/*------------------------------------------------------------------------- * * allpaths.c * Routines to find possible search paths for processing a query * * Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/optimizer/path/allpaths.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "catalog/pg_class.h" #include "nodes/nodeFuncs.h" #ifdef OPTIMIZER_DEBUG #include "nodes/print.h" #endif #include "optimizer/clauses.h" #include "optimizer/cost.h" #include "optimizer/geqo.h" #include "optimizer/pathnode.h" #include "optimizer/paths.h" #include "optimizer/plancat.h" #include "optimizer/planner.h" #include "optimizer/prep.h" #include "optimizer/restrictinfo.h" #include "optimizer/var.h" #include "parser/parse_clause.h" #include "parser/parsetree.h" #include "rewrite/rewriteManip.h" #include "utils/lsyscache.h" /* These parameters are set by GUC */ bool enable_geqo = false; /* just in case GUC doesn't set it */ int geqo_threshold; /* Hook for plugins to replace standard_join_search() */ join_search_hook_type join_search_hook = NULL; static void set_base_rel_sizes(PlannerInfo *root); static void set_base_rel_pathlists(PlannerInfo *root); static void set_rel_size(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte); static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte); static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte); static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte); static void generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel, List *live_childrels, List *all_child_pathkeys, Relids required_outer); static List *accumulate_append_subpath(List *subpaths, Path *path); static void set_dummy_rel_pathlist(RelOptInfo *rel); static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte); static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte); static RelOptInfo *make_rel_from_joinlist(PlannerInfo *root, List *joinlist); static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery, bool *differentTypes); static bool recurse_pushdown_safe(Node *setOp, Query *topquery, bool *differentTypes); static void compare_tlist_datatypes(List *tlist, List *colTypes, bool *differentTypes); static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual, bool *differentTypes); static void subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual); static void recurse_push_qual(Node *setOp, Query *topquery, RangeTblEntry *rte, Index rti, Node *qual); /* * make_one_rel * Finds all possible access paths for executing a query, returning a * single rel that represents the join of all base rels in the query. */ RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist) { RelOptInfo *rel; Index rti; /* * Construct the all_baserels Relids set. */ root->all_baserels = NULL; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (brel == NULL) continue; Assert(brel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (brel->reloptkind != RELOPT_BASEREL) continue; root->all_baserels = bms_add_member(root->all_baserels, brel->relid); } /* * Generate access paths for the base rels. */ set_base_rel_sizes(root); set_base_rel_pathlists(root); /* * Generate access paths for the entire join tree. */ rel = make_rel_from_joinlist(root, joinlist); /* * The result should join all and only the query's base rels. */ Assert(bms_equal(rel->relids, root->all_baserels)); return rel; } /* * set_base_rel_sizes * Set the size estimates (rows and widths) for each base-relation entry. * * We do this in a separate pass over the base rels so that rowcount * estimates are available for parameterized path generation. */ static void set_base_rel_sizes(PlannerInfo *root) { Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *rel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (rel == NULL) continue; Assert(rel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (rel->reloptkind != RELOPT_BASEREL) continue; set_rel_size(root, rel, rti, root->simple_rte_array[rti]); } } /* * set_base_rel_pathlists * Finds all paths available for scanning each base-relation entry. * Sequential scan and any available indices are considered. * Each useful path is attached to its relation's 'pathlist' field. */ static void set_base_rel_pathlists(PlannerInfo *root) { Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *rel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (rel == NULL) continue; Assert(rel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (rel->reloptkind != RELOPT_BASEREL) continue; set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]); } } /* * set_rel_size * Set size estimates for a base relation */ static void set_rel_size(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte) { if (rel->reloptkind == RELOPT_BASEREL && relation_excluded_by_constraints(root, rel, rte)) { /* * We proved we don't need to scan the rel via constraint exclusion, * so set up a single dummy path for it. Here we only check this for * regular baserels; if it's an otherrel, CE was already checked in * set_append_rel_pathlist(). * * In this case, we go ahead and set up the relation's path right away * instead of leaving it for set_rel_pathlist to do. This is because * we don't have a convention for marking a rel as dummy except by * assigning a dummy path to it. */ set_dummy_rel_pathlist(rel); } else if (rte->inh) { /* It's an "append relation", process accordingly */ set_append_rel_size(root, rel, rti, rte); } else { switch (rel->rtekind) { case RTE_RELATION: if (rte->relkind == RELKIND_FOREIGN_TABLE) { /* Foreign table */ set_foreign_size(root, rel, rte); } else { /* Plain relation */ set_plain_rel_size(root, rel, rte); } break; case RTE_SUBQUERY: /* * Subqueries don't support parameterized paths, so just go * ahead and build their paths immediately. */ set_subquery_pathlist(root, rel, rti, rte); break; case RTE_FUNCTION: set_function_size_estimates(root, rel); break; case RTE_VALUES: set_values_size_estimates(root, rel); break; case RTE_CTE: /* * CTEs don't support parameterized paths, so just go ahead * and build their paths immediately. */ if (rte->self_reference) set_worktable_pathlist(root, rel, rte); else set_cte_pathlist(root, rel, rte); break; default: elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind); break; } } } /* * set_rel_pathlist * Build access paths for a base relation */ static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte) { if (IS_DUMMY_REL(rel)) { /* We already proved the relation empty, so nothing more to do */ } else if (rte->inh) { /* It's an "append relation", process accordingly */ set_append_rel_pathlist(root, rel, rti, rte); } else { switch (rel->rtekind) { case RTE_RELATION: if (rte->relkind == RELKIND_FOREIGN_TABLE) { /* Foreign table */ set_foreign_pathlist(root, rel, rte); } else { /* Plain relation */ set_plain_rel_pathlist(root, rel, rte); } break; case RTE_SUBQUERY: /* Subquery --- fully handled during set_rel_size */ break; case RTE_FUNCTION: /* RangeFunction */ set_function_pathlist(root, rel, rte); break; case RTE_VALUES: /* Values list */ set_values_pathlist(root, rel, rte); break; case RTE_CTE: /* CTE reference --- fully handled during set_rel_size */ break; default: elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind); break; } } #ifdef OPTIMIZER_DEBUG debug_print_rel(root, rel); #endif } /* * set_plain_rel_size * Set size estimates for a plain relation (no subquery, no inheritance) */ static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { /* * Test any partial indexes of rel for applicability. We must do this * first since partial unique indexes can affect size estimates. */ check_partial_indexes(root, rel); /* Mark rel with estimated output rows, width, etc */ set_baserel_size_estimates(root, rel); /* * Check to see if we can extract any restriction conditions from join * quals that are OR-of-AND structures. If so, add them to the rel's * restriction list, and redo the above steps. */ if (create_or_index_quals(root, rel)) { check_partial_indexes(root, rel); set_baserel_size_estimates(root, rel); } } /* * set_plain_rel_pathlist * Build access paths for a plain relation (no subquery, no inheritance) */ static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { /* Consider sequential scan */ add_path(rel, create_seqscan_path(root, rel)); /* Consider index scans */ create_index_paths(root, rel); /* Consider TID scans */ create_tidscan_paths(root, rel); /* Now find the cheapest of the paths for this rel */ set_cheapest(rel); } /* * set_foreign_size * Set size estimates for a foreign table RTE */ static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { /* Mark rel with estimated output rows, width, etc */ set_foreign_size_estimates(root, rel); } /* * set_foreign_pathlist * Build the (single) access path for a foreign table RTE */ static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { /* Generate appropriate path */ add_path(rel, (Path *) create_foreignscan_path(root, rel)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* * set_append_rel_size * Set size estimates for an "append relation" * * The passed-in rel and RTE represent the entire append relation. The * relation's contents are computed by appending together the output of * the individual member relations. Note that in the inheritance case, * the first member relation is actually the same table as is mentioned in * the parent RTE ... but it has a different RTE and RelOptInfo. This is * a good thing because their outputs are not the same size. */ static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte) { int parentRTindex = rti; double parent_rows; double parent_size; double *parent_attrsizes; int nattrs; ListCell *l; /* * Initialize to compute size estimates for whole append relation. * * We handle width estimates by weighting the widths of different child * rels proportionally to their number of rows. This is sensible because * the use of width estimates is mainly to compute the total relation * "footprint" if we have to sort or hash it. To do this, we sum the * total equivalent size (in "double" arithmetic) and then divide by the * total rowcount estimate. This is done separately for the total rel * width and each attribute. * * Note: if you consider changing this logic, beware that child rels could * have zero rows and/or width, if they were excluded by constraints. */ parent_rows = 0; parent_size = 0; nattrs = rel->max_attr - rel->min_attr + 1; parent_attrsizes = (double *) palloc0(nattrs * sizeof(double)); foreach(l, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); int childRTindex; RangeTblEntry *childRTE; RelOptInfo *childrel; List *childquals; Node *childqual; ListCell *parentvars; ListCell *childvars; /* append_rel_list contains all append rels; ignore others */ if (appinfo->parent_relid != parentRTindex) continue; childRTindex = appinfo->child_relid; childRTE = root->simple_rte_array[childRTindex]; /* * The child rel's RelOptInfo was already created during * add_base_rels_to_query. */ childrel = find_base_rel(root, childRTindex); Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL); /* * We have to copy the parent's targetlist and quals to the child, * with appropriate substitution of variables. However, only the * baserestrictinfo quals are needed before we can check for * constraint exclusion; so do that first and then check to see if we * can disregard this child. * * As of 8.4, the child rel's targetlist might contain non-Var * expressions, which means that substitution into the quals could * produce opportunities for const-simplification, and perhaps even * pseudoconstant quals. To deal with this, we strip the RestrictInfo * nodes, do the substitution, do const-simplification, and then * reconstitute the RestrictInfo layer. */ childquals = get_all_actual_clauses(rel->baserestrictinfo); childquals = (List *) adjust_appendrel_attrs((Node *) childquals, appinfo); childqual = eval_const_expressions(root, (Node *) make_ands_explicit(childquals)); if (childqual && IsA(childqual, Const) && (((Const *) childqual)->constisnull || !DatumGetBool(((Const *) childqual)->constvalue))) { /* * Restriction reduces to constant FALSE or constant NULL after * substitution, so this child need not be scanned. */ set_dummy_rel_pathlist(childrel); continue; } childquals = make_ands_implicit((Expr *) childqual); childquals = make_restrictinfos_from_actual_clauses(root, childquals); childrel->baserestrictinfo = childquals; if (relation_excluded_by_constraints(root, childrel, childRTE)) { /* * This child need not be scanned, so we can omit it from the * appendrel. */ set_dummy_rel_pathlist(childrel); continue; } /* * CE failed, so finish copying/modifying targetlist and join quals. * * Note: the resulting childrel->reltargetlist may contain arbitrary * expressions, which normally would not occur in a reltargetlist. * That is okay because nothing outside of this routine will look at * the child rel's reltargetlist. We do have to cope with the case * while constructing attr_widths estimates below, though. */ childrel->joininfo = (List *) adjust_appendrel_attrs((Node *) rel->joininfo, appinfo); childrel->reltargetlist = (List *) adjust_appendrel_attrs((Node *) rel->reltargetlist, appinfo); /* * We have to make child entries in the EquivalenceClass data * structures as well. This is needed either if the parent * participates in some eclass joins (because we will want to consider * inner-indexscan joins on the individual children) or if the parent * has useful pathkeys (because we should try to build MergeAppend * paths that produce those sort orderings). */ if (rel->has_eclass_joins || has_useful_pathkeys(root, rel)) add_child_rel_equivalences(root, appinfo, rel, childrel); childrel->has_eclass_joins = rel->has_eclass_joins; /* * Note: we could compute appropriate attr_needed data for the child's * variables, by transforming the parent's attr_needed through the * translated_vars mapping. However, currently there's no need * because attr_needed is only examined for base relations not * otherrels. So we just leave the child's attr_needed empty. */ /* * Compute the child's size. */ set_rel_size(root, childrel, childRTindex, childRTE); /* * It is possible that constraint exclusion detected a contradiction * within a child subquery, even though we didn't prove one above. * If so, we can skip this child. */ if (IS_DUMMY_REL(childrel)) continue; /* * Accumulate size information from each live child. */ if (childrel->rows > 0) { parent_rows += childrel->rows; parent_size += childrel->width * childrel->rows; /* * Accumulate per-column estimates too. We need not do anything * for PlaceHolderVars in the parent list. If child expression * isn't a Var, or we didn't record a width estimate for it, we * have to fall back on a datatype-based estimate. * * By construction, child's reltargetlist is 1-to-1 with parent's. */ forboth(parentvars, rel->reltargetlist, childvars, childrel->reltargetlist) { Var *parentvar = (Var *) lfirst(parentvars); Node *childvar = (Node *) lfirst(childvars); if (IsA(parentvar, Var)) { int pndx = parentvar->varattno - rel->min_attr; int32 child_width = 0; if (IsA(childvar, Var)) { int cndx = ((Var *) childvar)->varattno - childrel->min_attr; child_width = childrel->attr_widths[cndx]; } if (child_width <= 0) child_width = get_typavgwidth(exprType(childvar), exprTypmod(childvar)); Assert(child_width > 0); parent_attrsizes[pndx] += child_width * childrel->rows; } } } } /* * Save the finished size estimates. */ rel->rows = parent_rows; if (parent_rows > 0) { int i; rel->width = rint(parent_size / parent_rows); for (i = 0; i < nattrs; i++) rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows); } else rel->width = 0; /* attr_widths should be zero already */ /* * Set "raw tuples" count equal to "rows" for the appendrel; needed * because some places assume rel->tuples is valid for any baserel. */ rel->tuples = parent_rows; pfree(parent_attrsizes); } /* * set_append_rel_pathlist * Build access paths for an "append relation" */ static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte) { int parentRTindex = rti; List *live_childrels = NIL; List *subpaths = NIL; List *all_child_pathkeys = NIL; List *all_child_outers = NIL; ListCell *l; /* * Generate access paths for each member relation, and remember the * cheapest path for each one. Also, identify all pathkeys (orderings) * and parameterizations (required_outer sets) available for the member * relations. */ foreach(l, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); int childRTindex; RangeTblEntry *childRTE; RelOptInfo *childrel; ListCell *lcp; /* append_rel_list contains all append rels; ignore others */ if (appinfo->parent_relid != parentRTindex) continue; /* Re-locate the child RTE and RelOptInfo */ childRTindex = appinfo->child_relid; childRTE = root->simple_rte_array[childRTindex]; childrel = root->simple_rel_array[childRTindex]; /* * Compute the child's access paths. */ set_rel_pathlist(root, childrel, childRTindex, childRTE); /* * If child is dummy, ignore it. */ if (IS_DUMMY_REL(childrel)) continue; /* * Child is live, so add its cheapest access path to the Append path * we are constructing for the parent. */ subpaths = accumulate_append_subpath(subpaths, childrel->cheapest_total_path); /* Remember which childrels are live, for logic below */ live_childrels = lappend(live_childrels, childrel); /* * Collect lists of all the available path orderings and * parameterizations for all the children. We use these as a * heuristic to indicate which sort orderings and parameterizations we * should build Append and MergeAppend paths for. */ foreach(lcp, childrel->pathlist) { Path *childpath = (Path *) lfirst(lcp); List *childkeys = childpath->pathkeys; Relids childouter = childpath->required_outer; /* Unsorted paths don't contribute to pathkey list */ if (childkeys != NIL) { ListCell *lpk; bool found = false; /* Have we already seen this ordering? */ foreach(lpk, all_child_pathkeys) { List *existing_pathkeys = (List *) lfirst(lpk); if (compare_pathkeys(existing_pathkeys, childkeys) == PATHKEYS_EQUAL) { found = true; break; } } if (!found) { /* No, so add it to all_child_pathkeys */ all_child_pathkeys = lappend(all_child_pathkeys, childkeys); } } /* Unparameterized paths don't contribute to param-set list */ if (childouter) { ListCell *lco; bool found = false; /* Have we already seen this param set? */ foreach(lco, all_child_outers) { Relids existing_outers = (Relids) lfirst(lco); if (bms_equal(existing_outers, childouter)) { found = true; break; } } if (!found) { /* No, so add it to all_child_outers */ all_child_outers = lappend(all_child_outers, childouter); } } } } /* * Next, build