashes; detect chars needing quotes */ nq = (values[i][0] == '\0'); /* force quotes for empty string */ for (tmp = values[i]; *tmp; tmp++) { char ch = *tmp; overall_length += 1; if (ch == '"' || ch == '\\') { nq = true; #ifndef TCL_ARRAYS overall_length += 1; #endif } else if (ch == '{' || ch == '}' || ch == typdelim || isspace((unsigned char) ch)) nq = true; } needquotes[i] = nq; /* Count the pair of double quotes, if needed */ if (nq) overall_length += 2; /* and the comma */ overall_length += 1; } /* * count total number of curly braces in output string */ for (i = j = 0, k = 1; i < ndim; k *= dim[i++], j += k); retval = (char *) palloc(overall_length + 2 * j); p = retval; #define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p)) #define APPENDCHAR(ch) (*p++ = (ch), *p = '\0') APPENDCHAR('{'); for (i = 0; i < ndim; indx[i++] = 0); j = 0; k = 0; do { for (i = j; i < ndim - 1; i++) APPENDCHAR('{'); if (needquotes[k]) { APPENDCHAR('"'); #ifndef TCL_ARRAYS for (tmp = values[k]; *tmp; tmp++) { char ch = *tmp; if (ch == '"' || ch == '\\') *p++ = '\\'; *p++ = ch; } *p = '\0'; #else APPENDSTR(values[k]); #endif APPENDCHAR('"'); } else APPENDSTR(values[k]); pfree(values[k++]); for (i = ndim - 1; i >= 0; i--) { indx[i] = (indx[i] + 1) % dim[i]; if (indx[i]) { APPENDCHAR(typdelim); break; } else APPENDCHAR('}'); } j = i; } while (j != -1); #undef APPENDSTR #undef APPENDCHAR pfree(values); pfree(needquotes); PG_RETURN_CSTRING(retval); } /*--------------------------------------------------------------------- * array_recv : * converts an array from the external binary format to * its internal format. * return value : * the internal representation of the input array *-------------------------------------------------------------------- */ Datum array_recv(PG_FUNCTION_ARGS) { elog(ERROR, "array_recv: not implemented yet"); return 0; } /*------------------------------------------------------------------------- * array_send : * takes the internal representation of an array and returns a bytea * containing the array in its external binary format. *------------------------------------------------------------------------- */ Datum array_send(PG_FUNCTION_ARGS) { elog(ERROR, "array_send: not implemented yet"); return 0; } /*------------------------------------------------------------------------- * array_length_coerce : * Apply the element type's length-coercion routine to each element * of the given array. *------------------------------------------------------------------------- */ Datum array_length_coerce(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int32 len = PG_GETARG_INT32(1); bool isExplicit = PG_GETARG_BOOL(2); FmgrInfo *fmgr_info = fcinfo->flinfo; typedef struct { Oid elemtype; FmgrInfo coerce_finfo; } alc_extra; alc_extra *my_extra; FunctionCallInfoData locfcinfo; /* If no typmod is provided, shortcircuit the whole thing */ if (len < 0) PG_RETURN_ARRAYTYPE_P(v); /* * We arrange to look up the element type's coercion function only * once per series of calls, assuming the element type doesn't change * underneath us. */ my_extra = (alc_extra *) fmgr_info->fn_extra; if (my_extra == NULL) { fmgr_info->fn_extra = MemoryContextAlloc(fmgr_info->fn_mcxt, sizeof(alc_extra)); my_extra = (alc_extra *) fmgr_info->fn_extra; my_extra->elemtype = InvalidOid; } if (my_extra->elemtype != ARR_ELEMTYPE(v)) { Oid funcId; int nargs; funcId = find_typmod_coercion_function(ARR_ELEMTYPE(v), &nargs); if (OidIsValid(funcId)) fmgr_info_cxt(funcId, &my_extra->coerce_finfo, fmgr_info->fn_mcxt); else my_extra->coerce_finfo.fn_oid = InvalidOid; my_extra->elemtype = ARR_ELEMTYPE(v); } /* * If we didn't find a coercion function, return the array unmodified * (this should not happen in the normal course of things, but might * happen if this function is called manually). */ if (my_extra->coerce_finfo.fn_oid == InvalidOid) PG_RETURN_ARRAYTYPE_P(v); /* * Use array_map to apply the function to each array element. * * Note: we pass isExplicit whether or not the function wants it ... */ MemSet(&locfcinfo, 0, sizeof(locfcinfo)); locfcinfo.flinfo = &my_extra->coerce_finfo; locfcinfo.nargs = 3; locfcinfo.arg[0] = PointerGetDatum(v); locfcinfo.arg[1] = Int32GetDatum(len); locfcinfo.arg[2] = BoolGetDatum(isExplicit); return array_map(&locfcinfo, ARR_ELEMTYPE(v), ARR_ELEMTYPE(v)); } /*----------------------------------------------------------------------------- * array_dims : * returns the dimensions of the array pointed to by "v", as a "text" *---------------------------------------------------------------------------- */ Datum array_dims(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); text *result; char *p; int nbytes, i; int *dimv, *lb; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); nbytes = ARR_NDIM(v) * 33 + 1; /* * 33 since we assume 15 digits per number + ':' +'[]' * * +1 allows for temp trailing null */ result = (text *) palloc(nbytes + VARHDRSZ); p = VARDATA(result); dimv = ARR_DIMS(v); lb = ARR_LBOUND(v); for (i = 0; i < ARR_NDIM(v); i++) { sprintf(p, "[%d:%d]", lb[i], dimv[i] + lb[i] - 1); p += strlen(p); } VARATT_SIZEP(result) = strlen(VARDATA(result)) + VARHDRSZ; PG_RETURN_TEXT_P(result); } /*----------------------------------------------------------------------------- * array_lower : * returns the lower dimension, of the DIM requested, for * the array pointed to by "v", as an int4 *---------------------------------------------------------------------------- */ Datum array_lower(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int reqdim = PG_GETARG_INT32(1); int *lb; int result; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > ARR_NDIM(v)) PG_RETURN_NULL(); lb = ARR_LBOUND(v); result = lb[reqdim - 1]; PG_RETURN_INT32(result); } /*----------------------------------------------------------------------------- * array_upper : * returns the upper dimension, of the DIM requested, for * the array pointed to by "v", as an int4 *---------------------------------------------------------------------------- */ Datum array_upper(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int reqdim = PG_GETARG_INT32(1); int *dimv, *lb; int result; /* Sanity check: does it look like an array at all? */ if (ARR_NDIM(v) <= 0 || ARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > ARR_NDIM(v)) PG_RETURN_NULL(); lb = ARR_LBOUND(v); dimv = ARR_DIMS(v); result = dimv[reqdim - 1] + lb[reqdim - 1] - 1; PG_RETURN_INT32(result); } /*--------------------------------------------------------------------------- * array_ref : * This routine takes an array pointer and an index array and returns * the referenced item as a Datum. Note that for a pass-by-reference * datatype, the returned Datum is a pointer into the array object. *--------------------------------------------------------------------------- */ Datum array_ref(ArrayType *array, int nSubscripts, int *indx, int arraylen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { int i, ndim, *dim, *lb, offset, fixedDim[1], fixedLb[1]; char *arraydataptr, *retptr; if (array == (ArrayType *) NULL) RETURN_NULL(Datum); if (arraylen > 0) { /* * fixed-length arrays -- these are assumed to be 1-d, 0-based */ ndim = 1; fixedDim[0] = arraylen / elmlen; fixedLb[0] = 0; dim = fixedDim; lb = fixedLb; arraydataptr = (char *) array; } else { /* detoast input array if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); lb = ARR_LBOUND(array); arraydataptr = ARR_DATA_PTR(array); } /* * Return NULL for invalid subscript */ if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) RETURN_NULL(Datum); for (i = 0; i < ndim; i++) if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) RETURN_NULL(Datum); /* * OK, get the element */ offset = ArrayGetOffset(nSubscripts, dim, lb, indx); retptr = array_seek(arraydataptr, offset, elmlen, elmbyval, elmalign); *isNull = false; return ArrayCast(retptr, elmbyval, elmlen); } /*----------------------------------------------------------------------------- * array_get_slice : * This routine takes an array and a range of indices (upperIndex and * lowerIndx), creates a new array structure for the referred elements * and returns a pointer to it. * * NOTE: we assume it is OK to scribble on the provided index arrays * lowerIndx[] and upperIndx[]. These are generally just temporaries. *----------------------------------------------------------------------------- */ ArrayType * array_get_slice(ArrayType *array, int nSubscripts, int *upperIndx, int *lowerIndx, int arraylen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { int i, ndim, *dim, *lb, *newlb; int fixedDim[1], fixedLb[1]; char *arraydataptr; ArrayType *newarray; int bytes, span[MAXDIM]; if (array == (ArrayType *) NULL) RETURN_NULL(ArrayType *); if (arraylen > 0) { /* * fixed-length arrays -- currently, cannot slice these because * parser labels output as being of the fixed-length array type! * Code below shows how we could support it if the parser were * changed to label output as a suitable varlena array type. */ elog(ERROR, "Slices of fixed-length arrays not implemented"); /* * fixed-length arrays -- these are assumed