/*------------------------------------------------------------------------- * * parallel.c * * Parallel support for the pg_dump archiver * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * The author is not responsible for loss or damages that may * result from its use. * * IDENTIFICATION * src/bin/pg_dump/parallel.c * *------------------------------------------------------------------------- */ #include "postgres_fe.h" #include "parallel.h" #include "pg_backup_utils.h" #include "fe_utils/string_utils.h" #ifndef WIN32 #include #include #include "signal.h" #include #include #endif #define PIPE_READ 0 #define PIPE_WRITE 1 /* file-scope variables */ #ifdef WIN32 static unsigned int tMasterThreadId = 0; static HANDLE termEvent = INVALID_HANDLE_VALUE; static int pgpipe(int handles[2]); static int piperead(int s, char *buf, int len); /* * Structure to hold info passed by _beginthreadex() to the function it calls * via its single allowed argument. */ typedef struct { ArchiveHandle *AH; int worker; int pipeRead; int pipeWrite; } WorkerInfo; #define pipewrite(a,b,c) send(a,b,c,0) #else /* * aborting is only ever used in the master, the workers are fine with just * wantAbort. */ static bool aborting = false; static volatile sig_atomic_t wantAbort = 0; #define pgpipe(a) pipe(a) #define piperead(a,b,c) read(a,b,c) #define pipewrite(a,b,c) write(a,b,c) #endif typedef struct ShutdownInformation { ParallelState *pstate; Archive *AHX; } ShutdownInformation; static ShutdownInformation shutdown_info; static const char *modulename = gettext_noop("parallel archiver"); static ParallelSlot *GetMyPSlot(ParallelState *pstate); static void archive_close_connection(int code, void *arg); static void ShutdownWorkersHard(ParallelState *pstate); static void WaitForTerminatingWorkers(ParallelState *pstate); #ifndef WIN32 static void sigTermHandler(int signum); #endif static void SetupWorker(ArchiveHandle *AH, int pipefd[2], int worker); static bool HasEveryWorkerTerminated(ParallelState *pstate); static void lockTableNoWait(ArchiveHandle *AH, TocEntry *te); static void WaitForCommands(ArchiveHandle *AH, int pipefd[2]); static char *getMessageFromMaster(int pipefd[2]); static void sendMessageToMaster(int pipefd[2], const char *str); static int select_loop(int maxFd, fd_set *workerset); static char *getMessageFromWorker(ParallelState *pstate, bool do_wait, int *worker); static void sendMessageToWorker(ParallelState *pstate, int worker, const char *str); static char *readMessageFromPipe(int fd); #define messageStartsWith(msg, prefix) \ (strncmp(msg, prefix, strlen(prefix)) == 0) #define messageEquals(msg, pattern) \ (strcmp(msg, pattern) == 0) #ifdef WIN32 static void shutdown_parallel_dump_utils(int code, void *unused); bool parallel_init_done = false; static DWORD tls_index; DWORD mainThreadId; #endif #ifdef WIN32 static void shutdown_parallel_dump_utils(int code, void *unused) { /* Call the cleanup function only from the main thread */ if (mainThreadId == GetCurrentThreadId()) WSACleanup(); } #endif void init_parallel_dump_utils(void) { #ifdef WIN32 if (!parallel_init_done) { WSADATA wsaData; int err; tls_index = TlsAlloc(); mainThreadId = GetCurrentThreadId(); err = WSAStartup(MAKEWORD(2, 2), &wsaData); if (err != 0) { fprintf(stderr, _("%s: WSAStartup failed: %d\n"), progname, err); exit_nicely(1); } on_exit_nicely(shutdown_parallel_dump_utils, NULL); parallel_init_done = true; } #endif } static ParallelSlot * GetMyPSlot(ParallelState *pstate) { int i; for (i = 0; i < pstate->numWorkers; i++) #ifdef WIN32 if (pstate->parallelSlot[i].threadId == GetCurrentThreadId()) #else if (pstate->parallelSlot[i].pid == getpid()) #endif return &(pstate->parallelSlot[i]); return NULL; } /* * A thread-local version of getLocalPQExpBuffer(). * * Non-reentrant but reduces memory leakage. (On Windows the memory leakage * will be one buffer per thread, which is at least better than one per call). */ static PQExpBuffer getThreadLocalPQExpBuffer(void) { /* * The Tls code goes awry if we use a static var, so we provide for both * static and auto, and omit any use of the static var when using Tls. */ static PQExpBuffer s_id_return = NULL; PQExpBuffer id_return; #ifdef WIN32 if (parallel_init_done) id_return = (PQExpBuffer) TlsGetValue(tls_index); /* 0 when not set */ else id_return = s_id_return; #else id_return = s_id_return; #endif if (id_return) /* first time through? */ { /* same buffer, just wipe contents */ resetPQExpBuffer(id_return); } else { /* new buffer */ id_return = createPQExpBuffer(); #ifdef WIN32 if (parallel_init_done) TlsSetValue(tls_index, id_return); else s_id_return = id_return; #else s_id_return = id_return; #endif } return id_return; } /* * pg_dump and pg_restore register the Archive pointer for the exit handler * (called from exit_nicely). This function mainly exists so that we can * keep shutdown_info in file scope only. */ void on_exit_close_archive(Archive *AHX) { shutdown_info.AHX = AHX; on_exit_nicely(archive_close_connection, &shutdown_info); } /* * on_exit_nicely handler for shutting down database connections and * worker processes cleanly. */ static void archive_close_connection(int code, void *arg) { ShutdownInformation *si = (ShutdownInformation *) arg; if (si->pstate) { /* In parallel mode, must figure out who we are */ ParallelSlot *slot = GetMyPSlot(si->pstate); if (!slot) { /* * We're the master. Close our own database connection, if any, * and then forcibly shut down workers. */ if (si->AHX) DisconnectDatabase(si->AHX); #ifndef WIN32 /* * Setting aborting to true shuts off error/warning messages that * are no longer useful once we start killing workers. */ aborting = true; #endif ShutdownWorkersHard(si->pstate); } else { /* * We're a worker. Shut down our own DB connection if any. On * Windows, we also have to close our communication sockets, to * emulate what will happen on Unix when the worker process exits. * (Without this, if this is a premature exit, the master would * fail to detect it because there would be no EOF condition on * the other end of the pipe.) */ if (slot->args->AH) DisconnectDatabase(&(slot->args->AH->public)); #ifdef WIN32 closesocket(slot->pipeRevRead); closesocket(slot->pipeRevWrite); #endif } } else { /* Non-parallel operation: just kill the master DB connection */ if (si->AHX) DisconnectDatabase(si->AHX); } } /* * If we have one worker that terminates for some reason, we'd like the other * threads to terminate as well (and not finish with their 70 GB table dump * first...). Now in UNIX we can just kill these processes, and let the signal * handler set wantAbort to 1. In Windows we set a termEvent and this serves * as the signal for everyone to terminate. We don't print any error message, * that would just clutter the screen. */ void checkAborting(ArchiveHandle *AH) { #ifdef WIN32 if (WaitForSingleObject(termEvent, 0) == WAIT_OBJECT_0) #else if (wantAbort) #endif exit_nicely(1); } /* * Shut down any remaining workers, waiting for them to finish. */ static void ShutdownWorkersHard(ParallelState *pstate) { int i; /* * Close our write end of the sockets so that any workers waiting for * commands know they can exit. */ for (i = 0; i < pstate->numWorkers; i++) closesocket(pstate->parallelSlot[i].pipeWrite); #ifndef WIN32 /* On non-Windows, send SIGTERM to