an unordered, unparameterized Append path for the rel. * (Note: this is correct even if we have zero or one live subpath due to * constraint exclusion.) */ add_path(rel, (Path *) create_append_path(rel, subpaths)); /* * Build unparameterized MergeAppend paths based on the collected list of * child pathkeys. */ generate_mergeappend_paths(root, rel, live_childrels, all_child_pathkeys, NULL); /* * Build Append and MergeAppend paths for each parameterization seen * among the child rels. (This may look pretty expensive, but in most * cases of practical interest, the child relations will tend to expose * the same parameterizations and pathkeys, so that not that many cases * actually get considered here.) */ foreach(l, all_child_outers) { Relids required_outer = (Relids) lfirst(l); ListCell *lcr; /* Select the child paths for an Append with this parameterization */ subpaths = NIL; foreach(lcr, live_childrels) { RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr); Path *cheapest_total; cheapest_total = get_cheapest_path_for_pathkeys(childrel->pathlist, NIL, required_outer, TOTAL_COST); Assert(cheapest_total != NULL); subpaths = accumulate_append_subpath(subpaths, cheapest_total); } add_path(rel, (Path *) create_append_path(rel, subpaths)); /* And build parameterized MergeAppend paths */ generate_mergeappend_paths(root, rel, live_childrels, all_child_pathkeys, required_outer); } /* Select cheapest paths */ set_cheapest(rel); } /* * generate_mergeappend_paths * Generate MergeAppend paths for an append relation * * Generate a path for each ordering (pathkey list) appearing in * all_child_pathkeys. If required_outer isn't NULL, accept paths having * those relations as required outer relations. * * We consider both cheapest-startup and cheapest-total cases, ie, for each * interesting ordering, collect all the cheapest startup subpaths and all the * cheapest total paths, and build a MergeAppend path for each case. */ static void generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel, List *live_childrels, List *all_child_pathkeys, Relids required_outer) { ListCell *lcp; foreach(lcp, all_child_pathkeys) { List *pathkeys = (List *) lfirst(lcp); List *startup_subpaths = NIL; List *total_subpaths = NIL; bool startup_neq_total = false; ListCell *lcr; /* Select the child paths for this ordering... */ foreach(lcr, live_childrels) { RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr); Path *cheapest_startup, *cheapest_total; /* Locate the right paths, if they are available. */ cheapest_startup = get_cheapest_path_for_pathkeys(childrel->pathlist, pathkeys, required_outer, STARTUP_COST); cheapest_total = get_cheapest_path_for_pathkeys(childrel->pathlist, pathkeys, required_outer, TOTAL_COST); /* * If we can't find any paths with the right order just use the * cheapest-total path; we'll have to sort it later. We can * use the cheapest path for the parameterization, though. */ if (cheapest_startup == NULL || cheapest_total == NULL) { if (required_outer) cheapest_startup = cheapest_total = get_cheapest_path_for_pathkeys(childrel->pathlist, NIL, required_outer, TOTAL_COST); else cheapest_startup = cheapest_total = childrel->cheapest_total_path; Assert(cheapest_total != NULL); } /* * Notice whether we actually have different paths for the * "cheapest" and "total" cases; frequently there will be no point * in two create_merge_append_path() calls. */ if (cheapest_startup != cheapest_total) startup_neq_total = true; startup_subpaths = accumulate_append_subpath(startup_subpaths, cheapest_startup); total_subpaths = accumulate_append_subpath(total_subpaths, cheapest_total); } /* ... and build the MergeAppend paths */ add_path(rel, (Path *) create_merge_append_path(root, rel, startup_subpaths, pathkeys)); if (startup_neq_total) add_path(rel, (Path *) create_merge_append_path(root, rel, total_subpaths, pathkeys)); } } /* * accumulate_append_subpath * Add a subpath to the list being built for an Append or MergeAppend * * It's possible that the child is itself an Append path, in which case * we can "cut out the middleman" and just add its child paths to our * own list. (We don't try to do this earlier because we need to * apply both levels of transformation to the quals.) */ static List * accumulate_append_subpath(List *subpaths, Path *path) { if (IsA(path, AppendPath)) { AppendPath *apath = (AppendPath *) path; /* list_copy is important here to avoid sharing list substructure */ return list_concat(subpaths, list_copy(apath->subpaths)); } else return lappend(subpaths, path); } /* * set_dummy_rel_pathlist * Build a dummy path for a relation that's been excluded by constraints * * Rather than inventing a special "dummy" path type, we represent this as an * AppendPath with no members (see also IS_DUMMY_PATH/IS_DUMMY_REL macros). */ static void set_dummy_rel_pathlist(RelOptInfo *rel) { /* Set dummy size estimates --- we leave attr_widths[] as zeroes */ rel->rows = 0; rel->width = 0; /* Discard any pre-existing paths; no further need for them */ rel->pathlist = NIL; add_path(rel, (Path *) create_append_path(rel, NIL)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* quick-and-dirty test to see if any joining is needed */ static bool has_multiple_baserels(PlannerInfo *root) { int num_base_rels = 0; Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; if (brel == NULL) continue; /* ignore RTEs that are "other rels" */ if (brel->reloptkind == RELOPT_BASEREL) if (++num_base_rels > 1) return true; } return false; } /* * set_subquery_pathlist * Build the (single) access path for a subquery RTE * * There's no need for a separate set_subquery_size phase, since we don't * support parameterized paths for subqueries. */ static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel, Index rti, RangeTblEntry *rte) { Query *parse = root->parse; Query *subquery = rte->subquery; bool *differentTypes; double tuple_fraction; PlannerInfo *subroot; List *pathkeys; /* * Must copy the Query so that planning doesn't mess up the RTE contents * (really really need to fix the planner to not scribble on its input, * someday). */ subquery = copyObject(subquery); /* We need a workspace for keeping track