to be 1-d, 0-based XXX * where would we get the correct ELEMTYPE from? */ ndim = 1; fixedDim[0] = arraylen / elmlen; fixedLb[0] = 0; dim = fixedDim; lb = fixedLb; arraydataptr = (char *) array; } else { /* detoast input array if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); lb = ARR_LBOUND(array); arraydataptr = ARR_DATA_PTR(array); } /* * Check provided subscripts. A slice exceeding the current array * limits is silently truncated to the array limits. If we end up * with an empty slice, return NULL (should it be an empty array * instead?) */ if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) RETURN_NULL(ArrayType *); for (i = 0; i < nSubscripts; i++) { if (lowerIndx[i] < lb[i]) lowerIndx[i] = lb[i]; if (upperIndx[i] >= (dim[i] + lb[i])) upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) RETURN_NULL(ArrayType *); } /* fill any missing subscript positions with full array range */ for (; i < ndim; i++) { lowerIndx[i] = lb[i]; upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) RETURN_NULL(ArrayType *); } mda_get_range(ndim, span, lowerIndx, upperIndx); bytes = array_slice_size(ndim, dim, lb, arraydataptr, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); bytes += ARR_OVERHEAD(ndim); newarray = (ArrayType *) palloc(bytes); newarray->size = bytes; newarray->ndim = ndim; newarray->flags = 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int)); /* * Lower bounds of the new array are set to 1. Formerly (before 7.3) * we copied the given lowerIndx values ... but that seems confusing. */ newlb = ARR_LBOUND(newarray); for (i = 0; i < ndim; i++) newlb[i] = 1; array_extract_slice(ndim, dim, lb, arraydataptr, lowerIndx, upperIndx, ARR_DATA_PTR(newarray), elmlen, elmbyval, elmalign); return newarray; } /*----------------------------------------------------------------------------- * array_set : * This routine sets the value of an array location (specified by * an index array) to a new value specified by "dataValue". * result : * A new array is returned, just like the old except for the one * modified entry. * * For one-dimensional arrays only, we allow the array to be extended * by assigning to the position one above or one below the existing range. * (We could be more flexible if we had a way to represent NULL elements.) * * NOTE: For assignments, we throw an error for invalid subscripts etc, * rather than returning a NULL as the fetch operations do. The reasoning * is that returning a NULL would cause the user's whole array to be replaced * with NULL, which will probably not make him happy. *----------------------------------------------------------------------------- */ ArrayType * array_set(ArrayType *array, int nSubscripts, int *indx, Datum dataValue, int arraylen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { int i, ndim, dim[MAXDIM], lb[MAXDIM], offset; ArrayType *newarray; char *elt_ptr; bool extendbefore = false; bool extendafter = false; int olddatasize, newsize, olditemlen, newitemlen, overheadlen, lenbefore, lenafter; if (array == (ArrayType *) NULL) RETURN_NULL(ArrayType *); if (arraylen > 0) { /* * fixed-length arrays -- these are assumed to be 1-d, 0-based. We * cannot extend them, either. */ if (nSubscripts != 1) elog(ERROR, "Invalid array subscripts"); if (indx[0] < 0 || indx[0] * elmlen >= arraylen) elog(ERROR, "Invalid array subscripts"); newarray = (ArrayType *) palloc(arraylen); memcpy(newarray, array, arraylen); elt_ptr = (char *) newarray + indx[0] * elmlen; ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr); return newarray; } /* make sure item to be inserted is not toasted */ if (elmlen == -1) dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue)); /* detoast input array if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); ndim = ARR_NDIM(array); if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) elog(ERROR, "Invalid array subscripts"); /* copy dim/lb since we may modify them */ memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); /* * Check subscripts */ for (i = 0; i < ndim; i++) { if (indx[i] < lb[i]) { if (ndim == 1 && indx[i] == lb[i] - 1) { dim[i]++; lb[i]--; extendbefore = true; } else elog(ERROR, "Invalid array subscripts"); } if (indx[i] >= (dim[i] + lb[i])) { if (ndim == 1 && indx[i] == (dim[i] + lb[i])) { dim[i]++; extendafter = true; } else elog(ERROR, "Invalid array subscripts"); } } /* * Compute sizes of items and areas to copy */ overheadlen = ARR_OVERHEAD(ndim); olddatasize = ARR_SIZE(array) - overheadlen; if (extendbefore) { lenbefore = 0; olditemlen = 0; lenafter = olddatasize; } else if (extendafter) { lenbefore = olddatasize; olditemlen = 0; lenafter = 0; } else { offset = ArrayGetOffset(nSubscripts, dim, lb, indx); elt_ptr = array_seek(ARR_DATA_PTR(array), offset, elmlen, elmbyval, elmalign); lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array)); olditemlen = att_addlength(0, elmlen, PointerGetDatum(elt_ptr)); olditemlen = att_align(olditemlen, elmalign); lenafter = (int) (olddatasize - lenbefore - olditemlen); } newitemlen = att_addlength(0, elmlen, dataValue); newitemlen = att_align(newitemlen, elmalign); newsize = overheadlen + lenbefore + newitemlen + lenafter; /* * OK, do the assignment */ newarray = (ArrayType *) palloc(newsize); newarray->size = newsize; newarray->ndim = ndim; newarray->flags = 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); memcpy((char *) newarray + overheadlen, (char *) array + overheadlen, lenbefore); memcpy((char *) newarray + overheadlen + lenbefore + newitemlen, (char *) array + overheadlen + lenbefore + olditemlen, lenafter); ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, (char *) newarray + overheadlen + lenbefore); return newarray; } /*---------------------------------------------------------------------------- * array_set_slice : * This routine sets the value of a range of array locations (specified * by upper and lower index values ) to new values passed as * another array * result : * A new array is returned, just like the old except for the * modified range. * * NOTE: we assume it is OK to scribble on the provided index arrays * lowerIndx[] and upperIndx[]. These are generally just temporaries. * * NOTE: For assignments, we throw an error for silly subscripts etc, * rather than returning a NULL as the fetch operations do. The reasoning * is that returning a NULL would cause the user's whole array to be replaced * with NULL, which will probably not make him happy. *---------------------------------------------------------------------------- */ ArrayType * array_set_slice(ArrayType *array, int nSubscripts, int *upperIndx, int *lowerIndx, ArrayType *srcArray, int arraylen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { int i, ndim, dim[MAXDIM], lb[MAXDIM], span[MAXDIM]; ArrayType *newarray; int nsrcitems, olddatasize, newsize, olditemsize, newitemsize, overheadlen, lenbefore, lenafter; if (array == (ArrayType *) NULL) RETURN_NULL(ArrayType *); if (srcArray == (ArrayType *) NULL) return array; if (arraylen > 0) { /* * fixed-length arrays -- not got round to doing this... */ elog(ERROR, "Updates on slices of fixed-length arrays not implemented"); } /* detoast arrays if necessary */ array = DatumGetArrayTypeP(PointerGetDatum(array)); srcArray = DatumGetArrayTypeP(PointerGetDatum(srcArray)); /* note: we assume srcArray contains no toasted elements */ ndim = ARR_NDIM(array); if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) elog(ERROR, "Invalid array subscripts"); /* copy dim/lb since we may modify them */ memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); /* * Check provided subscripts. A slice exceeding the current array * limits throws an error, *except* in the 1-D case where we will * extend the array as long as no hole is created. An empty slice is * an error, too. */ for (i = 0; i < nSubscripts; i++) { if (lowerIndx[i] > upperIndx[i]) elog(ERROR, "Invalid array subscripts"); if (lowerIndx[i] < lb[i]) { if (ndim == 1 && upperIndx[i] >= lb[i] - 1) { dim[i] += lb[i] - lowerIndx[i]; lb[i] = lowerIndx[i]; } else elog(ERROR, "Invalid array subscripts"); } if (upperIndx[i] >= (dim[i] + lb[i])) { if (ndim == 1 && lowerIndx[i] <= (dim[i] + lb[i])) dim[i] = upperIndx[i] - lb[i] + 1; else elog(ERROR, "Invalid array subscripts"); } } /* fill any missing subscript positions with full array range */ for (; i < ndim; i++) { lowerIndx[i] = lb[i]; upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) elog(ERROR, "Invalid array subscripts"); } /* * Make sure source array has enough entries. Note we ignore the * shape of the source array and just read entries serially. */ mda_get_range(ndim, span, lowerIndx, upperIndx); nsrcitems = ArrayGetNItems(ndim, span); if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray))) elog(ERROR, "Source array too small"); /* * Compute space occupied by new entries, space occupied by replaced * entries, and required space for new array. */ newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), nsrcitems, elmlen, elmbyval, elmalign); overheadlen = ARR_OVERHEAD(ndim); olddatasize = ARR_SIZE(array) - overheadlen; if (ndim > 1) { /* * here we do not need to cope with extension of the array; it * would be a lot more complicated if we had to do so... */ olditemsize = array_slice_size(ndim, dim, lb, ARR_DATA_PTR(array), lowerIndx, upperIndx, elmlen, elmbyval, elmalign); lenbefore = lenafter = 0; /* keep compiler quiet */ } else { /* * here we must allow for possibility of slice larger than orig * array */ int oldlb = ARR_LBOUND(array)[0]; int oldub = oldlb + ARR_DIMS(array)[0] - 1; int slicelb = Max(oldlb, lowerIndx[0]); int sliceub = Min(oldub, upperIndx[0]); char *oldarraydata = ARR_DATA_PTR(array); lenbefore = array_nelems_size(oldarraydata, slicelb - oldlb, elmlen, elmbyval, elmalign); if (slicelb > sliceub) olditemsize = 0; else olditemsize = array_nelems_size(oldarraydata + lenbefore, sliceub - slicelb + 1, elmlen, elmbyval, elmalign); lenafter = olddatasize - lenbefore - olditemsize; } newsize = overheadlen + olddatasize - olditemsize + newitemsize; newarray = (ArrayType *) palloc(newsize); newarray->size = newsize; newarray->ndim = ndim; newarray->flags = 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); if (ndim > 1) { /* * here we do not need to cope with extension of the array; it * would be a lot more complicated if we had to do so... */ array_insert_slice(ndim, dim, lb, ARR_DATA_PTR(array), olddatasize, ARR_DATA_PTR(newarray), lowerIndx, upperIndx, ARR_DATA_PTR(srcArray), elmlen, elmbyval, elmalign); } else { memcpy((char *) newarray + overheadlen, (char *) array + overheadlen, lenbefore); memcpy((char *) newarray + overheadlen + lenbefore, ARR_DATA_PTR(srcArray), newitemsize); memcpy((char *) newarray + overheadlen + lenbefore + newitemsize, (char *) array + overheadlen + lenbefore + olditemsize, lenafter); } return newarray; } /* * array_map() * * Map an array through an arbitrary function. Return a new array with * same dimensions and each source element transformed by fn(). Each * source element is passed as the first argument to fn(); additional * arguments to be passed to fn() can be specified by the caller. * The output array can have a different element type than the input. * * Parameters are: * * fcinfo: a function-call data structure pre-constructed by the caller * to be ready to call the desired function, with everything except the * first argument position filled in. In particular, flinfo identifies * the function fn(), and if nargs > 1 then argument positions after the * first must be preset to the additional values to be passed. The * first argument position initially holds the input array value. * * inpType: OID of element type of input array. This must be the same as, * or binary-compatible with, the first argument type of fn(). * * retType: OID of element type of output array. This must be the same as, * or binary-compatible with, the result type of fn(). * * NB: caller must assure that input array is not NULL. Currently, * any additional parameters passed to fn() may not be specified as NULL * either. */ Datum array_map(FunctionCallInfo fcinfo, Oid inpType, Oid retType) { ArrayType *v; ArrayType *result; Datum *values; Datum elt; int *dim; int ndim; int nitems; int i; int nbytes = 0; int inp_typlen; bool inp_typbyval; char inp_typalign; int typlen; bool typbyval; char typalign; char typdelim; Oid typelem; Oid proc; char *s; /* Get input array */ if (fcinfo->nargs < 1) elog(ERROR, "array_map: invalid nargs: %d", fcinfo->nargs); if (PG_ARGISNULL(0)) elog(ERROR, "array_map: null input array"); v = PG_GETARG_ARRAYTYPE_P(0); Assert(ARR_ELEMTYPE(v) == inpType); ndim = ARR_NDIM(v); dim = ARR_DIMS(v); nitems = ArrayGetNItems(ndim, dim); /* Check for empty array */ if (nitems <= 0) PG_RETURN_ARRAYTYPE_P(v); /* Lookup source and result types. Unneeded variables are reused. */ system_cache_lookup(inpType, false, &inp_typlen, &inp_typbyval, &typdelim, &typelem, &proc, &inp_typalign); system_cache_lookup(retType, false, &typlen, &typbyval, &typdelim, &typelem, &proc, &typalign); /* Allocate temporary array for new values */ values = (Datum *) palloc(nitems * sizeof(Datum)); /* Loop over source data */ s = (char *) ARR_DATA_PTR(v); for (i = 0; i < nitems; i++) { /* Get source element */ elt = fetch_att(s, inp_typbyval, inp_typlen); s = att_addlength(s, inp_typlen, PointerGetDatum(s)); s = (char *) att_align(s, inp_typalign); /* * Apply the given function to source elt and extra args. * * We assume the extra args are non-NULL, so need not check whether * fn() is strict. Would need to do more work here to support * arrays containing nulls, too. */ fcinfo->arg[0] = elt; fcinfo->argnull[0] = false; fcinfo->isnull = false; values[i] = FunctionCallInvoke(fcinfo); if (fcinfo->isnull) elog(ERROR, "array_map: cannot handle NULL in array"); /* Ensure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); /* Update total result size */ nbytes = att_addlength(nbytes, typlen, values[i]); nbytes = att_align(nbytes, typalign); } /* Allocate and initialize the result array */ nbytes += ARR_OVERHEAD(ndim); result = (ArrayType *) palloc0(nbytes); result->size = nbytes; result->ndim = ndim; result->elemtype = retType; memcpy(ARR_DIMS(result), ARR_DIMS(v), 2 * ndim * sizeof(int)); /* * Note: do not risk trying to pfree the results of the called * function */ CopyArrayEls(ARR_DATA_PTR(result), values, nitems, typlen, typbyval, typalign, false); pfree(values); PG_RETURN_ARRAYTYPE_P(result); } /*---------- * construct_array --- simple method for constructing an array object * * elems: array of Datum items to become the array contents * nelems: number of items * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * * A palloc'd 1-D array object is constructed and returned. Note that * elem values will be copied into the object even if pass-by-ref type. * NULL element values are not supported. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. *---------- */ ArrayType * construct_array(Datum *elems, int nelems, Oid elmtype, int elmlen, bool elmbyval, char elmalign) { int dims[1]; int lbs[1]; dims[0] = nelems; lbs[0] = 1; return construct_md_array(elems, 1, dims, lbs, elmtype, elmlen, elmbyval, elmalign); } /*---------- * construct_md_array --- simple method for constructing an array object * with arbitrary dimensions * * elems: array of Datum items to become the array contents * ndims: number of dimensions * dims: integer array with size of each dimension * lbs: integer array with lower bound of each dimension * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * * A palloc'd ndims-D array object is constructed and returned. Note that * elem values will be copied into the object even if pass-by-ref type. * NULL element values are not supported. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. *---------- */ ArrayType * construct_md_array(Datum *elems, int ndims, int *dims, int *lbs, Oid elmtype, int elmlen, bool elmbyval, char elmalign) { ArrayType *result; int nbytes; int i; int nelems; if (ndims < 1 || ndims > MAXDIM) elog(ERROR, "Number of array dimensions, %d, exceeds the maximum allowed (%d)", ndims, MAXDIM); nelems = ArrayGetNItems(ndims, dims); /* compute required space */ if (elmlen > 0) nbytes = nelems * att_align(elmlen, elmalign); else { Assert(!elmbyval); nbytes = 0; for (i = 0; i < nelems; i++) { /* make sure data is not toasted */ if (elmlen == -1) elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i])); nbytes = att_addlength(nbytes, elmlen, elems[i]); nbytes = att_align(nbytes, elmalign); } } /* Allocate and initialize ndims-D result array */ nbytes += ARR_OVERHEAD(ndims); result = (ArrayType *) palloc(nbytes); result->size = nbytes; result->ndim = ndims; result->flags = 0; result->elemtype = elmtype; memcpy((char *) ARR_DIMS(result), (char *) dims, ndims * sizeof(int)); memcpy((char *) ARR_LBOUND(result), (char *) lbs, ndims * sizeof(int)); CopyArrayEls(ARR_DATA_PTR(result), elems, nelems, elmlen, elmbyval, elmalign, false); return result; } /*---------- * deconstruct_array --- simple method for extracting data from an array * * array: array object to examine (must not be NULL) * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * elemsp: return value, set to point to palloc'd array of Datum values * nelemsp: return value, set to number of extracted values * * If array elements are pass-by-ref data type, the returned Datums will * be pointers into the array object. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, in most current * uses the type is hard-wired into the caller and so we can save a lookup * cycle by hard-wiring the type info as well. *---------- */ void deconstruct_array(ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, int *nelemsp) { Datum *elems; int nelems; char *p; int i; Assert(ARR_ELEMTYPE(array) == elmtype); nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); if (nelems <= 0) { *elemsp = NULL; *nelemsp = 0; return; } *elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum)); *nelemsp = nelems; p = ARR_DATA_PTR(array); for (i = 0; i < nelems; i++) { elems[i] = fetch_att(p, elmbyval, elmlen); p = att_addlength(p, elmlen, PointerGetDatum(p)); p = (char *) att_align(p, elmalign); } } /*----------------------------------------------------------------------------- * array_eq : * compares two arrays for equality * result : * returns true if the arrays are equal, false otherwise. * * XXX bitwise equality is pretty bogus ... *----------------------------------------------------------------------------- */ Datum array_eq(PG_FUNCTION_ARGS) { ArrayType *array1 = PG_GETARG_ARRAYTYPE_P(0); ArrayType *array2 = PG_GETARG_ARRAYTYPE_P(1); bool result = true; if (ARR_SIZE(array1) != ARR_SIZE(array2)) result = false; else if (memcmp(array1, array2, ARR_SIZE(array1)) != 0) result = false; /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(array1, 0); PG_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } /***************************************************************************/ /******************| Support Routines |*****************/ /***************************************************************************/ static void system_cache_lookup(Oid element_type, bool input, int *typlen, bool *typbyval, char *typdelim, Oid *typelem, Oid *proc, char *typalign) { HeapTuple typeTuple; Form_pg_type typeStruct; typeTuple = SearchSysCache(TYPEOID, ObjectIdGetDatum(element_type), 0, 0, 0); if (!HeapTupleIsValid(typeTuple)) elog(ERROR, "cache lookup failed for type %u", element_type); typeStruct = (Form_pg_type) GETSTRUCT(typeTuple); *typlen = typeStruct->typlen; *typbyval = typeStruct->typbyval; *typdelim = typeStruct->typdelim; *typelem = typeStruct->typelem; *typalign = typeStruct->typalign; if (input) *proc = typeStruct->typinput; else *proc = typeStruct->typoutput; ReleaseSysCache(typeTuple); } /* * Fetch array element at pointer, converted correctly to a Datum */ static Datum ArrayCast(char *value, bool byval, int len) { return fetch_att(value, byval, len); } /* * Copy datum to *dest and return total space used (including align padding) */ static int ArrayCastAndSet(Datum src, int typlen, bool typbyval, char typalign, char *dest) { int inc; if (typlen > 0) { if (typbyval) store_att_byval(dest, src, typlen); else memmove(dest, DatumGetPointer(src), typlen); inc = att_align(typlen, typalign); } else { Assert(!typbyval); inc = att_addlength(0, typlen, src); memmove(dest, DatumGetPointer(src), inc); inc = att_align(inc, typalign); } return inc; } /* * Compute total size of the nitems array elements starting at *ptr */ static int array_nelems_size(char *ptr, int nitems, int typlen, bool typbyval, char typalign) { char *origptr; int i; /* fixed-size elements? */ if (typlen > 0) return nitems * att_align(typlen, typalign); Assert(!typbyval); origptr = ptr; for (i = 0; i < nitems; i++) { ptr = att_addlength(ptr, typlen, PointerGetDatum(ptr)); ptr = (char *) att_align(ptr, typalign); } return ptr - origptr; } /* * Advance ptr over nitems array elements */ static char * array_seek(char *ptr, int nitems, int typlen, bool typbyval, char typalign) { return ptr + array_nelems_size(ptr, nitems, typlen, typbyval, typalign); } /* * Copy nitems array elements from srcptr to destptr * * Returns number of bytes copied */ static int array_copy(char *destptr, int nitems, char *srcptr, int typlen, bool typbyval, char typalign) { int numbytes = array_nelems_size(srcptr, nitems, typlen, typbyval, typalign); memmove(destptr, srcptr, numbytes); return numbytes; } /* * Compute space needed for a slice of an array * * We assume the caller has verified that the slice coordinates are valid. */ static int array_slice_size(int ndim, int *dim, int *lb, char *arraydataptr, int *st, int *endp, int typlen, bool typbyval, char typalign) { int st_pos, span[MAXDIM], prod[MAXDIM], dist[MAXDIM], indx[MAXDIM]; char *ptr; int i, j, inc; int count = 0; mda_get_range(ndim, span, st, endp); /* Pretty easy for fixed element length ... */ if (typlen > 0) return ArrayGetNItems(ndim, span) * att_align(typlen, typalign); /* Else gotta do it the hard way */ st_pos = ArrayGetOffset(ndim, dim, lb, st); ptr = array_seek(arraydataptr, st_pos, typlen, typbyval, typalign); mda_get_prod(ndim, dim, prod); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; j = ndim - 1; do { ptr = array_seek(ptr, dist[j], typlen, typbyval, typalign); inc = att_addlength(0, typlen, PointerGetDatum(ptr)); inc = att_align(inc, typalign); ptr += inc; count += inc; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); return count; } /* * Extract a slice of an array into consecutive elements at *destPtr. * * We assume the caller has verified that the slice coordinates are valid * and allocated enough