/*------------------------------------------------------------------------- * * parse_node.c * various routines that make nodes for querytrees * * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/parser/parse_node.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/htup_details.h" #include "access/table.h" #include "catalog/pg_type.h" #include "mb/pg_wchar.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_relation.h" #include "parser/parsetree.h" #include "utils/builtins.h" #include "utils/int8.h" #include "utils/lsyscache.h" #include "utils/syscache.h" #include "utils/varbit.h" static void pcb_error_callback(void *arg); /* * make_parsestate * Allocate and initialize a new ParseState. * * Caller should eventually release the ParseState via free_parsestate(). */ ParseState * make_parsestate(ParseState *parentParseState) { ParseState *pstate; pstate = palloc0(sizeof(ParseState)); pstate->parentParseState = parentParseState; /* Fill in fields that don't start at null/false/zero */ pstate->p_next_resno = 1; pstate->p_resolve_unknowns = true; if (parentParseState) { pstate->p_sourcetext = parentParseState->p_sourcetext; /* all hooks are copied from parent */ pstate->p_pre_columnref_hook = parentParseState->p_pre_columnref_hook; pstate->p_post_columnref_hook = parentParseState->p_post_columnref_hook; pstate->p_paramref_hook = parentParseState->p_paramref_hook; pstate->p_coerce_param_hook = parentParseState->p_coerce_param_hook; pstate->p_ref_hook_state = parentParseState->p_ref_hook_state; /* query environment stays in context for the whole parse analysis */ pstate->p_queryEnv = parentParseState->p_queryEnv; } return pstate; } /* * free_parsestate * Release a ParseState and any subsidiary resources. */ void free_parsestate(ParseState *pstate) { /* * Check that we did not produce too many resnos; at the very least we * cannot allow more than 2^16, since that would exceed the range of a * AttrNumber. It seems safest to use MaxTupleAttributeNumber. */ if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("target lists can have at most %d entries", MaxTupleAttributeNumber))); if (pstate->p_target_relation != NULL) table_close(pstate->p_target_relation, NoLock); pfree(pstate); } /* * parser_errposition * Report a parse-analysis-time cursor position, if possible. * * This is expected to be used within an ereport() call. The return value * is a dummy (always 0, in fact). * * The locations stored in raw parsetrees are byte offsets into the source * string. We have to convert them to 1-based character indexes for reporting * to clients. (We do things this way to avoid unnecessary overhead in the * normal non-error case: computing character indexes would be much more * expensive than storing token offsets.) */ int parser_errposition(ParseState *pstate, int location) { int pos; /* No-op if location was not provided */ if (location < 0) return 0; /* Can't do anything if source text is not available */ if (pstate == NULL || pstate->p_sourcetext == NULL) return 0; /* Convert offset to character number */ pos = pg_mbstrlen_with_len(pstate->p_sourcetext, location) + 1; /* And pass it to the ereport mechanism */ return errposition(pos); } /* * setup_parser_errposition_callback * Arrange for non-parser errors to report an error position * * Sometimes the parser calls functions that aren't part of the parser * subsystem and can't reasonably be passed a ParseState; yet we would * like any errors thrown in those functions to be tagged with a parse * error location. Use this function to set up an error context stack * entry that will accomplish that. Usage pattern: * * declare a local variable "ParseCallbackState pcbstate" * ... * setup_parser_errposition_callback(&pcbstate, pstate, location); * call function that might throw error; * cancel_parser_errposition_callback(&pcbstate); */ void setup_parser_errposition_callback(ParseCallbackState *pcbstate, ParseState *pstate, int location) { /* Setup error traceback support for ereport() */ pcbstate->pstate = pstate; pcbstate->location = location; pcbstate->errcallback.callback = pcb_error_callback; pcbstate->errcallback.arg = (void *) pcbstate; pcbstate->errcallback.previous = error_context_stack; error_context_stack = &pcbstate->errcallback; } /* * Cancel a previously-set-up errposition callback. */ void cancel_parser_errposition_callback(ParseCallbackState *pcbstate) { /* Pop the error context stack */ error_context_stack = pcbstate->errcallback.previous; } /* * Error context callback for inserting parser error location. * * Note that this will be called for *any* error occurring while the * callback is installed. We avoid inserting an irrelevant error location * if the error is a query cancel --- are there any other important cases? */ static void pcb_error_callback(void *arg) { ParseCallbackState *pcbstate = (ParseCallbackState *) arg; if (geterrcode() != ERRCODE_QUERY_CANCELED) (void) parser_errposition(pcbstate->pstate, pcbstate->location); } /* * transformContainerType() * Identify the types involved in a subscripting operation for container * * * On entry, containerType/containerTypmod identify the type of the input value * to be subscripted (which could be a domain type). These are modified if * necessary to