/*------------------------------------------------------------------------- * * heaptuple.c * This file contains heap tuple accessor and mutator routines, as well * as various tuple utilities. * * Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/access/common/heaptuple.c,v 1.88 2003/11/29 19:51:39 pgsql Exp $ * * NOTES * The old interface functions have been converted to macros * and moved to heapam.h * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/heapam.h" #include "catalog/pg_type.h" /* ---------------------------------------------------------------- * misc support routines * ---------------------------------------------------------------- */ /* ---------------- * ComputeDataSize * ---------------- */ Size ComputeDataSize(TupleDesc tupleDesc, Datum *value, char *nulls) { uint32 data_length = 0; int i; int numberOfAttributes = tupleDesc->natts; Form_pg_attribute *att = tupleDesc->attrs; for (i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') continue; data_length = att_align(data_length, att[i]->attalign); data_length = att_addlength(data_length, att[i]->attlen, value[i]); } return data_length; } /* ---------------- * DataFill * ---------------- */ void DataFill(char *data, TupleDesc tupleDesc, Datum *value, char *nulls, uint16 *infomask, bits8 *bit) { bits8 *bitP = 0; int bitmask = 0; Size data_length; int i; int numberOfAttributes = tupleDesc->natts; Form_pg_attribute *att = tupleDesc->attrs; if (bit != NULL) { bitP = &bit[-1]; bitmask = CSIGNBIT; } *infomask &= ~(HEAP_HASNULL | HEAP_HASVARWIDTH | HEAP_HASEXTENDED); for (i = 0; i < numberOfAttributes; i++) { if (bit != NULL) { if (bitmask != CSIGNBIT) bitmask <<= 1; else { bitP += 1; *bitP = 0x0; bitmask = 1; } if (nulls[i] == 'n') { *infomask |= HEAP_HASNULL; continue; } *bitP |= bitmask; } /* XXX we are aligning the pointer itself, not the offset */ data = (char *) att_align((long) data, att[i]->attalign); if (att[i]->attbyval) { /* pass-by-value */ store_att_byval(data, value[i], att[i]->attlen); data_length = att[i]->attlen; } else if (att[i]->attlen == -1) { /* varlena */ *infomask |= HEAP_HASVARWIDTH; if (VARATT_IS_EXTERNAL(value[i])) *infomask |= HEAP_HASEXTERNAL; if (VARATT_IS_COMPRESSED(value[i])) *infomask |= HEAP_HASCOMPRESSED; data_length = VARATT_SIZE(DatumGetPointer(value[i])); memcpy(data, DatumGetPointer(value[i]), data_length); } else if (att[i]->attlen == -2) { /* cstring */ *infomask |= HEAP_HASVARWIDTH; data_length = strlen(DatumGetCString(value[i])) + 1; memcpy(data, DatumGetPointer(value[i]), data_length); } else { /* fixed-length pass-by-reference */ Assert(att[i]->attlen > 0); data_length = att[i]->attlen; memcpy(data, DatumGetPointer(value[i]), data_length); } data += data_length; } } /* ---------------------------------------------------------------- * heap tuple interface * ---------------------------------------------------------------- */ /* ---------------- * heap_attisnull - returns 1 iff tuple attribute is not present * ---------------- */ int heap_attisnull(HeapTuple tup, int attnum) { if (attnum > (int) tup->t_data->t_natts) return 1; if (HeapTupleNoNulls(tup)) return 0; if (attnum > 0) return att_isnull(attnum - 1, tup->t_data->t_bits); else switch (attnum) { case TableOidAttributeNumber: case SelfItemPointerAttributeNumber: case ObjectIdAttributeNumber: case MinTransactionIdAttributeNumber: case MinCommandIdAttributeNumber: case MaxTransactionIdAttributeNumber: case MaxCommandIdAttributeNumber: /* these are never null */ break; default: elog(ERROR, "invalid attnum: %d", attnum); } return 0; } /* ---------------- * nocachegetattr * * This only gets called from fastgetattr() macro, in cases where * we can't use a cacheoffset and the value is not null. * * This caches attribute offsets in the attribute descriptor. * * An alternate way to speed things up would be to cache offsets * with the tuple, but that seems more difficult unless you take * the storage hit of actually putting those offsets into the * tuple you send to disk. Yuck. * * This scheme will be slightly slower than that, but should * perform well for