/*------------------------------------------------------------------------- * * heaptuple.c * This file contains heap tuple accessor and mutator routines, as well * as various tuple utilities. * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/access/common/heaptuple.c,v 1.96 2005/01/27 23:23:49 neilc Exp $ * * NOTES * The old interface functions have been converted to macros * and moved to heapam.h * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/heapam.h" #include "access/tuptoaster.h" #include "catalog/pg_type.h" /* ---------------------------------------------------------------- * misc support routines * ---------------------------------------------------------------- */ /* ---------------- * ComputeDataSize * * Determine size of the data area of a tuple to be constructed * ---------------- */ Size ComputeDataSize(TupleDesc tupleDesc, Datum *values, char *nulls) { Size data_length = 0; int i; int numberOfAttributes = tupleDesc->natts; Form_pg_attribute *att = tupleDesc->attrs; for (i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') continue; data_length = att_align(data_length, att[i]->attalign); data_length = att_addlength(data_length, att[i]->attlen, values[i]); } return data_length; } /* ---------------- * DataFill * * Load data portion of a tuple from values/nulls arrays * ---------------- */ void DataFill(char *data, TupleDesc tupleDesc, Datum *values, char *nulls, uint16 *infomask, bits8 *bit) { bits8 *bitP; int bitmask; int i; int numberOfAttributes = tupleDesc->natts; Form_pg_attribute *att = tupleDesc->attrs; if (bit != NULL) { bitP = &bit[-1]; bitmask = CSIGNBIT; } else { /* just to keep compiler quiet */ bitP = NULL; bitmask = 0; } *infomask &= ~(HEAP_HASNULL | HEAP_HASVARWIDTH | HEAP_HASEXTENDED); for (i = 0; i < numberOfAttributes; i++) { Size data_length; if (bit != NULL) { if (bitmask != CSIGNBIT) bitmask <<= 1; else { bitP += 1; *bitP = 0x0; bitmask = 1; } if (nulls[i] == 'n') { *infomask |= HEAP_HASNULL; continue; } *bitP |= bitmask; } /* XXX we are aligning the pointer itself, not the offset */ data = (char *) att_align((long) data, att[i]->attalign); if (att[i]->attbyval) { /* pass-by-value */ store_att_byval(data, values[i], att[i]->attlen); data_length = att[i]->attlen; } else if (att[i]->attlen == -1) { /* varlena */ *infomask |= HEAP_HASVARWIDTH; if (VARATT_IS_EXTERNAL(values[i])) *infomask |= HEAP_HASEXTERNAL; if (VARATT_IS_COMPRESSED(values[i])) *infomask |= HEAP_HASCOMPRESSED; data_length = VARATT_SIZE(DatumGetPointer(values[i])); memcpy(data, DatumGetPointer(values[i]), data_length); } else if (att[i]->attlen == -2) { /* cstring */ *infomask |= HEAP_HASVARWIDTH; data_length = strlen(DatumGetCString(values[i])) + 1; memcpy(data, DatumGetPointer(values[i]), data_length); } else { /* fixed-length pass-by-reference */ Assert(att[i]->attlen > 0); data_length = att[i]->attlen; memcpy(data, DatumGetPointer(values[i]), data_length); } data += data_length; } } /* ---------------------------------------------------------------- * heap tuple interface * ---------------------------------------------------------------- */ /* ---------------- * heap_attisnull - returns 1 iff tuple attribute is not present * ---------------- */ int heap_attisnull(HeapTuple tup, int attnum) { if (attnum > (int) tup->t_data->t_natts) return 1; if (attnum > 0) { if (HeapTupleNoNulls(tup)) return 0; return att_isnull(attnum - 1, tup->t_data->t_bits); } switch (attnum) { case TableOidAttributeNumber: case SelfItemPointerAttributeNumber: case ObjectIdAttributeNumber: case MinTransactionIdAttributeNumber: case MinCommandIdAttributeNumber: case MaxTransactionIdAttributeNumber: case MaxCommandIdAttributeNumber: /* these are never null */ break; default: elog(ERROR, "invalid attnum: %d", attnum); } return 0; } /* ---------------- * nocachegetattr * * This only gets called from fastgetattr() macro, in cases where * we can't use a cacheoffset and the value is not null. * * This caches attribute offsets in the attribute