/*------------------------------------------------------------------------- * * nbtpage.c * BTree-specific page management code for the Postgres btree access * method. * * Portions Copyright (c) 1996-2000, PostgreSQL, Inc * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtpage.c,v 1.45 2000/12/29 20:47:17 vadim Exp $ * * NOTES * Postgres btree pages look like ordinary relation pages. The opaque * data at high addresses includes pointers to left and right siblings * and flag data describing page state. The first page in a btree, page * zero, is special -- it stores meta-information describing the tree. * Pages one and higher store the actual tree data. * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "access/nbtree.h" #include "miscadmin.h" #include "storage/lmgr.h" /* * We use high-concurrency locking on btrees. There are two cases in * which we don't do locking. One is when we're building the btree. * Since the creating transaction has not committed, no one can see * the index, and there's no reason to share locks. The second case * is when we're just starting up the database system. We use some * special-purpose initialization code in the relation cache manager * (see utils/cache/relcache.c) to allow us to do indexed scans on * the system catalogs before we'd normally be able to. This happens * before the lock table is fully initialized, so we can't use it. * Strictly speaking, this violates 2pl, but we don't do 2pl on the * system catalogs anyway, so I declare this to be okay. */ #define USELOCKING (!BuildingBtree && !IsInitProcessingMode()) /* * _bt_metapinit() -- Initialize the metadata page of a btree. */ void _bt_metapinit(Relation rel) { Buffer buf; Page pg; int nblocks; BTMetaPageData metad; BTPageOpaque op; /* can't be sharing this with anyone, now... */ if (USELOCKING) LockRelation(rel, AccessExclusiveLock); if ((nblocks = RelationGetNumberOfBlocks(rel)) != 0) { elog(ERROR, "Cannot initialize non-empty btree %s", RelationGetRelationName(rel)); } buf = ReadBuffer(rel, P_NEW); pg = BufferGetPage(buf); _bt_pageinit(pg, BufferGetPageSize(buf)); metad.btm_magic = BTREE_MAGIC; metad.btm_version = BTREE_VERSION; metad.btm_root = P_NONE; metad.btm_level = 0; memcpy((char *) BTPageGetMeta(pg), (char *) &metad, sizeof(metad)); op = (BTPageOpaque) PageGetSpecialPointer(pg); op->btpo_flags = BTP_META; WriteBuffer(buf); /* all done */ if (USELOCKING) UnlockRelation(rel, AccessExclusiveLock); } /* * _bt_getroot() -- Get the root page of the btree. * * Since the root page can move around the btree file, we have to read * its location from the metadata page, and then read the root page * itself. If no root page exists yet, we have to create one. The * standard class of race conditions exists here; I think I covered * them all in the Hopi Indian rain dance of lock requests below. * * The access type parameter (BT_READ or BT_WRITE) controls whether * a new root page will be created or not. If access = BT_READ, * and no root page exists, we just return InvalidBuffer. For * BT_WRITE, we try to create the root page if it doesn't exist. * NOTE that the returned root page will have only a read lock set * on it even if access = BT_WRITE! * * On successful return, the root page is pinned and read-locked. * The metadata page is not locked or pinned on exit. */ Buffer _bt_getroot(Relation rel, int access) { Buffer metabuf; Page metapg; BTPageOpaque metaopaque; Buffer rootbuf; Page rootpage; BTPageOpaque rootopaque; BlockNumber rootblkno; BTMetaPageData *metad; metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); metapg = BufferGetPage(metabuf); metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); metad = BTPageGetMeta(metapg); if (!