of set-op type coercions */ differentTypes = (bool *) palloc0((list_length(subquery->targetList) + 1) * sizeof(bool)); /* * If there are any restriction clauses that have been attached to the * subquery relation, consider pushing them down to become WHERE or HAVING * quals of the subquery itself. This transformation is useful because it * may allow us to generate a better plan for the subquery than evaluating * all the subquery output rows and then filtering them. * * There are several cases where we cannot push down clauses. Restrictions * involving the subquery are checked by subquery_is_pushdown_safe(). * Restrictions on individual clauses are checked by * qual_is_pushdown_safe(). Also, we don't want to push down * pseudoconstant clauses; better to have the gating node above the * subquery. * * Also, if the sub-query has "security_barrier" flag, it means the * sub-query originated from a view that must enforce row-level security. * We must not push down quals in order to avoid information leaks, either * via side-effects or error output. * * Non-pushed-down clauses will get evaluated as qpquals of the * SubqueryScan node. * * XXX Are there any cases where we want to make a policy decision not to * push down a pushable qual, because it'd result in a worse plan? */ if (rel->baserestrictinfo != NIL && subquery_is_pushdown_safe(subquery, subquery, differentTypes)) { /* OK to consider pushing down individual quals */ List *upperrestrictlist = NIL; ListCell *l; foreach(l, rel->baserestrictinfo) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); Node *clause = (Node *) rinfo->clause; if (!rinfo->pseudoconstant && (!rte->security_barrier || !contain_leaky_functions(clause)) && qual_is_pushdown_safe(subquery, rti, clause, differentTypes)) { /* Push it down */ subquery_push_qual(subquery, rte, rti, clause); } else { /* Keep it in the upper query */ upperrestrictlist = lappend(upperrestrictlist, rinfo); } } rel->baserestrictinfo = upperrestrictlist; } pfree(differentTypes); /* * We can safely pass the outer tuple_fraction down to the subquery if the * outer level has no joining, aggregation, or sorting to do. Otherwise * we'd better tell the subquery to plan for full retrieval. (XXX This * could probably be made more intelligent ...) */ if (parse->hasAggs || parse->groupClause || parse->havingQual || parse->distinctClause || parse->sortClause || has_multiple_baserels(root)) tuple_fraction = 0.0; /* default case */ else tuple_fraction = root->tuple_fraction; /* Generate the plan for the subquery */ rel->subplan = subquery_planner(root->glob, subquery, root, false, tuple_fraction, &subroot); rel->subroot = subroot; /* * It's possible that constraint exclusion proved the subquery empty. * If so, it's convenient to turn it back into a dummy path so that we * will recognize appropriate optimizations at this level. */ if (is_dummy_plan(rel->subplan)) { set_dummy_rel_pathlist(rel); return; } /* Mark rel with estimated output rows, width, etc */ set_subquery_size_estimates(root, rel); /* Convert subquery pathkeys to outer representation */ pathkeys = convert_subquery_pathkeys(root, rel, subroot->query_pathkeys); /* Generate appropriate path */ add_path(rel, create_subqueryscan_path(rel, pathkeys)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* * set_function_pathlist * Build the (single) access path for a function RTE */ static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { /* Generate appropriate path */ add_path(rel, create_functionscan_path(root, rel)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* * set_values_pathlist * Build the (single) access path for a VALUES RTE */ static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { /* Generate appropriate path */ add_path(rel, create_valuesscan_path(root, rel)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* * set_cte_pathlist * Build the (single) access path for a non-self-reference CTE RTE * * There's no need for a separate set_cte_size phase, since we don't * support parameterized paths for CTEs. */ static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { Plan *cteplan; PlannerInfo *cteroot; Index levelsup; int ndx; ListCell *lc; int plan_id; /* * Find the referenced CTE, and locate the plan previously made for it. */ levelsup = rte->ctelevelsup; cteroot = root; while (levelsup-- > 0) { cteroot = cteroot->parent_root; if (!cteroot) /* shouldn't happen */ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); } /* * Note: cte_plan_ids can be shorter than cteList, if we are still working * on planning the CTEs (ie, this is a side-reference from another CTE). * So we mustn't use forboth here. */ ndx = 0; foreach(lc, cteroot->parse->cteList) { CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc); if (strcmp(cte->ctename, rte->ctename) == 0) break; ndx++; } if (lc == NULL) /* shouldn't happen */ elog(ERROR, "could not find CTE \"%s\"", rte->ctename); if (ndx >= list_length(cteroot->cte_plan_ids)) elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename); plan_id = list_nth_int(cteroot->cte_plan_ids, ndx); Assert(plan_id > 0); cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1); /* Mark rel with estimated output rows, width, etc */ set_cte_size_estimates(root, rel, cteplan); /* Generate appropriate path */ add_path(rel, create_ctescan_path(root, rel)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* * set_worktable_pathlist * Build the (single) access path for a self-reference CTE RTE * * There's no need for a separate set_worktable_size phase, since we don't * support parameterized paths for CTEs. */ static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) { Plan *cteplan; PlannerInfo *cteroot; Index levelsup; /* * We need to find the non-recursive term's plan, which is in the plan * level that's processing the recursive UNION, which is one level *below* * where the CTE comes from. */ levelsup = rte->ctelevelsup; if (levelsup == 0) /* shouldn't happen */ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); levelsup--; cteroot = root; while (levelsup-- > 0) { cteroot = cteroot->parent_root; if (!cteroot) /* shouldn't happen */ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); } cteplan = cteroot->non_recursive_plan; if (!cteplan) /* shouldn't happen */ elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename); /* Mark rel with estimated output rows, width, etc */ set_cte_size_estimates(root, rel, cteplan); /* Generate appropriate path */ add_path(rel, create_worktablescan_path(root, rel)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); } /* * make_rel_from_joinlist * Build access paths using a "joinlist" to guide the join path search. * * See comments for deconstruct_jointree() for definition of the joinlist * data structure. */ static RelOptInfo * make_rel_from_joinlist(PlannerInfo *root, List *joinlist) { int levels_needed; List *initial_rels; ListCell *jl; /* * Count the number of child joinlist nodes. This is the depth of the * dynamic-programming algorithm we must employ to consider all ways of * joining the child nodes. */ levels_needed = list_length(joinlist); if (levels_needed <= 0) return NULL; /* nothing to do? */ /* * Construct a list of rels corresponding to the child joinlist nodes. * This may contain both base rels and rels constructed according to * sub-joinlists. */ initial_rels = NIL; foreach(jl, joinlist) { Node *jlnode = (Node *) lfirst(jl); RelOptInfo *thisrel; if (IsA(jlnode, RangeTblRef)) { int varno = ((RangeTblRef *) jlnode)->rtindex; thisrel = find_base_rel(root, varno); } else if (IsA(jlnode, List)) { /* Recurse to handle subproblem */ thisrel = make_rel_from_joinlist(root, (List *) jlnode); } else { elog(ERROR, "unrecognized joinlist node type: %d", (int) nodeTag(jlnode)); thisrel = NULL; /* keep compiler quiet */ } initial_rels = lappend(initial_rels, thisrel); } if (levels_needed == 1) { /* * Single joinlist node, so we're done. */ return (RelOptInfo *) linitial(initial_rels); } else { /* * Consider the different orders in which we could join the rels, * using a plugin, GEQO, or the regular join search code. * * We put the initial_rels list into a PlannerInfo field because * has_legal_joinclause() needs to look at it (ugly :-(). */ root->initial_rels = initial_rels; if (join_search_hook) return (*join_search_hook) (root, levels_needed, initial_rels); else if (enable_geqo && levels_needed >= geqo_threshold) return geqo(root, levels_needed, initial_rels); else return standard_join_search(root, levels_needed, initial_rels); } } /* * standard_join_search * Find possible joinpaths for a query by successively finding ways * to join component relations into join relations. * * 'levels_needed' is the number of iterations needed, ie, the number of * independent jointree items in the query. This is > 1. * * 'initial_rels' is a list of RelOptInfo nodes for each independent * jointree item. These are the components to be joined together. * Note that levels_needed == list_length(initial_rels). * * Returns the final level of join relations, i.e., the relation that is * the result of joining all the original relations together. * At least one implementation path must be provided for this relation and * all required sub-relations. * * To support loadable plugins that modify planner behavior by changing the * join searching algorithm, we provide a hook variable that lets a plugin * replace or supplement this function. Any such hook must return the same * final join relation as the standard code would, but it might have a * different set of implementation paths attached, and only the sub-joinrels * needed for these paths need have been instantiated. * * Note to plugin authors: the functions invoked during standard_join_search() * modify root->join_rel_list and root->join_rel_hash. If you want to do more * than one join-order search, you'll probably need to save and restore the * original states of those data structures. See geqo_eval() for an example. */ RelOptInfo * standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) { int lev; RelOptInfo *rel; /* * This function cannot be invoked recursively within any one planning * problem, so join_rel_level[] can't be in use already. */ Assert(root->join_rel_level == NULL); /* * We employ a simple "dynamic programming" algorithm: we first find all * ways to build joins of two jointree items, then all ways to build joins * of three items (from two-item joins and single items), then four-item * joins, and so on until we have considered all ways to join all the * items into one rel. * * root->join_rel_level[j] is a list of all the j-item rels. Initially we * set root->join_rel_level[1] to represent all the single-jointree-item * relations. */ root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); root->join_rel_level[1] = initial_rels; for (lev = 2; lev <= levels_needed; lev++) { ListCell *lc; /* * Determine all possible pairs of relations to be joined at this * level, and build paths for making each one from every available * pair of lower-level relations. */ join_search_one_level(root, lev); /* * Do cleanup work on each just-processed rel. */ foreach(lc, root->join_rel_level[lev]) { rel = (RelOptInfo *) lfirst(lc); /* Find and save the cheapest paths for this rel */ set_cheapest(rel); #ifdef OPTIMIZER_DEBUG debug_print_rel(root, rel); #endif } } /* * We should have a single rel at the final level. */ if (root->join_rel_level[levels_needed] == NIL) elog(ERROR, "failed to build any %d-way joins", levels_needed); Assert(list_length(root->join_rel_level[levels_needed]) == 1); rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); root->join_rel_level = NULL; return rel; } /***************************************************************************** * PUSHING QUALS DOWN INTO SUBQUERIES *****************************************************************************/ /* * subquery_is_pushdown_safe - is a subquery safe for pushing down quals? * * subquery is the particular component query being checked. topquery * is the top component of a set-operations tree (the same Query if no * set-op is involved). * * Conditions checked here: * * 1. If the subquery has a LIMIT clause, we must not push down any quals, * since that could change the set of rows returned. * * 2. If the subquery contains any window functions, we can't push quals * into it, because that could change the results. * * 3. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push * quals into it, because that could change the results. * * 4. For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can * push quals into each component query, but the quals can only reference * subquery columns that suffer no type coercions in the set operation. * Otherwise there are possible semantic gotchas. So, we check the * component queries to see if any of them have different output types; * differentTypes[k] is set true if column k has different type in any * component. */ static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery, bool *differentTypes) { SetOperationStmt *topop; /* Check point 1 */ if (subquery->limitOffset != NULL || subquery->limitCount != NULL) return false; /* Check point 2 */ if (subquery->hasWindowFuncs) return false; /* Are we at top level, or looking at a setop component? */ if (subquery == topquery) { /* Top level, so check any component queries */ if (subquery->setOperations != NULL) if (!recurse_pushdown_safe(subquery->setOperations, topquery, differentTypes)) return false; } else { /* Setop component must not have more components (too weird) */ if (subquery->setOperations != NULL) return false; /* Check whether setop component output types match top level */ topop = (SetOperationStmt *) topquery->setOperations; Assert(topop && IsA(topop, SetOperationStmt)); compare_tlist_datatypes(subquery->targetList, topop->colTypes, differentTypes); } return true; } /* * Helper routine to recurse through setOperations tree */ static bool recurse_pushdown_safe(Node *setOp, Query *topquery, bool *differentTypes) { if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable); Query *subquery = rte->subquery; Assert(subquery != NULL); return subquery_is_pushdown_safe(subquery, topquery, differentTypes); } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; /* EXCEPT is no good */ if (op->op == SETOP_EXCEPT) return false; /* Else recurse */ if (!recurse_pushdown_safe(op->larg, topquery, differentTypes)) return false; if (!recurse_pushdown_safe(op->rarg, topquery, differentTypes)) return false; } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); } return true; } /* * Compare tlist's datatypes against the list of set-operation result types. * For any items that are different, mark the appropriate element of * differentTypes[] to show that this column will have type conversions. * * We don't have to care about typmods here: the only allowed difference * between set-op input and output typmods is input is a specific typmod * and output is -1, and that does not require a coercion. */ static void compare_tlist_datatypes(List *tlist, List *colTypes, bool *differentTypes) { ListCell *l; ListCell *colType = list_head(colTypes); foreach(l, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(l); if (tle->resjunk) continue; /* ignore resjunk columns */ if (colType == NULL) elog(ERROR, "wrong number of tlist entries"); if (exprType((Node *) tle->expr) != lfirst_oid(colType)) differentTypes[tle->resno] = true; colType = lnext(colType); } if (colType != NULL) elog(ERROR, "wrong number of tlist entries"); } /* * qual_is_pushdown_safe - is a particular qual safe to push down? * * qual is a restriction clause applying to the given subquery (whose RTE * has index rti in the parent query). * * Conditions checked here: * * 1. The qual must not contain any subselects (mainly because I'm not sure * it will work correctly: sublinks will already have been transformed into * subplans in the qual, but not in the subquery). * * 2. The qual must not refer to the whole-row output of the subquery * (since there is no easy way to name that within the subquery itself). * * 3. The qual must not refer to any subquery output columns that were * found to have inconsistent types across a set operation tree by * subquery_is_pushdown_safe(). * * 4. If the subquery uses DISTINCT ON, we must not push down any quals that * refer to non-DISTINCT output columns, because that could change the set * of rows returned. (This condition is vacuous for DISTINCT, because then * there are no non-DISTINCT output columns, so we needn't check. But note * we are assuming that the qual can't distinguish values that the DISTINCT * operator sees as equal. This is a bit shaky but we have no way to test * for the case, and it's unlikely enough that we shouldn't refuse the * optimization just because it could theoretically happen.) * * 5. We must not push down any quals that refer to subselect outputs that * return sets, else we'd introduce functions-returning-sets into the * subquery's WHERE/HAVING quals. * * 6. We must not push down any quals that refer to subselect outputs that * contain volatile functions, for fear of introducing strange results due * to multiple evaluation of a volatile function. */ static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual, bool *differentTypes) { bool safe = true; List *vars; ListCell *vl; Bitmapset *tested = NULL; /* Refuse subselects (point 1) */ if (contain_subplans(qual)) return false; /* * It would be unsafe to push down window function calls, but at least for * the moment we could never see any in a qual anyhow. (The same applies * to aggregates, which we check for in pull_var_clause below.) */ Assert(!contain_window_function(qual)); /* * Examine all Vars used in clause; since it's a restriction clause, all * such Vars must refer to subselect output columns. */ vars = pull_var_clause(qual, PVC_REJECT_AGGREGATES, PVC_INCLUDE_PLACEHOLDERS); foreach(vl, vars) { Var *var = (Var *) lfirst(vl); TargetEntry *tle; /* * XXX Punt if we find any PlaceHolderVars in the restriction clause. * It's not clear whether a PHV could safely be pushed down, and even * less clear whether such a situation could arise in any cases of * practical interest anyway. So for the moment, just refuse to push * down. */ if (!IsA(var, Var)) { safe = false; break; } Assert(var->varno == rti); /* Check point 2 */ if (var->varattno == 0) { safe = false; break; } /* * We use a bitmapset to avoid testing the same attno more than once. * (NB: this only works because subquery outputs can't have negative * attnos.) */ if (bms_is_member(var->varattno, tested)) continue; tested = bms_add_member(tested, var->varattno); /* Check point 3 */ if (differentTypes[var->varattno]) { safe = false; break; } /* Must find the tlist element referenced by the Var */ tle = get_tle_by_resno(subquery->targetList, var->varattno); Assert(tle != NULL); Assert(!tle->resjunk); /* If subquery uses DISTINCT ON, check point 4 */ if (subquery->hasDistinctOn && !targetIsInSortList(tle, InvalidOid, subquery->distinctClause)) { /* non-DISTINCT column, so fail */ safe = false; break; } /* Refuse functions returning sets (point 5) */ if (expression_returns_set((Node *) tle->expr)) { safe = false; break; } /* Refuse volatile functions (point 6) */ if (contain_volatile_functions((Node *) tle->expr)) { safe = false; break; } } list_free(vars); bms_free(tested); return safe; } /* * subquery_push_qual - push down a qual that we have determined is safe */ static void subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual) { if (subquery->setOperations != NULL) { /* Recurse to push it separately to each component query */ recurse_push_qual(subquery->setOperations, subquery, rte, rti, qual); } else { /* * We need to replace Vars in the qual (which must refer to outputs of * the subquery) with copies of the subquery's targetlist expressions. * Note that at this point, any uplevel Vars in the qual should have * been replaced with Params, so they need no work. * * This step also ensures that when we are pushing into a setop tree, * each component query gets its own copy of the qual. */ qual = ResolveNew(qual, rti, 0, rte, subquery->targetList, CMD_SELECT, 0, &subquery->hasSubLinks); /* * Now attach the qual to the proper place: normally WHERE, but if the * subquery uses grouping or aggregation, put it in HAVING (since the * qual really refers to the group-result rows). */ if (subquery->hasAggs || subquery->groupClause || subquery->havingQual) subquery->havingQual = make_and_qual(subquery->havingQual, qual); else subquery->jointree->quals = make_and_qual(subquery->jointree->quals, qual); /* * We need not change the subquery's hasAggs or hasSublinks flags, * since we can't be pushing down any aggregates that weren't there * before, and we don't push down subselects at all. */ } } /* * Helper routine to recurse through setOperations tree */ static void recurse_push_qual(Node *setOp, Query *topquery, RangeTblEntry *rte, Index rti, Node *qual) { if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable); Query *subquery = subrte->subquery; Assert(subquery != NULL); subquery_push_qual(subquery, rte, rti, qual); } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; recurse_push_qual(op->larg, topquery, rte, rti, qual); recurse_push_qual(op->rarg, topquery, rte, rti, qual); } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); } } /***************************************************************************** * DEBUG SUPPORT *****************************************************************************/ #ifdef OPTIMIZER_DEBUG static void print_relids(Relids relids) { Relids tmprelids; int x; bool first = true; tmprelids = bms_copy(relids); while ((x = bms_first_member(tmprelids)) >= 0) { if (!first) printf(" "); printf("%d", x); first = false; } bms_free(tmprelids); } static void print_restrictclauses(PlannerInfo *root, List *clauses) { ListCell *l; foreach(l, clauses) { RestrictInfo *c = lfirst(l); print_expr((Node *) c->clause, root->parse->rtable); if (lnext(l)) printf(", "); } } static void print_path(PlannerInfo *root, Path *path, int indent) { const char *ptype; bool join = false; Path *subpath = NULL; int i; switch (nodeTag(path)) { case T_Path: ptype = "SeqScan"; break; case T_IndexPath: ptype = "IdxScan"; break; case T_BitmapHeapPath: ptype = "BitmapHeapScan"; break; case T_BitmapAndPath: ptype = "BitmapAndPath"; break; case T_BitmapOrPath: ptype = "BitmapOrPath"; break; case T_TidPath: ptype = "TidScan"; break; case T_ForeignPath: ptype = "ForeignScan"; break; case T_AppendPath: ptype = "Append"; break; case T_MergeAppendPath: ptype = "MergeAppend"; break; case T_ResultPath: ptype = "Result"; break; case T_MaterialPath: ptype = "Material"; subpath = ((MaterialPath *) path)->subpath; break; case T_UniquePath: ptype = "Unique"; subpath = ((UniquePath *) path)->subpath; break; case T_NestPath: ptype = "NestLoop"; join = true; break; case T_MergePath: ptype = "MergeJoin"; join = true; break; case T_HashPath: ptype = "HashJoin"; join = true; break; default: ptype = "???Path"; break; } for (i = 0; i < indent; i++) printf("\t"); printf("%s", ptype); if (path->parent) { printf("("); print_relids(path->parent->relids); printf(") rows=%.0f", path->parent->rows); } printf(" cost=%.2f..%.2f\n", path->startup_cost, path->total_cost); if (path->pathkeys) { for (i = 0; i < indent; i++) printf("\t"); printf(" pathkeys: "); print_pathkeys(path->pathkeys, root->parse->rtable); } if (join) { JoinPath *jp = (JoinPath *) path; for (i = 0; i < indent; i++) printf("\t"); printf(" clauses: "); print_restrictclauses(root, jp->joinrestrictinfo); printf("\n"); if (IsA(path, MergePath)) { MergePath *mp = (MergePath *) path; for (i = 0; i < indent; i++) printf("\t"); printf(" sortouter=%d sortinner=%d materializeinner=%d\n", ((mp->outersortkeys) ? 1 : 0), ((mp->innersortkeys) ? 1 : 0), ((mp->materialize_inner) ? 1 : 0)); } print_path(root, jp->outerjoinpath, indent + 1); print_path(root, jp->innerjoinpath, indent + 1); } if (subpath) print_path(root, subpath, indent + 1); } void debug_print_rel(PlannerInfo *root, RelOptInfo *rel) { ListCell *l; printf("RELOPTINFO ("); print_relids(rel->relids); printf("): rows=%.0f width=%d\n", rel->rows, rel->width); if (rel->baserestrictinfo) { printf("\tbaserestrictinfo: "); print_restrictclauses(root, rel->baserestrictinfo); printf("\n"); } if (rel->joininfo) { printf("\tjoininfo: "); print_restrictclauses(root, rel->joininfo); printf("\n"); } printf("\tpath list:\n"); foreach(l, rel->pathlist) print_path(root, lfirst(l), 1); printf("\n\tcheapest startup path:\n"); print_path(root, rel->cheapest_startup_path, 1); printf("\n\tcheapest total path:\n"); print_path(root, rel->cheapest_total_path, 1); printf("\n"); fflush(stdout); } #endif /* OPTIMIZER_DEBUG */