descriptor. * * An alternate way to speed things up would be to cache offsets * with the tuple, but that seems more difficult unless you take * the storage hit of actually putting those offsets into the * tuple you send to disk. Yuck. * * This scheme will be slightly slower than that, but should * perform well for queries which hit large #'s of tuples. After * you cache the offsets once, examining all the other tuples using * the same attribute descriptor will go much quicker. -cim 5/4/91 * * NOTE: if you need to change this code, see also heap_deformtuple. * ---------------- */ Datum nocachegetattr(HeapTuple tuple, int attnum, TupleDesc tupleDesc, bool *isnull) { HeapTupleHeader tup = tuple->t_data; Form_pg_attribute *att = tupleDesc->attrs; char *tp; /* ptr to att in tuple */ bits8 *bp = tup->t_bits; /* ptr to null bitmask in tuple */ bool slow = false; /* do we have to walk nulls? */ (void) isnull; /* not used */ #ifdef IN_MACRO /* This is handled in the macro */ Assert(attnum > 0); if (isnull) *isnull = false; #endif attnum--; /* ---------------- * Three cases: * * 1: No nulls and no variable-width attributes. * 2: Has a null or a var-width AFTER att. * 3: Has nulls or var-widths BEFORE att. * ---------------- */ if (HeapTupleNoNulls(tuple)) { #ifdef IN_MACRO /* This is handled in the macro */ if (att[attnum]->attcacheoff != -1) { return fetchatt(att[attnum], (char *) tup + tup->t_hoff + att[attnum]->attcacheoff); } #endif } else { /* * there's a null somewhere in the tuple * * check to see if desired att is null */ #ifdef IN_MACRO /* This is handled in the macro */ if (att_isnull(attnum, bp)) { if (isnull) *isnull = true; return (Datum) NULL; } #endif /* * Now check to see if any preceding bits are null... */ { int byte = attnum >> 3; int finalbit = attnum & 0x07; /* check for nulls "before" final bit of last byte */ if ((~bp[byte]) & ((1 << finalbit) - 1)) slow = true; else { /* check for nulls in any "earlier" bytes */ int i; for (i = 0; i < byte; i++) { if (bp[i] != 0xFF) { slow = true; break; } } } } } tp = (char *) tup + tup->t_hoff; /* * now check for any non-fixed length attrs before our attribute */ if (!slow) { if (att[attnum]->attcacheoff != -1) { return fetchatt(att[attnum], tp + att[attnum]->attcacheoff); } else if (HeapTupleHasVarWidth(tuple)) { int j; /* * In for(), we test <= and not < because we want to see if we * can go past it in initializing offsets. */ for (j = 0; j <= attnum; j++) { if (att[j]->attlen <= 0) { slow = true; break; } } } } /* * If slow is false, and we got here, we know that we have a tuple * with no nulls or var-widths before the target attribute. If * possible, we also want to initialize the remainder of the attribute * cached offset values. */ if (!slow) { int j = 1; long off; /* * need to set cache for some atts */ att[0]->attcacheoff = 0; while (j < attnum && att[j]->attcacheoff > 0) j++; off = att[j - 1]->attcacheoff + att[j - 1]->attlen; for (; j <= attnum || /* Can we compute more? We will probably need them */ (j < tup->t_natts && att[j]->attcacheoff == -1 && (HeapTupleNoNulls(tuple) || !att_isnull(j, bp)) && (HeapTupleAllFixed(tuple) || att[j]->attlen > 0)); j++) { off = att_align(off, att[j]->attalign); att[j]->attcacheoff = off; off = att_addlength(off, att[j]->attlen, tp + off); } return fetchatt(att[attnum], tp + att[attnum]->attcacheoff); } else { bool usecache = true; int off = 0; int i; /* * Now we know that we have to walk the tuple CAREFULLY. * * Note - This loop is a little tricky. On iteration i we first set * the offset for attribute i and figure out how much the offset * should be incremented. Finally, we need to align the offset * based on the size of attribute i+1 (for which the offset has * been computed). -mer 12 Dec 1991 */ for (i = 0; i < attnum; i++) { if (HeapTupleHasNulls(tuple) && att_isnull(i, bp)) { usecache = false; continue; } /* If we know the next offset, we can skip the rest */ if (usecache && att[i]->attcacheoff != -1) off = att[i]->attcacheoff; else { off = att_align(off, att[i]->attalign); if (usecache) att[i]->attcacheoff = off; } off = att_addlength(off, att[i]->attlen, tp + off); if (usecache && att[i]->attlen <= 0) usecache = false; } off = att_align(off, att[attnum]->attalign); return fetchatt(att[attnum], tp + off); } } /* ---------------- * heap_getsysattr * * Fetch the value of a system attribute for a tuple. * * This is a support routine for the heap_getattr macro. The macro * has already determined that the attnum refers to a system attribute. * ---------------- */ Datum heap_getsysattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull) { Datum result; Assert(tup); /* Currently, no sys attribute ever reads as NULL. */ if (isnull) *isnull = false; switch (attnum) { case SelfItemPointerAttributeNumber: /* pass-by-reference datatype */ result = PointerGetDatum(&(tup->t_self)); break; case ObjectIdAttributeNumber: result = ObjectIdGetDatum(HeapTupleGetOid(tup)); break; case MinTransactionIdAttributeNumber: result = TransactionIdGetDatum(HeapTupleHeaderGetXmin(tup->t_data)); break; case MinCommandIdAttributeNumber: result = CommandIdGetDatum(HeapTupleHeaderGetCmin(tup->t_data)); break; case MaxTransactionIdAttributeNumber: result = TransactionIdGetDatum(HeapTupleHeaderGetXmax(tup->t_data)); break; case MaxCommandIdAttributeNumber: result = CommandIdGetDatum(HeapTupleHeaderGetCmax(tup->t_data)); break; case TableOidAttributeNumber: result = ObjectIdGetDatum(tup->t_tableOid); break; /* * If the attribute number is 0, then we are supposed to * return the entire tuple as a row-type Datum. (Using zero * for this purpose is unclean since it risks confusion with * "invalid attr" result codes, but it's not worth changing * now.) * * We have to make a copy of the tuple so we can safely insert * the Datum overhead fields, which are not set in on-disk * tuples. */ case InvalidAttrNumber: { HeapTupleHeader dtup; dtup = (HeapTupleHeader) palloc(tup->t_len); memcpy((char *) dtup, (char *) tup->t_data, tup->t_len); HeapTupleHeaderSetDatumLength(dtup, tup->t_len); HeapTupleHeaderSetTypeId(dtup, tupleDesc->tdtypeid); HeapTupleHeaderSetTypMod(dtup, tupleDesc->tdtypmod); result = PointerGetDatum(dtup); } break; default: elog(ERROR, "invalid attnum: %d", attnum); result = 0; /* keep compiler quiet */ break; } return result; } /* ---------------- * heap_copytuple * * returns a copy of an entire tuple * * The HeapTuple struct, tuple header, and tuple data are all allocated * as a single palloc() block. * ---------------- */ HeapTuple heap_copytuple(HeapTuple tuple) { HeapTuple newTuple; if (!HeapTupleIsValid(tuple) || tuple->t_data == NULL) return NULL; newTuple = (HeapTuple) palloc(HEAPTUPLESIZE + tuple->t_len); newTuple->t_len = tuple->t_len; newTuple->t_self = tuple->t_self; newTuple->t_tableOid = tuple->t_tableOid; newTuple->t_datamcxt = CurrentMemoryContext; newTuple->t_data = (HeapTupleHeader) ((char *) newTuple + HEAPTUPLESIZE); memcpy((char *) newTuple->t_data, (char *) tuple->t_data, tuple->t_len); return newTuple; } /* ---------------- * heap_copytuple_with_tuple * * copy a tuple into a caller-supplied HeapTuple management struct * ---------------- */ void heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest) { if (!HeapTupleIsValid(src) || src->t_data == NULL) { dest->t_data = NULL; return; } dest->t_len = src->t_len; dest->t_self = src->t_self; dest->t_tableOid = src->t_tableOid; dest->t_datamcxt = CurrentMemoryContext; dest->t_data = (HeapTupleHeader) palloc(src->t_len); memcpy((char *) dest->t_data, (char *) src->t_data, src->t_len); } /* ---------------- * heap_formtuple * * construct a tuple from the given values[] and nulls[] arrays * * Null attributes are indicated by a 'n' in the appropriate byte * of nulls[]. Non-null attributes are indicated by a ' ' (space). * ---------------- */ HeapTuple heap_formtuple(TupleDesc tupleDescriptor, Datum *values, char *nulls) { HeapTuple tuple; /* return tuple */ HeapTupleHeader td; /* tuple data */ unsigned long