(metaopaque->btpo_flags & BTP_META) || metad->btm_magic != BTREE_MAGIC) elog(ERROR, "Index %s is not a btree", RelationGetRelationName(rel)); if (metad->btm_version != BTREE_VERSION) elog(ERROR, "Version mismatch on %s: version %d file, version %d code", RelationGetRelationName(rel), metad->btm_version, BTREE_VERSION); /* if no root page initialized yet, do it */ if (metad->btm_root == P_NONE) { /* If access = BT_READ, caller doesn't want us to create root yet */ if (access == BT_READ) { _bt_relbuf(rel, metabuf, BT_READ); return InvalidBuffer; } /* trade in our read lock for a write lock */ LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); LockBuffer(metabuf, BT_WRITE); /* * Race condition: if someone else initialized the metadata * between the time we released the read lock and acquired the * write lock, above, we must avoid doing it again. */ if (metad->btm_root == P_NONE) { /* * Get, initialize, write, and leave a lock of the appropriate * type on the new root page. Since this is the first page in * the tree, it's a leaf as well as the root. */ rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE); rootblkno = BufferGetBlockNumber(rootbuf); rootpage = BufferGetPage(rootbuf); /* NO ELOG(ERROR) till meta is updated */ START_CRIT_CODE; metad->btm_root = rootblkno; metad->btm_level = 1; _bt_pageinit(rootpage, BufferGetPageSize(rootbuf)); rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); rootopaque->btpo_flags |= (BTP_LEAF | BTP_ROOT); /* XLOG stuff */ { xl_btree_newroot xlrec; XLogRecPtr recptr; XLogRecData rdata; xlrec.node = rel->rd_node; xlrec.level = 1; BlockIdSet(&(xlrec.rootblk), rootblkno); rdata.buffer = InvalidBuffer; rdata.data = (char*)&xlrec; rdata.len = SizeOfBtreeNewroot; rdata.next = NULL; recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT|XLOG_BTREE_LEAF, &rdata); PageSetLSN(rootpage, recptr); PageSetSUI(rootpage, ThisStartUpID); PageSetLSN(metapg, recptr); PageSetSUI(metapg, ThisStartUpID); } END_CRIT_CODE; _bt_wrtnorelbuf(rel, rootbuf); /* swap write lock for read lock */ LockBuffer(rootbuf, BUFFER_LOCK_UNLOCK); LockBuffer(rootbuf, BT_READ); /* okay, metadata is correct, write and release it */ _bt_wrtbuf(rel, metabuf); } else { /* * Metadata initialized by someone else. In order to * guarantee no deadlocks, we have to release the metadata * page and start all over again. */ _bt_relbuf(rel, metabuf, BT_WRITE); return _bt_getroot(rel, access); } } else { rootblkno = metad->btm_root; _bt_relbuf(rel, metabuf, BT_READ); /* done with the meta page */ rootbuf = _bt_getbuf(rel, rootblkno, BT_READ); } /* * Race condition: If the root page split between the time we looked * at the metadata page and got the root buffer, then we got the wrong * buffer. Release it and try again. */ rootpage = BufferGetPage(rootbuf); rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); if (! P_ISROOT(rootopaque)) { /* it happened, try again */ _bt_relbuf(rel, rootbuf, BT_READ); return _bt_getroot(rel, access); } /* * By here, we have a correct lock on the root block, its reference * count is correct, and we have no lock set on the metadata page. * Return the root block. */ return rootbuf; } /* * _bt_getbuf() -- Get a buffer by block number for read or write. * * When this routine returns, the appropriate lock is set on the * requested buffer and its reference count has been incremented * (ie, the buffer is "locked and pinned"). */ Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access) { Buffer buf; if (blkno != P_NEW) { /* Read an existing block of the relation */ buf = ReadBuffer(rel, blkno); LockBuffer(buf, access); } else { Page page; /* * Extend the relation by one page. * * Extend bufmgr code is unclean and so we have to use extra locking * here. */ LockPage(rel, 0, ExclusiveLock); buf = ReadBuffer(rel, blkno); LockBuffer(buf, access); UnlockPage(rel, 0, ExclusiveLock); /* Initialize