identify the actual container type and typmod, and the * container's element type is returned. An error is thrown if the input isn't * an array type. */ Oid transformContainerType(Oid *containerType, int32 *containerTypmod) { Oid origContainerType = *containerType; Oid elementType; HeapTuple type_tuple_container; Form_pg_type type_struct_container; /* * If the input is a domain, smash to base type, and extract the actual * typmod to be applied to the base type. Subscripting a domain is an * operation that necessarily works on the base container type, not the * domain itself. (Note that we provide no method whereby the creator of a * domain over a container type could hide its ability to be subscripted.) */ *containerType = getBaseTypeAndTypmod(*containerType, containerTypmod); /* * Here is an array specific code. We treat int2vector and oidvector as * though they were domains over int2[] and oid[]. This is needed because * array slicing could create an array that doesn't satisfy the * dimensionality constraints of the xxxvector type; so we want the result * of a slice operation to be considered to be of the more general type. */ if (*containerType == INT2VECTOROID) *containerType = INT2ARRAYOID; else if (*containerType == OIDVECTOROID) *containerType = OIDARRAYOID; /* Get the type tuple for the container */ type_tuple_container = SearchSysCache1(TYPEOID, ObjectIdGetDatum(*containerType)); if (!HeapTupleIsValid(type_tuple_container)) elog(ERROR, "cache lookup failed for type %u", *containerType); type_struct_container = (Form_pg_type) GETSTRUCT(type_tuple_container); /* needn't check typisdefined since this will fail anyway */ elementType = type_struct_container->typelem; if (elementType == InvalidOid) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot subscript type %s because it is not an array", format_type_be(origContainerType)))); ReleaseSysCache(type_tuple_container); return elementType; } /* * transformContainerSubscripts() * Transform container (array, etc) subscripting. This is used for both * container fetch and container assignment. * * In a container fetch, we are given a source container value and we produce * an expression that represents the result of extracting a single container * element or a container slice. * * In a container assignment, we are given a destination container value plus a * source value that is to be assigned to a single element or a slice of that * container. We produce an expression that represents the new container value * with the source data inserted into the right part of the container. * * For both cases, if the source container is of a domain-over-array type, * the result is of the base array type or its element type; essentially, * we must fold a domain to its base type before applying subscripting. * (Note that int2vector and oidvector are treated as domains here.) * * pstate Parse state * containerBase Already-transformed expression for the container as a whole * containerType OID of container's datatype (should match type of * containerBase, or be the base type of containerBase's * domain type) * elementType OID of container's element type (fetch with * transformContainerType, or pass InvalidOid to do it here) * containerTypMod typmod for the container (which is also typmod for the * elements) * indirection Untransformed list of subscripts (must not be NIL) * assignFrom NULL for container fetch, else transformed expression for * source. */ SubscriptingRef * transformContainerSubscripts(ParseState *pstate, Node *containerBase, Oid containerType, Oid elementType, int32 containerTypMod, List *indirection, Node *assignFrom) { bool isSlice = false; List *upperIndexpr = NIL; List *lowerIndexpr = NIL; ListCell *idx; SubscriptingRef *sbsref; /* * Caller may or may not have bothered to determine elementType. Note * that if the caller did do so, containerType/containerTypMod must be as * modified by transformContainerType, ie, smash domain to base type. */ if (!OidIsValid(elementType)) elementType = transformContainerType(&containerType, &containerTypMod); /* * A list containing only simple subscripts refers to a single container * element. If any of the items are slice specifiers (lower:upper), then * the subscript expression means a container slice operation. In this * case, we convert any non-slice items to slices by treating the single * subscript as the upper bound and supplying an assumed lower bound of 1. * We have to prescan the list to see if there are any slice items. */ foreach(idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); if (ai->is_slice) { isSlice = true; break; } } /* * Transform the subscript expressions. */ foreach(idx, indirection) { A_Indices *ai = lfirst_node(A_Indices, idx); Node *subexpr; if (isSlice) { if (ai->lidx) { subexpr = transformExpr(pstate, ai->lidx, pstate->p_expr_kind); /* If it's not int4 already, try to coerce */ subexpr = coerce_to_target_type(pstate, subexpr, exprType(subexpr), INT4OID, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1); if (subexpr == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("array subscript must have type integer"), parser_errposition(pstate, exprLocation(ai->lidx)))); } else if (!ai->is_slice) { /* Make a constant 1 */ subexpr = (Node *) makeConst(INT4OID, -1, InvalidOid, sizeof(int32), Int32GetDatum(1), false, true); /* pass by value */ } else { /* Slice with omitted lower bound, put NULL into the list */ subexpr = NULL; } lowerIndexpr = lappend(lowerIndexpr, subexpr); } else Assert(ai->lidx == NULL && !ai->is_slice); if (ai->uidx) { subexpr = transformExpr(pstate, ai->uidx, pstate->p_expr_kind); /* If it's not int4 already, try to coerce */ subexpr = coerce_to_target_type(pstate, subexpr, exprType(subexpr), INT4OID, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1); if (subexpr == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("array subscript must have type integer"), parser_errposition(pstate, exprLocation(ai->uidx)))); } else { /* Slice with omitted upper bound, put NULL into the list */ Assert(isSlice && ai->is_slice); subexpr = NULL; } upperIndexpr = lappend(upperIndexpr, subexpr); } /* * If doing an array store, coerce the source value to the right type. * (This should agree with the coercion done by transformAssignedExpr.) */ if (assignFrom != NULL) { Oid typesource = exprType(assignFrom); Oid typeneeded = isSlice ? containerType : elementType; Node *newFrom; newFrom = coerce_to_target_type(pstate, assignFrom, typesource, typeneeded, containerTypMod, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST, -1); if (newFrom == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("array assignment requires type %s" " but expression is of type %s", format_type_be(typeneeded), format_type_be(typesource)), errhint("You will need to rewrite or cast the expression."), parser_errposition(pstate, exprLocation(assignFrom)))); assignFrom = newFrom; } /* * Ready to build the SubscriptingRef node. */ sbsref = (SubscriptingRef *) makeNode(SubscriptingRef); if (assignFrom != NULL) sbsref->refassgnexpr = (Expr *) assignFrom; sbsref->refcontainertype = containerType; sbsref->refelemtype = elementType; sbsref->reftypmod = containerTypMod; /* refcollid will be set by parse_collate.c */ sbsref->refupperindexpr = upperIndexpr; sbsref->reflowerindexpr = lowerIndexpr; sbsref->refexpr = (Expr *) containerBase; sbsref->refassgnexpr = (Expr *) assignFrom; return sbsref; } /* * make_const * * Convert a Value node (as returned by the grammar) to a Const node * of the "natural" type for the constant. Note that this routine is * only used when there is no explicit cast for the constant, so we * have to guess what type is wanted. * * For string literals we produce a constant of type UNKNOWN ---- whose * representation is the same as cstring, but it indicates to later type * resolution that we're not sure yet what type it should be considered. * Explicit "NULL" constants are also typed as UNKNOWN. * * For integers and floats we produce int4, int8, or numeric depending * on the value of the number. XXX We should produce int2 as well, * but additional cleanup is needed before we can do that; there are * too many examples that fail if we try. */ Const * make_const(ParseState *pstate, Value *value, int location) { Const *con; Datum val; int64 val64; Oid typeid; int typelen; bool typebyval; ParseCallbackState pcbstate; switch (nodeTag(value)) { case T_Integer: val = Int32GetDatum(intVal(value)); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; break; case T_Float: /* could be an oversize integer as well as a float ... */ if (scanint8(strVal(value), true, &val64)) { /* * It might actually fit in int32. Probably only INT_MIN can * occur, but we'll code the test generally just to be sure. */ int32 val32 = (int32) val64; if (val64 == (int64) val32) { val = Int32GetDatum(val32); typeid = INT4OID; typelen = sizeof(int32); typebyval = true; } else { val = Int64GetDatum(val64); typeid = INT8OID; typelen = sizeof(int64); typebyval = FLOAT8PASSBYVAL; /* int8 and float8 alike */ } } else { /* arrange to report location if numeric_in() fails */ setup_parser_errposition_callback(&pcbstate, pstate, location); val = DirectFunctionCall3(numeric_in, CStringGetDatum(strVal(value)), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); cancel_parser_errposition_callback(&pcbstate); typeid = NUMERICOID; typelen = -1; /* variable len */ typebyval = false; } break; case T_String: /* * We assume here that UNKNOWN's internal representation is the * same as CSTRING */ val = CStringGetDatum(strVal(value)); typeid = UNKNOWNOID; /* will be coerced later */ typelen = -2; /* cstring-style varwidth type */ typebyval = false; break; case T_BitString: /* arrange to report location if bit_in() fails */ setup_parser_errposition_callback(&pcbstate, pstate, location); val = DirectFunctionCall3(bit_in, CStringGetDatum(strVal(value)), ObjectIdGetDatum(InvalidOid), Int32GetDatum(-1)); cancel_parser_errposition_callback(&pcbstate); typeid = BITOID; typelen = -1; typebyval = false; break; case T_Null: /* return a null const */ con = makeConst(UNKNOWNOID, -1, InvalidOid, -2, (Datum) 0, true, false); con->location = location; return con; default: elog(ERROR, "unrecognized node type: %d", (int) nodeTag(value)); return NULL; /* keep compiler quiet */ } con = makeConst(typeid, -1, /* typmod -1 is OK for all cases */ InvalidOid, /* all cases are uncollatable types */ typelen, val, false, typebyval); con->location = location; return con; }