/* * explain.c * Explain the query execution plan * * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group * Portions Copyright (c) 1994-5, Regents of the University of California * * $Header: /cvsroot/pgsql/src/backend/commands/explain.c,v 1.81 2002/07/20 05:16:57 momjian Exp $ * */ #include "postgres.h" #include "access/genam.h" #include "access/heapam.h" #include "catalog/pg_type.h" #include "commands/explain.h" #include "executor/instrument.h" #include "lib/stringinfo.h" #include "nodes/print.h" #include "optimizer/clauses.h" #include "optimizer/planner.h" #include "optimizer/var.h" #include "parser/parsetree.h" #include "rewrite/rewriteHandler.h" #include "tcop/pquery.h" #include "utils/builtins.h" #include "utils/guc.h" #include "utils/lsyscache.h" typedef struct ExplainState { /* options */ bool printCost; /* print cost */ bool printNodes; /* do nodeToString() instead */ /* other states */ List *rtable; /* range table */ } ExplainState; typedef struct TextOutputState { TupleDesc tupdesc; DestReceiver *destfunc; } TextOutputState; static StringInfo Explain_PlanToString(Plan *plan, ExplainState *es); static void ExplainOneQuery(Query *query, ExplainStmt *stmt, TextOutputState *tstate); static void explain_outNode(StringInfo str, Plan *plan, Plan *outer_plan, int indent, ExplainState *es); static void show_scan_qual(List *qual, bool is_or_qual, const char *qlabel, int scanrelid, Plan *outer_plan, StringInfo str, int indent, ExplainState *es); static void show_upper_qual(List *qual, const char *qlabel, const char *outer_name, int outer_varno, Plan *outer_plan, const char *inner_name, int inner_varno, Plan *inner_plan, StringInfo str, int indent, ExplainState *es); static void show_sort_keys(List *tlist, int nkeys, const char *qlabel, StringInfo str, int indent, ExplainState *es); static Node *make_ors_ands_explicit(List *orclauses); static TextOutputState *begin_text_output(CommandDest dest, char *title); static void do_text_output(TextOutputState *tstate, char *aline); static void do_text_output_multiline(TextOutputState *tstate, char *text); static void end_text_output(TextOutputState *tstate); /* * ExplainQuery - * execute an EXPLAIN command */ void ExplainQuery(ExplainStmt *stmt, CommandDest dest) { Query *query = stmt->query; TextOutputState *tstate; List *rewritten; List *l; tstate = begin_text_output(dest, "QUERY PLAN"); if (query->commandType == CMD_UTILITY) { /* rewriter will not cope with utility statements */ do_text_output(tstate, "Utility statements have no plan structure"); } else { /* Rewrite through rule system */ rewritten = QueryRewrite(query); if (rewritten == NIL) { /* In the case of an INSTEAD NOTHING, tell at least that */ do_text_output(tstate, "Query rewrites to nothing"); } else { /* Explain every plan */ foreach(l, rewritten) { ExplainOneQuery(lfirst(l), stmt, tstate); /* put a blank line between plans */ if (lnext(l) != NIL) do_text_output(tstate, ""); } } } end_text_output(tstate); } /* * ExplainOneQuery - * print out the execution plan for one query */ static void ExplainOneQuery(Query *query, ExplainStmt *stmt, TextOutputState *tstate) { Plan *plan; ExplainState *es; double totaltime = 0; /* planner will not cope with utility statements */ if (query->commandType == CMD_UTILITY) { if (query->utilityStmt && IsA(query->utilityStmt, NotifyStmt)) do_text_output(tstate, "NOTIFY"); else do_text_output(tstate, "UTILITY"); return; } /* plan the query */ plan = planner(query); /* pg_plan could have failed */ if (plan == NULL) return; /* Execute the plan for statistics if asked for */ if (stmt->analyze) { struct timeval starttime; struct timeval endtime; /* * Set up the instrumentation for the top node. This will cascade * during plan initialisation */ plan->instrument = InstrAlloc(); gettimeofday(&starttime, NULL); ProcessQuery(query, plan, None, NULL); CommandCounterIncrement(); gettimeofday(&endtime, NULL); endtime.tv_sec -= starttime.tv_sec; endtime.tv_usec -= starttime.tv_usec; while (endtime.tv_usec < 0) { endtime.tv_usec += 1000000; endtime.tv_sec--; } totaltime = (double) endtime.tv_sec + (double) endtime.tv_usec / 1000000.0; } es = (ExplainState *) palloc(sizeof(ExplainState)); MemSet(es, 0, sizeof(ExplainState)); es->printCost = true; /* default */ if (stmt->verbose) es->printNodes = true; es->rtable = query->rtable; if (es->printNodes) { char *s; char *f; s = nodeToString(plan); if (s) { if (Explain_pretty_print) f = pretty_format_node_dump(s); else f = format_node_dump(s); pfree(s); do_text_output_multiline(tstate, f); pfree(f); if (es->printCost) do_text_output(tstate, ""); /* separator line */ } } if (es->printCost) { StringInfo str; str = Explain_PlanToString(plan, es); if (stmt->analyze) appendStringInfo(str, "Total runtime: %.2f msec\n", 1000.0 * totaltime); do_text_output_multiline(tstate, str->data); pfree(str->data); pfree(str); } pfree(es); } /* * explain_outNode - * converts a Plan node into ascii string and appends it to 'str' * * outer_plan, if not null, references another plan node that is the outer * side of a join with the current node. This is only interesting for * deciphering runtime keys of an inner indexscan. */ static void explain_outNode(StringInfo str, Plan *plan, Plan *outer_plan, int indent, ExplainState *es) { List *l; char *pname; int i; if (plan == NULL) { appendStringInfo(str, "\n"); return; } switch (nodeTag(plan)) { case T_Result: pname = "Result"; break; case T_Append: pname = "Append"; break; case T_NestLoop: pname = "Nested Loop"; break; case T_MergeJoin: pname = "Merge Join"; break; case T_HashJoin: pname = "Hash Join"; break; case T_SeqScan: pname = "Seq Scan"; break; case T_IndexScan: pname = "Index Scan"; break; case T_TidScan: pname = "Tid Scan"; break; case T_SubqueryScan: pname = "Subquery Scan"; break; case T_FunctionScan: pname = "Function Scan"; break; case T_Material: pname = "Materialize"; break; case T_Sort: pname = "Sort"; break; case T_Group: pname = "Group"; break; case T_Agg: pname = "Aggregate"; break; case T_Unique: pname = "Unique"; break; case T_SetOp: switch (((SetOp *) plan)->cmd) { case SETOPCMD_INTERSECT: pname = "SetOp Intersect"; break; case SETOPCMD_INTERSECT_ALL: pname = "SetOp Intersect All"; break; case SETOPCMD_EXCEPT: pname = "SetOp Except"; break; case SETOPCMD_EXCEPT_ALL: pname = "SetOp Except All"; break; default: pname = "SetOp ???"; break; } break; case T_Limit: pname = "Limit"; break; case T_Hash: pname = "Hash"; break; default: pname = "???"; break; } appendStringInfo(str, pname); switch (nodeTag(plan)) { case T_IndexScan: if (ScanDirectionIsBackward(((IndexScan *) plan)->indxorderdir)) appendStringInfo(str, " Backward"); appendStringInfo(str, " using "); i = 0; foreach(l, ((IndexScan *) plan)->indxid) { Relation relation; relation = index_open(lfirsti(l)); appendStringInfo(str, "%s%s", (++i > 1) ? ", " : "", quote_identifier(RelationGetRelationName(relation))); index_close(relation); } /* FALL THRU */ case T_SeqScan: case T_TidScan: if (((Scan *) plan)->scanrelid > 0) { RangeTblEntry *rte = rt_fetch(((Scan *) plan)->scanrelid, es->rtable); char *relname; /* Assume it's on a real relation */ Assert(rte->rtekind == RTE_RELATION); /* We only show the rel name, not schema name */ relname = get_rel_name(rte->relid); appendStringInfo(str, " on %s", quote_identifier(relname)); if (strcmp(rte->eref->aliasname, relname) != 0) appendStringInfo(str, " %s", quote_identifier(rte->eref->aliasname)); } break; case T_SubqueryScan: if (((Scan *) plan)->scanrelid > 0) { RangeTblEntry *rte = rt_fetch(((Scan *) plan)->scanrelid, es->rtable); appendStringInfo(str, " %s", quote_identifier(rte->eref->aliasname)); } break; case T_FunctionScan: if (((Scan *) plan)->scanrelid > 0) { RangeTblEntry *rte = rt_fetch(((Scan *) plan)->scanrelid, es->rtable); Expr *expr; Func *funcnode; Oid funcid; char *proname; /* Assert it's on a RangeFunction */ Assert(rte->rtekind == RTE_FUNCTION); expr = (Expr *) rte->funcexpr; funcnode = (Func *) expr->oper; funcid = funcnode->funcid; /* We only show the func name, not schema name */ proname = get_func_name(funcid); appendStringInfo(str, " on %s", quote_identifier(proname)); if (strcmp(rte->eref->aliasname, proname) != 0) appendStringInfo(str, " %s", quote_identifier(rte->eref->aliasname)); } break; default: break; } if (es->printCost) { appendStringInfo(str, " (cost=%.2f..%.2f rows=%.0f width=%d)", plan->startup_cost, plan->total_cost, plan->plan_rows, plan->plan_width); if (plan->instrument && plan->instrument->nloops > 0) { double nloops = plan->instrument->nloops; appendStringInfo(str, " (actual time=%.2f..%.2f rows=%.0f loops=%.0f)", 1000.0 * plan->instrument->startup / nloops, 1000.0 * plan->instrument->total / nloops, plan->instrument->ntuples / nloops, plan->instrument->nloops); } } appendStringInfo(str, "\n"); /* quals, sort keys, etc */ switch (nodeTag(plan)) { case T_IndexScan: show_scan_qual(((IndexScan *) plan)->indxqualorig, true, "Index Cond", ((Scan *) plan)->scanrelid, outer_plan, str, indent, es); show_scan_qual(plan->qual, false, "Filter", ((Scan *) plan)->scanrelid, outer_plan, str, indent, es); break; case T_SeqScan: case T_TidScan: case T_FunctionScan: show_scan_qual(plan->qual, false, "Filter", ((Scan *) plan)->scanrelid, outer_plan, str, indent, es); break; case T_NestLoop: show_upper_qual(((NestLoop *) plan)->join.joinqual, "Join Filter", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); show_upper_qual(plan->qual, "Filter", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); break; case T_MergeJoin: show_upper_qual(((MergeJoin *) plan)->mergeclauses, "Merge Cond", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); show_upper_qual(((MergeJoin *) plan)->join.joinqual, "Join Filter", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); show_upper_qual(plan->qual, "Filter", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); break; case T_HashJoin: show_upper_qual(((HashJoin *) plan)->hashclauses, "Hash Cond", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); show_upper_qual(((HashJoin *) plan)->join.joinqual, "Join Filter", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); show_upper_qual(plan->qual, "Filter", "outer", OUTER, outerPlan(plan), "inner", INNER, innerPlan(plan), str, indent, es); break; case T_SubqueryScan: show_upper_qual(plan->qual, "Filter", "subplan", 1, ((SubqueryScan *) plan)->subplan, "", 0, NULL, str, indent, es); break; case T_Agg: case T_Group: show_upper_qual(plan->qual, "Filter", "subplan", 0, outerPlan(plan), "", 0, NULL, str, indent, es); break; case T_Sort: show_sort_keys(plan->targetlist, ((Sort *) plan)->keycount, "Sort Key", str, indent, es); break; case T_Result: show_upper_qual((List *) ((Result *) plan)->resconstantqual, "One-Time Filter", "subplan", OUTER, outerPlan(plan), "", 0, NULL, str, indent, es); show_upper_qual(plan->qual, "Filter", "subplan", OUTER, outerPlan(plan), "", 0, NULL, str, indent, es); break; default: break; } /* initPlan-s */ if (plan->initPlan) { List *saved_rtable = es->rtable; List *lst; for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " InitPlan\n"); foreach(lst, plan->initPlan) { es->rtable = ((SubPlan *) lfirst(lst))->rtable; for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " -> "); explain_outNode(str, ((SubPlan *) lfirst(lst))->plan, NULL, indent + 4, es); } es->rtable = saved_rtable; } /* lefttree */ if (outerPlan(plan)) { for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " -> "); explain_outNode(str, outerPlan(plan), NULL, indent + 3, es); } /* righttree */ if (innerPlan(plan)) { for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " -> "); explain_outNode(str, innerPlan(plan), outerPlan(plan), indent + 3, es); } if (IsA(plan, Append)) { Append *appendplan = (Append *) plan; List *lst; foreach(lst, appendplan->appendplans) { Plan *subnode = (Plan *) lfirst(lst); for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " -> "); explain_outNode(str, subnode, NULL, indent + 3, es); } } if (IsA(plan, SubqueryScan)) { SubqueryScan *subqueryscan = (SubqueryScan *) plan; Plan *subnode = subqueryscan->subplan; RangeTblEntry *rte = rt_fetch(subqueryscan->scan.scanrelid, es->rtable); List *saved_rtable = es->rtable; Assert(rte->rtekind == RTE_SUBQUERY); es->rtable = rte->subquery->rtable; for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " -> "); explain_outNode(str, subnode, NULL, indent + 3, es); es->rtable = saved_rtable; } /* subPlan-s */ if (plan->subPlan) { List *saved_rtable = es->rtable; List *lst; for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " SubPlan\n"); foreach(lst, plan->subPlan) { es->rtable = ((SubPlan *) lfirst(lst))->rtable; for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " -> "); explain_outNode(str, ((SubPlan *) lfirst(lst))->plan, NULL, indent + 4, es); } es->rtable = saved_rtable; } } static StringInfo Explain_PlanToString(Plan *plan, ExplainState *es) { StringInfo str = makeStringInfo(); if (plan != NULL) explain_outNode(str, plan, NULL, 0, es); return str; } /* * Show a qualifier expression for a scan plan node */ static void show_scan_qual(List *qual, bool is_or_qual, const char *qlabel, int scanrelid, Plan *outer_plan, StringInfo str, int indent, ExplainState *es) { RangeTblEntry *rte; Node *scancontext; Node *outercontext; List *context; Node *node; char *exprstr; int i; /* No work if empty qual */ if (qual == NIL) return; if (is_or_qual) { if (lfirst(qual) == NIL && lnext(qual) == NIL) return; } /* Fix qual --- indexqual requires different processing */ if (is_or_qual) node = make_ors_ands_explicit(qual); else node = (Node *) make_ands_explicit(qual); /* Generate deparse context */ Assert(scanrelid > 0 && scanrelid <= length(es->rtable)); rte = rt_fetch(scanrelid, es->rtable); scancontext = deparse_context_for_rte(rte); /* * If we have an outer plan that is referenced by the qual, add it to * the deparse context. If not, don't (so that we don't force prefixes * unnecessarily). */ if (outer_plan) { if (intMember(OUTER, pull_varnos(node))) outercontext = deparse_context_for_subplan("outer", outer_plan->targetlist, es->rtable); else outercontext = NULL; } else outercontext = NULL; context = deparse_context_for_plan(scanrelid, scancontext, OUTER, outercontext, NIL); /* Deparse the expression */ exprstr = deparse_expression(node, context, (outercontext != NULL)); /* And add to str */ for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " %s: %s\n", qlabel, exprstr); } /* * Show a qualifier expression for an upper-level plan node */ static void show_upper_qual(List *qual, const char *qlabel, const char *outer_name, int outer_varno, Plan *outer_plan, const char *inner_name, int inner_varno, Plan *inner_plan, StringInfo str, int indent, ExplainState *es) { List *context; Node *outercontext; Node *innercontext; Node *node; char *exprstr; int i; /* No work if empty qual */ if (qual == NIL) return; /* Generate deparse context */ if (outer_plan) outercontext = deparse_context_for_subplan(outer_name, outer_plan->targetlist, es->rtable); else outercontext = NULL; if (inner_plan) innercontext = deparse_context_for_subplan(inner_name, inner_plan->targetlist, es->rtable); else innercontext = NULL; context = deparse_context_for_plan(outer_varno, outercontext, inner_varno, innercontext, NIL); /* Deparse the expression */ node = (Node *) make_ands_explicit(qual); exprstr = deparse_expression(node, context, (inner_plan != NULL)); /* And add to str */ for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " %s: %s\n", qlabel, exprstr); } /* * Show the sort keys for a Sort node. */ static void show_sort_keys(List *tlist, int nkeys, const char *qlabel, StringInfo str, int indent, ExplainState *es) { List *context; bool useprefix; int keyno; List *tl; char *exprstr; int i; if (nkeys <= 0) return; for (i = 0; i < indent; i++) appendStringInfo(str, " "); appendStringInfo(str, " %s: ", qlabel); /* * In this routine we expect that the plan node's tlist has not been * processed by set_plan_references(). Normally, any Vars will contain * valid varnos referencing the actual rtable. But we might instead be * looking at a dummy tlist generated by prepunion.c; if there are * Vars with zero varno, use the tlist itself to determine their names. */ if (intMember(0, pull_varnos((Node *) tlist))) { Node *outercontext; outercontext = deparse_context_for_subplan("sort", tlist, es->rtable); context = deparse_context_for_plan(0, outercontext, 0, NULL, NIL); useprefix = false; } else { context = deparse_context_for_plan(0, NULL, 0, NULL, es->rtable); useprefix = length(es->rtable) > 1; } for (keyno = 1; keyno <= nkeys; keyno++) { /* find key expression in tlist */ foreach(tl, tlist) { TargetEntry *target = (TargetEntry *) lfirst(tl); if (target->resdom->reskey == keyno) { /* Deparse the expression */ exprstr = deparse_expression(target->expr, context, useprefix); /* And add to str */ if (keyno > 1) appendStringInfo(str, ", "); appendStringInfo(str, "%s", exprstr); break; } } if (tl == NIL) elog(ERROR, "show_sort_keys: no tlist entry for key %d", keyno); } appendStringInfo(str, "\n"); } /* * Indexscan qual lists have an implicit OR-of-ANDs structure. Make it * explicit so deparsing works properly. */ static Node * make_ors_ands_explicit(List *orclauses) { if (orclauses == NIL) return NULL; /* probably can't happen */ else if (lnext(orclauses) == NIL) return (Node *) make_ands_explicit(lfirst(orclauses)); else { List *args = NIL; List *orptr; foreach(orptr, orclauses) { args = lappend(args, make_ands_explicit(lfirst(orptr))); } return (Node *) make_orclause(args); } } /* * Functions for sending text to the frontend (or other specified destination) * as though it is a SELECT result. * * We tell the frontend that the table structure is a single TEXT column. */ static TextOutputState * begin_text_output(CommandDest dest, char *title) { TextOutputState *tstate; TupleDesc tupdesc; tstate = (TextOutputState *) palloc(sizeof(TextOutputState)); /* need a tuple descriptor representing a single TEXT column */ tupdesc = CreateTemplateTupleDesc(1, WITHOUTOID); TupleDescInitEntry(tupdesc, (AttrNumber) 1, title, TEXTOID, -1, 0, false); tstate->tupdesc = tupdesc; tstate->destfunc = DestToFunction(dest); (*tstate->destfunc->setup) (tstate->destfunc, (int) CMD_SELECT, NULL, tupdesc); return tstate; } /* write a single line of text */ static void do_text_output(TextOutputState *tstate, char *aline) { HeapTuple tuple; Datum values[1]; char nulls[1]; /* form a tuple and send it to the receiver */ values[0] = DirectFunctionCall1(textin, CStringGetDatum(aline)); nulls[0] = ' '; tuple = heap_formtuple(tstate->tupdesc, values, nulls); (*tstate->destfunc->receiveTuple) (tuple, tstate->tupdesc, tstate->destfunc); pfree(DatumGetPointer(values[0])); heap_freetuple(tuple); } /* write a chunk of text, breaking at newline characters */ /* NB: scribbles on its input! */ static void do_text_output_multiline(TextOutputState *tstate, char *text) { while (*text) { char *eol; eol = strchr(text, '\n'); if (eol) *eol++ = '\0'; else eol = text + strlen(text); do_text_output(tstate, text); text = eol; } } static void end_text_output(TextOutputState *tstate) { (*tstate->destfunc->cleanup) (tstate->destfunc); pfree(tstate); }