the new page before returning it */ page = BufferGetPage(buf); _bt_pageinit(page, BufferGetPageSize(buf)); } /* ref count and lock type are correct */ return buf; } /* * _bt_relbuf() -- release a locked buffer. * * Lock and pin (refcount) are both dropped. */ void _bt_relbuf(Relation rel, Buffer buf, int access) { LockBuffer(buf, BUFFER_LOCK_UNLOCK); ReleaseBuffer(buf); } /* * _bt_wrtbuf() -- write a btree page to disk. * * This routine releases the lock held on the buffer and our refcount * for it. It is an error to call _bt_wrtbuf() without a write lock * and a pin on the buffer. * * NOTE: actually, the buffer manager just marks the shared buffer page * dirty here, the real I/O happens later. Since we can't persuade the * Unix kernel to schedule disk writes in a particular order, there's not * much point in worrying about this. The most we can say is that all the * writes will occur before commit. */ void _bt_wrtbuf(Relation rel, Buffer buf) { LockBuffer(buf, BUFFER_LOCK_UNLOCK); WriteBuffer(buf); } /* * _bt_wrtnorelbuf() -- write a btree page to disk, but do not release * our reference or lock. * * It is an error to call _bt_wrtnorelbuf() without a write lock * and a pin on the buffer. * * See above NOTE. */ void _bt_wrtnorelbuf(Relation rel, Buffer buf) { WriteNoReleaseBuffer(buf); } /* * _bt_pageinit() -- Initialize a new page. */ void _bt_pageinit(Page page, Size size) { /* * Cargo_cult programming -- don't really need this to be zero, but * creating new pages is an infrequent occurrence and it makes me feel * good when I know they're empty. */ MemSet(page, 0, size); PageInit(page, size, sizeof(BTPageOpaqueData)); ((BTPageOpaque) PageGetSpecialPointer(page))->btpo_parent = InvalidBlockNumber; } /* * _bt_metaproot() -- Change the root page of the btree. * * Lehman and Yao require that the root page move around in order to * guarantee deadlock-free short-term, fine-granularity locking. When * we split the root page, we record the new parent in the metadata page * for the relation. This routine does the work. * * No direct preconditions, but if you don't have the write lock on * at least the old root page when you call this, you're making a big * mistake. On exit, metapage data is correct and we no longer have * a pin or lock on the metapage. */ void _bt_metaproot(Relation rel, BlockNumber rootbknum, int level) { Buffer metabuf; Page metap; BTPageOpaque metaopaque; BTMetaPageData *metad; metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); metap = BufferGetPage(metabuf); metaopaque = (BTPageOpaque) PageGetSpecialPointer(metap); Assert(metaopaque->btpo_flags & BTP_META); metad = BTPageGetMeta(metap); metad->btm_root = rootbknum; if (level == 0) /* called from _do_insert */ metad->btm_level += 1; else metad->btm_level = level; /* called from btsort */ _bt_wrtbuf(rel, metabuf); } /* * Delete an item from a btree. It had better be a leaf item... */ void _bt_pagedel(Relation rel, ItemPointer tid) { Buffer buf; Page page; BlockNumber blkno; OffsetNumber offno; blkno = ItemPointerGetBlockNumber(tid); offno = ItemPointerGetOffsetNumber(tid); buf = _bt_getbuf(rel, blkno, BT_WRITE); page = BufferGetPage(buf); START_CRIT_CODE; PageIndexTupleDelete(page, offno); /* XLOG stuff */ { xl_btree_delete xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.target.node = rel->rd_node; xlrec.target.tid = *tid; rdata[0].buffer = InvalidBuffer; rdata[0].data = (char*)&xlrec; rdata[0].len = SizeOfBtreeDelete; rdata[0].next = &(rdata[1]); rdata[1].buffer = buf; rdata[1].data = NULL; rdata[1].len = 0; rdata[1].next = NULL; recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DELETE, rdata); PageSetLSN(page, recptr); PageSetSUI(page, ThisStartUpID); } END_CRIT_CODE; /* write the buffer and release the lock */ _bt_wrtbuf(rel, buf); }