queries which hit large #'s of tuples. After * you cache the offsets once, examining all the other tuples using * the same attribute descriptor will go much quicker. -cim 5/4/91 * ---------------- */ Datum nocachegetattr(HeapTuple tuple, int attnum, TupleDesc tupleDesc, bool *isnull) { HeapTupleHeader tup = tuple->t_data; Form_pg_attribute *att = tupleDesc->attrs; char *tp; /* ptr to att in tuple */ bits8 *bp = tup->t_bits; /* ptr to null bitmask in tuple */ bool slow = false; /* do we have to walk nulls? */ (void) isnull; /* not used */ #ifdef IN_MACRO /* This is handled in the macro */ Assert(attnum > 0); if (isnull) *isnull = false; #endif attnum--; /* ---------------- * Three cases: * * 1: No nulls and no variable-width attributes. * 2: Has a null or a var-width AFTER att. * 3: Has nulls or var-widths BEFORE att. * ---------------- */ if (HeapTupleNoNulls(tuple)) { #ifdef IN_MACRO /* This is handled in the macro */ if (att[attnum]->attcacheoff != -1) { return fetchatt(att[attnum], (char *) tup + tup->t_hoff + att[attnum]->attcacheoff); } #endif } else { /* * there's a null somewhere in the tuple * * check to see if desired att is null */ #ifdef IN_MACRO /* This is handled in the macro */ if (att_isnull(attnum, bp)) { if (isnull) *isnull = true; return (Datum) NULL; } #endif /* * Now check to see if any preceding bits are null... */ { int byte = attnum >> 3; int finalbit = attnum & 0x07; /* check for nulls "before" final bit of last byte */ if ((~bp[byte]) & ((1 << finalbit) - 1)) slow = true; else { /* check for nulls in any "earlier" bytes */ int i; for (i = 0; i < byte; i++) { if (bp[i] != 0xFF) { slow = true; break; } } } } } tp = (char *) tup + tup->t_hoff; /* * now check for any non-fixed length attrs before our attribute */ if (!slow) { if (att[attnum]->attcacheoff != -1) { return fetchatt(att[attnum], tp + att[attnum]->attcacheoff); } else if (!HeapTupleAllFixed(tuple)) { int j; /* * In for(), we test <= and not < because we want to see if we * can go past it in initializing offsets. */ for (j = 0; j <= attnum; j++) { if (att[j]->attlen <= 0) { slow = true; break; } } } } /* * If slow is false, and we got here, we know that we have a tuple * with no nulls or var-widths before the target attribute. If * possible, we also want to initialize the remainder of the attribute * cached offset values. */ if (!slow) { int j = 1; long off; /* * need to set cache for some atts */ att[0]->attcacheoff = 0; while (j < attnum && att[j]->attcacheoff > 0) j++; off = att[j - 1]->attcacheoff + att[j - 1]->attlen; for (; j <= attnum || /* Can we compute more? We will probably need them */ (j < tup->t_natts && att[j]->attcacheoff == -1 && (HeapTupleNoNulls(tuple) || !att_isnull(j, bp)) && (HeapTupleAllFixed(tuple) || att[j]->attlen > 0)); j++) { off = att_align(off, att[j]->attalign); att[j]->attcacheoff = off; off = att_addlength(off, att[j]->attlen, tp + off); } return fetchatt(att[attnum], tp + att[attnum]->attcacheoff); } else { bool usecache = true; int off = 0; int i; /* * Now we know that we have to walk the tuple CAREFULLY. * * Note - This loop is a little tricky. On iteration i we first set * the offset for attribute i and figure out how much the offset * should be incremented. Finally, we need to align the offset * based on the size of attribute i+1 (for which the offset has * been computed). -mer 12 Dec 1991 */ for (i = 0; i < attnum; i++) { if (!HeapTupleNoNulls(tuple)) { if (att_isnull(i, bp)) { usecache = false; continue; } } /* If we know the next offset, we can skip the rest */ if (usecache && att[i]->attcacheoff != -1) off = att[i]->attcacheoff; else { off = att_align(off, att[i]->attalign); if (usecache) att[i]->attcacheoff = off; } off = att_addlength(off, att[i]->attlen, tp + off); if (usecache && att[i]->attlen <= 0) usecache = false; } off = att_align(off, att[attnum]->attalign); return fetchatt(att[attnum], tp + off); } } /* ---------------- * heap_getsysattr * * Fetch the value of a system attribute for a tuple. * * This is a support routine for the heap_getattr macro. The macro * has already determined