storage at *destPtr. */ static void array_extract_slice(int ndim, int *dim, int *lb, char *arraydataptr, int *st, int *endp, char *destPtr, int typlen, bool typbyval, char typalign) { int st_pos, prod[MAXDIM], span[MAXDIM], dist[MAXDIM], indx[MAXDIM]; char *srcPtr; int i, j, inc; st_pos = ArrayGetOffset(ndim, dim, lb, st); srcPtr = array_seek(arraydataptr, st_pos, typlen, typbyval, typalign); mda_get_prod(ndim, dim, prod); mda_get_range(ndim, span, st, endp); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; j = ndim - 1; do { srcPtr = array_seek(srcPtr, dist[j], typlen, typbyval, typalign); inc = array_copy(destPtr, 1, srcPtr, typlen, typbyval, typalign); destPtr += inc; srcPtr += inc; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); } /* * Insert a slice into an array. * * ndim/dim/lb are dimensions of the dest array, which has data area * starting at origPtr. A new array with those same dimensions is to * be constructed; its data area starts at destPtr. * * Elements within the slice volume are taken from consecutive locations * at srcPtr; elements outside it are copied from origPtr. * * We assume the caller has verified that the slice coordinates are valid * and allocated enough storage at *destPtr. */ static void array_insert_slice(int ndim, int *dim, int *lb, char *origPtr, int origdatasize, char *destPtr, int *st, int *endp, char *srcPtr, int typlen, bool typbyval, char typalign) { int st_pos, prod[MAXDIM], span[MAXDIM], dist[MAXDIM], indx[MAXDIM]; char *origEndpoint = origPtr + origdatasize; int i, j, inc; st_pos = ArrayGetOffset(ndim, dim, lb, st); inc = array_copy(destPtr, st_pos, origPtr, typlen, typbyval, typalign); destPtr += inc; origPtr += inc; mda_get_prod(ndim, dim, prod); mda_get_range(ndim, span, st, endp); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; j = ndim - 1; do { /* Copy/advance over elements between here and next part of slice */ inc = array_copy(destPtr, dist[j], origPtr, typlen, typbyval, typalign); destPtr += inc; origPtr += inc; /* Copy new element at this slice position */ inc = array_copy(destPtr, 1, srcPtr, typlen, typbyval, typalign); destPtr += inc; srcPtr += inc; /* Advance over old element at this slice position */ origPtr = array_seek(origPtr, 1, typlen, typbyval, typalign); } while ((j = mda_next_tuple(ndim, indx, span)) != -1); /* don't miss any data at the end */ memcpy(destPtr, origPtr, origEndpoint - origPtr); } /* * array_type_coerce -- allow explicit or assignment coercion from * one array type to another. * * Caller should have already verified that the source element type can be * coerced into the target element type. */ Datum array_type_coerce(PG_FUNCTION_ARGS) { ArrayType *src = PG_GETARG_ARRAYTYPE_P(0); Oid src_elem_type = ARR_ELEMTYPE(src); FmgrInfo *fmgr_info = fcinfo->flinfo; typedef struct { Oid srctype; Oid desttype; FmgrInfo coerce_finfo; } atc_extra; atc_extra *my_extra; FunctionCallInfoData locfcinfo; /* * We arrange to look up the coercion function only once per series of * calls, assuming the input data type doesn't change underneath us. * (Output type can't change.) */ my_extra = (atc_extra *) fmgr_info->fn_extra; if (my_extra == NULL) { fmgr_info->fn_extra = MemoryContextAlloc(fmgr_info->fn_mcxt, sizeof(atc_extra)); my_extra = (atc_extra *) fmgr_info->fn_extra; my_extra->srctype = InvalidOid; } if (my_extra->srctype != src_elem_type) { Oid tgt_type = get_fn_expr_rettype(fcinfo); Oid tgt_elem_type; Oid funcId; if (tgt_type == InvalidOid) elog(ERROR, "Cannot determine target array type"); tgt_elem_type = get_element_type(tgt_type); if (tgt_elem_type == InvalidOid) elog(ERROR, "Target type is not an array"); if (!find_coercion_pathway(tgt_elem_type, src_elem_type, COERCION_EXPLICIT, &funcId)) { /* should never happen, but check anyway */ elog(ERROR, "no conversion function from %s to %s", format_type_be(src_elem_type), format_type_be(tgt_elem_type)); } if (OidIsValid(funcId)) fmgr_info_cxt(funcId, &my_extra->coerce_finfo, fmgr_info->fn_mcxt); else my_extra->coerce_finfo.fn_oid = InvalidOid; my_extra->srctype = src_elem_type; my_extra->desttype = tgt_elem_type; } /* * If it's binary-compatible, return the array unmodified. */ if (my_extra->coerce_finfo.fn_oid == InvalidOid) PG_RETURN_ARRAYTYPE_P(src); /* * Use array_map to apply the function to each array element. */ MemSet(&locfcinfo, 0, sizeof(locfcinfo)); locfcinfo.flinfo = &my_extra->coerce_finfo; locfcinfo.nargs = 1; locfcinfo.arg[0] = PointerGetDatum(src); return array_map(&locfcinfo, my_extra->srctype, my_extra->desttype); }