len; int hoff; bool hasnull = false; Form_pg_attribute *att = tupleDescriptor->attrs; int numberOfAttributes = tupleDescriptor->natts; int i; if (numberOfAttributes > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_TOO_MANY_COLUMNS), errmsg("number of columns (%d) exceeds limit (%d)", numberOfAttributes, MaxTupleAttributeNumber))); /* * Check for nulls and embedded tuples; expand any toasted attributes * in embedded tuples. This preserves the invariant that toasting can * only go one level deep. * * We can skip calling toast_flatten_tuple_attribute() if the attribute * couldn't possibly be of composite type. All composite datums are * varlena and have alignment 'd'; furthermore they aren't arrays. * Also, if an attribute is already toasted, it must have been sent to * disk already and so cannot contain toasted attributes. */ for (i = 0; i < numberOfAttributes; i++) { if (nulls[i] != ' ') hasnull = true; else if (att[i]->attlen == -1 && att[i]->attalign == 'd' && att[i]->attndims == 0 && !VARATT_IS_EXTENDED(values[i])) { values[i] = toast_flatten_tuple_attribute(values[i], att[i]->atttypid, att[i]->atttypmod); } } /* * Determine total space needed */ len = offsetof(HeapTupleHeaderData, t_bits); if (hasnull) len += BITMAPLEN(numberOfAttributes); if (tupleDescriptor->tdhasoid) len += sizeof(Oid); hoff = len = MAXALIGN(len); /* align user data safely */ len += ComputeDataSize(tupleDescriptor, values, nulls); /* * Allocate and zero the space needed. Note that the tuple body and * HeapTupleData management structure are allocated in one chunk. */ tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len); tuple->t_datamcxt = CurrentMemoryContext; tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); /* * And fill in the information. Note we fill the Datum fields even * though this tuple may never become a Datum. */ tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); tuple->t_tableOid = InvalidOid; HeapTupleHeaderSetDatumLength(td, len); HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid); HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod); td->t_natts = numberOfAttributes; td->t_hoff = hoff; if (tupleDescriptor->tdhasoid) /* else leave infomask = 0 */ td->t_infomask = HEAP_HASOID; DataFill((char *) td + hoff, tupleDescriptor, values, nulls, &td->t_infomask, (hasnull ? td->t_bits : NULL)); return tuple; } /* ---------------- * heap_modifytuple * * forms a new tuple from an old tuple and a set of replacement values. * returns a new palloc'ed tuple. * ---------------- */ HeapTuple heap_modifytuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *replValues, char *replNulls, char *replActions) { int numberOfAttributes = tupleDesc->natts; int attoff; Datum *values; char *nulls; HeapTuple newTuple; /* * allocate and fill values and nulls arrays from either the tuple or * the repl information, as appropriate. * * NOTE: it's debatable whether to use heap_deformtuple() here or just * heap_getattr() only the non-replaced colums. The latter could win * if there are many replaced columns and few non-replaced ones. * However, heap_deformtuple costs only O(N) while the heap_getattr * way would cost O(N^2) if there are many non-replaced columns, so it * seems better to err on the side of linear cost. */ values = (Datum *) palloc(numberOfAttributes * sizeof(Datum)); nulls = (char *) palloc(numberOfAttributes * sizeof(char)); heap_deformtuple(tuple, tupleDesc, values, nulls); for (attoff = 0; attoff < numberOfAttributes; attoff++) { if (replActions[attoff] == 'r') { values[attoff] = replValues[attoff]; nulls[attoff] = replNulls[attoff]; } else if (replActions[attoff] != ' ') elog(ERROR, "unrecognized replace flag: %d", (int) replActions[attoff]); } /* * create a new tuple from the values and nulls arrays */ newTuple = heap_formtuple(tupleDesc, values, nulls); pfree(values); pfree(nulls); /* * copy the identification info of the old tuple: t_ctid, t_self, and * OID (if any) */ newTuple->t_data->t_ctid = tuple->t_data->t_ctid; newTuple->t_self = tuple->t_self; newTuple->t_tableOid = tuple->t_tableOid; if (tupleDesc->tdhasoid) HeapTupleSetOid(newTuple, HeapTupleGetOid(tuple)); return newTuple; } /* ---------------- * heap_deformtuple * * Given a tuple, extract data into values/nulls arrays; this is * the inverse of heap_formtuple. * * Storage for the values/nulls arrays is provided by the caller; * it should be sized according to tupleDesc->natts not tuple->t_natts. * * Note that for pass-by-reference datatypes, the pointer placed * in the Datum will point into the given tuple. * * When all or most of a tuple's fields need to be extracted, * this routine will be significantly quicker than a loop around * heap_getattr; the loop will become O(N^2) as soon as any * noncacheable attribute offsets are involved. * ---------------- */ void heap_deformtuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *values, char *nulls) { HeapTupleHeader tup = tuple->t_data; Form_pg_attribute *att = tupleDesc->attrs; int tdesc_natts = tupleDesc->natts; int natts; /* number of atts to extract */ int attnum; char *tp; /* ptr to tuple data */ long off; /* offset in tuple data */ bits8 *bp = tup->t_bits; /* ptr to null bitmask in tuple */ bool slow = false; /* can we use/set attcacheoff? */ natts = tup->t_natts; /* * In inheritance situations, it is possible that the given tuple * actually has more fields than the caller is expecting. Don't run * off the end of the caller's arrays. */ natts = Min(natts, tdesc_natts); tp = (char *) tup + tup->t_hoff; off = 0; for (attnum = 0; attnum < natts; attnum++) { if (HeapTupleHasNulls(tuple) && att_isnull(attnum, bp)) { values[attnum] = (Datum) 0; nulls[attnum] = 'n'; slow = true; /* can't use attcacheoff anymore */ continue; } nulls[attnum] = ' '; if (!slow && att[attnum]->attcacheoff >= 0) off = att[attnum]->attcacheoff; else { off = att_align(off, att[attnum]->attalign); if (!slow) att[attnum]->attcacheoff = off; } values[attnum] = fetchatt(att[attnum], tp + off); off = att_addlength(off, att[attnum]->attlen, tp + off); if (att[attnum]->attlen <= 0) slow = true; /* can't use attcacheoff anymore */ } /* * If tuple doesn't have all the atts indicated by tupleDesc, read the * rest as null */ for (; attnum < tdesc_natts; attnum++) { values[attnum] = (Datum) 0; nulls[attnum] = 'n'; } } /* ---------------- * heap_freetuple * ---------------- */ void heap_freetuple(HeapTuple htup) { if (htup->t_data != NULL) if (htup->t_datamcxt != NULL && (char *) (htup->t_data) != ((char *) htup + HEAPTUPLESIZE)) pfree(htup->t_data); pfree(htup); } /* ---------------- * heap_addheader * * This routine forms a HeapTuple by copying the given structure (tuple * data) and adding a generic header. Note that the tuple data is * presumed to contain no null fields and no varlena fields. * * This routine is really only useful for certain system tables that are * known to be fixed-width and null-free. It is used in some places for * pg_class, but that is a gross hack (it only works because relacl can * be omitted from the tuple entirely in those places). * ---------------- */ HeapTuple heap_addheader(int natts, /* max domain index */ bool withoid, /* reserve space for oid */ Size structlen, /* its length */ void *structure) /* pointer to the struct */ { HeapTuple tuple; HeapTupleHeader td; Size len; int hoff; AssertArg(natts > 0); /* header needs no null bitmap */ hoff = offsetof(HeapTupleHeaderData, t_bits); if (withoid) hoff += sizeof(Oid); hoff = MAXALIGN(hoff); len = hoff + structlen; tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len); tuple->t_datamcxt = CurrentMemoryContext; tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE); tuple->t_len = len; ItemPointerSetInvalid(&(tuple->t_self)); tuple->t_tableOid = InvalidOid; /* we don't bother to fill the Datum fields */ td->t_natts = natts; td->t_hoff = hoff; if (withoid) /* else leave infomask = 0 */ td->t_infomask = HEAP_HASOID; memcpy((char *) td + hoff, structure, structlen); return tuple; }