that the attnum refers to a system attribute. * ---------------- */ Datum heap_getsysattr(HeapTuple tup, int attnum, bool *isnull) { Datum result; Assert(tup); /* Currently, no sys attribute ever reads as NULL. */ if (isnull) *isnull = false; switch (attnum) { case SelfItemPointerAttributeNumber: /* pass-by-reference datatype */ result = PointerGetDatum(&(tup->t_self)); break; case ObjectIdAttributeNumber: result = ObjectIdGetDatum(HeapTupleGetOid(tup)); break; case MinTransactionIdAttributeNumber: result = TransactionIdGetDatum(HeapTupleHeaderGetXmin(tup->t_data)); break; case MinCommandIdAttributeNumber: result = CommandIdGetDatum(HeapTupleHeaderGetCmin(tup->t_data)); break; case MaxTransactionIdAttributeNumber: result = TransactionIdGetDatum(HeapTupleHeaderGetXmax(tup->t_data)); break; case MaxCommandIdAttributeNumber: result = CommandIdGetDatum(HeapTupleHeaderGetCmax(tup->t_data)); break; case TableOidAttributeNumber: result = ObjectIdGetDatum(tup->t_tableOid); break; default: elog(ERROR, "invalid attnum: %d", attnum); result = 0; /* keep compiler quiet */ break; } return result; } /* ---------------- * heap_copytuple * * returns a copy of an entire tuple * * The HeapTuple struct, tuple header, and tuple data are all allocated * as a single palloc() block. * ---------------- */ HeapTuple heap_copytuple(HeapTuple tuple) { HeapTuple newTuple; if (!HeapTupleIsValid(tuple) || tuple->t_data == NULL) return NULL; newTuple = (HeapTuple) palloc(HEAPTUPLESIZE + tuple->t_len); newTuple->t_len = tuple->t_len; newTuple->t_self = tuple->t_self; newTuple->t_tableOid = tuple->t_tableOid; newTuple->t_datamcxt = CurrentMemoryContext; newTuple->t_data = (HeapTupleHeader) ((char *) newTuple + HEAPTUPLESIZE); memcpy((char *) newTuple->t_data, (char *) tuple->t_data, tuple->t_len); return newTuple; } /* ---------------- * heap_copytuple_with_tuple * * copy a tuple into a caller-supplied HeapTuple management struct * ---------------- */ void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest) { if (!HeapTupleIsValid(src) || src->t_data == NULL) { dest->t_data = NULL; return; } dest->t_len = src->t_len; dest->t_self = src->t_self; dest->t_tableOid = src->t_tableOid; dest->t_datamcxt = CurrentMemoryContext; dest->t_data = (HeapTupleHeader) palloc(src->t_len); memcpy((char *) dest->t_data, (char *) src->t_data, src->t_len); } #ifdef NOT_USED /* ---------------- * heap_deformtuple * * the inverse of heap_formtuple (see below) * ---------------- */ void heap_deformtuple(HeapTuple tuple, TupleDesc tdesc, Datum *values, char *nulls) { int i; int natts; Assert(HeapTupleIsValid(tuple)); natts = tuple->t_natts; for (i = 0; i < natts; i++) { bool isnull; values[i] = heap_getattr(tuple, i + 1, tdesc, &isnull); if (isnull) nulls[i] = 'n'; else nulls[i] = ' '; } } #endif /* ---------------- * heap_formtuple * * constructs a tuple from the given *value and *null arrays * * old comments * Handles alignment by aligning 2 byte attributes on short boundries * and 3 or 4 byte attributes on long word boundries on a vax; and * aligning non-byte attributes on short boundries on a sun. Does * not properly align fixed length arrays of 1 or 2 byte types (yet). * * Null attributes are indicated by a 'n' in the appropriate byte * of the *null. Non-null attributes are indicated by a ' ' (space). * * Fix me. (Figure that must keep context if debug--allow give oid.) * Assumes in order. * ---------------- */ HeapTuple heap_formtuple(TupleDesc tupleDescriptor, Datum *value, char *nulls) { HeapTuple tuple; /* return tuple */ HeapTupleHeader td; /* tuple data */ unsigned long len; int hoff; bool hasnull = false; int i; int numberOfAttributes = tupleDescriptor->natts; if (numberOfAttributes > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_TOO_MANY_COLUMNS), errmsg("number of columns (%d) exceeds limit (%d)", numberOfAttributes, MaxTupleAttributeNumber))); for (i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') { hasnull = true; break; } } len = offsetof(HeapTupleHeaderData, t_bits); if (hasnull) len += BITMAPLEN(numberOfAttributes); if (tupleDescriptor->tdhasoid) len += sizeof(Oid); hoff = len = MAXALIGN(len); /* align user data safely */ len += ComputeDataSize(tupleDescriptor, value, nulls); tuple = (HeapTuple) palloc(HEAPTUPLESIZE + len); tuple->t_datamcxt = CurrentMemoryContext; td = tuple->t_data = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); MemSet((char *) td, 0, len); tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); tuple->t_tableOid = InvalidOid; td->t_natts = numberOfAttributes; td->t_hoff = hoff; if (tupleDescriptor->tdhasoid) /* else leave infomask = 0 */ td->t_infomask = HEAP_HASOID; DataFill((char *) td + hoff, tupleDescriptor, value, nulls, &td->t_infomask, (hasnull ? td->t_bits : NULL)); return tuple; } /* ---------------- * heap_modifytuple * * forms a new tuple from an old tuple and a set of replacement values. * returns a new palloc'ed tuple. * ---------------- */ HeapTuple heap_modifytuple(HeapTuple tuple, Relation relation, Datum *replValue, char *replNull, char *repl) { int attoff; int numberOfAttributes; Datum *value; char *nulls; bool isNull; HeapTuple newTuple; /* * sanity checks */ Assert(HeapTupleIsValid(tuple)); Assert(RelationIsValid(relation)); Assert(PointerIsValid(replValue)); Assert(PointerIsValid(replNull)); Assert(PointerIsValid(repl)); numberOfAttributes = RelationGetForm(relation)->relnatts; /* * allocate and fill *value and *nulls arrays from either the tuple or * the repl information, as appropriate. */ value = (Datum *) palloc(numberOfAttributes * sizeof(Datum)); nulls = (char *) palloc(numberOfAttributes * sizeof(char)); for (attoff = 0; attoff < numberOfAttributes; attoff++) { if (repl[attoff] == ' ') { value[attoff] = heap_getattr(tuple, AttrOffsetGetAttrNumber(attoff), RelationGetDescr(relation), &isNull); nulls[attoff] = (isNull) ? 'n' : ' '; } else if (repl[attoff] == 'r') { value[attoff] = replValue[attoff]; nulls[attoff] = replNull[attoff]; } else elog(ERROR, "unrecognized replace flag: %d", (int) repl[attoff]); } /* * create a new tuple from the *values and *nulls arrays */ newTuple = heap_formtuple(RelationGetDescr(relation), value, nulls); pfree(value); pfree(nulls); /* * copy the identification info of the old tuple: t_ctid, t_self, and * OID (if any) */ newTuple->t_data->t_ctid = tuple->t_data->t_ctid; newTuple->t_self = tuple->t_self; newTuple->t_tableOid = tuple->t_tableOid; if (relation->rd_rel->relhasoids) HeapTupleSetOid(newTuple, HeapTupleGetOid(tuple)); return newTuple; } /* ---------------- * heap_freetuple * ---------------- */ void heap_freetuple(HeapTuple htup) { if (htup->t_data != NULL) if (htup->t_datamcxt != NULL && (char *) (htup->t_data) != ((char *) htup + HEAPTUPLESIZE)) pfree(htup->t_data); pfree(htup); } /* ---------------- * heap_addheader * * This routine forms a HeapTuple by copying the given structure (tuple * data) and adding a generic header. Note that the tuple data is * presumed to contain no null fields and no varlena fields. * * This routine is really only useful for certain system tables that are * known to be fixed-width and null-free. It is used in some places for * pg_class, but that is a gross hack (it only works because relacl can * be omitted from the tuple entirely in those places). * ---------------- */ HeapTuple heap_addheader(int natts, /* max domain index */ bool withoid, /* reserve space for oid */ Size structlen, /* its length */ void *structure) /* pointer to the struct */ { HeapTuple tuple; HeapTupleHeader td; Size len; int hoff; AssertArg(natts > 0); /* header needs no null bitmap */ hoff = offsetof(HeapTupleHeaderData, t_bits); if (withoid) hoff += sizeof(Oid); hoff = MAXALIGN(hoff); len = hoff + structlen; tuple = (HeapTuple) palloc(HEAPTUPLESIZE + len); tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); tuple->t_tableOid = InvalidOid; tuple->t_datamcxt = CurrentMemoryContext; tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); MemSet((char *) td, 0, hoff); td->t_natts = natts; td->t_hoff = hoff; if (withoid) /* else leave infomask = 0 */ td->t_infomask = HEAP_HASOID; memcpy((char *) td + hoff, structure, structlen); return tuple; }