abort commands-in-progress. */ for (i = 0; i < pstate->numWorkers; i++) kill(pstate->parallelSlot[i].pid, SIGTERM); #else /* Non-idle workers monitor this event via checkAborting(). */ SetEvent(termEvent); #endif WaitForTerminatingWorkers(pstate); } /* * Wait for the termination of the processes using the OS-specific method. */ static void WaitForTerminatingWorkers(ParallelState *pstate) { while (!HasEveryWorkerTerminated(pstate)) { ParallelSlot *slot = NULL; int j; #ifndef WIN32 int status; pid_t pid = wait(&status); for (j = 0; j < pstate->numWorkers; j++) if (pstate->parallelSlot[j].pid == pid) slot = &(pstate->parallelSlot[j]); #else uintptr_t hThread; DWORD ret; uintptr_t *lpHandles = pg_malloc(sizeof(HANDLE) * pstate->numWorkers); int nrun = 0; for (j = 0; j < pstate->numWorkers; j++) if (pstate->parallelSlot[j].workerStatus != WRKR_TERMINATED) { lpHandles[nrun] = pstate->parallelSlot[j].hThread; nrun++; } ret = WaitForMultipleObjects(nrun, (HANDLE *) lpHandles, false, INFINITE); Assert(ret != WAIT_FAILED); hThread = lpHandles[ret - WAIT_OBJECT_0]; for (j = 0; j < pstate->numWorkers; j++) if (pstate->parallelSlot[j].hThread == hThread) slot = &(pstate->parallelSlot[j]); free(lpHandles); #endif Assert(slot); slot->workerStatus = WRKR_TERMINATED; } Assert(HasEveryWorkerTerminated(pstate)); } #ifndef WIN32 /* Signal handling (UNIX only) */ static void sigTermHandler(int signum) { wantAbort = 1; } #endif /* * This function is called by both UNIX and Windows variants to set up * and run a worker process. Caller should exit the process (or thread) * upon return. */ static void SetupWorker(ArchiveHandle *AH, int pipefd[2], int worker) { /* * Call the setup worker function that's defined in the ArchiveHandle. */ (AH->SetupWorkerPtr) ((Archive *) AH); Assert(AH->connection != NULL); WaitForCommands(AH, pipefd); } #ifdef WIN32 static unsigned __stdcall init_spawned_worker_win32(WorkerInfo *wi) { ArchiveHandle *AH; int pipefd[2] = {wi->pipeRead, wi->pipeWrite}; int worker = wi->worker; AH = CloneArchive(wi->AH); free(wi); SetupWorker(AH, pipefd, worker); DeCloneArchive(AH); _endthreadex(0); return 0; } #endif /* * This function starts the parallel dump or restore by spawning off the * worker processes in both Unix and Windows. For Windows, it creates a number * of threads while it does a fork() on Unix. */ ParallelState * ParallelBackupStart(ArchiveHandle *AH) { ParallelState *pstate; int i; const size_t slotSize = AH->public.numWorkers * sizeof(ParallelSlot); Assert(AH->public.numWorkers > 0); /* Ensure stdio state is quiesced before forking */ fflush(NULL); pstate = (ParallelState *) pg_malloc(sizeof(ParallelState)); pstate->numWorkers = AH->public.numWorkers; pstate->parallelSlot = NULL; if (AH->public.numWorkers == 1) return pstate; pstate->parallelSlot = (ParallelSlot *) pg_malloc(slotSize); memset((void *) pstate->parallelSlot, 0, slotSize); /* * Set the pstate in the shutdown_info. The exit handler uses pstate if * set and falls back to AHX otherwise. */ shutdown_info.pstate = pstate; getLocalPQExpBuffer = getThreadLocalPQExpBuffer; #ifdef WIN32 tMasterThreadId = GetCurrentThreadId(); termEvent = CreateEvent(NULL, true, false, "Terminate"); #else signal(SIGTERM, sigTermHandler); signal(SIGINT, sigTermHandler); signal(SIGQUIT, sigTermHandler); #endif for (i = 0; i < pstate->numWorkers; i++) { #ifdef WIN32 WorkerInfo *wi; uintptr_t handle; #else pid_t pid; #endif int pipeMW[2], pipeWM[2]; if (pgpipe(pipeMW) < 0 || pgpipe(pipeWM) < 0) exit_horribly(modulename, "could not create communication channels: %s\n", strerror(errno)); pstate->parallelSlot[i].workerStatus = WRKR_IDLE; pstate->parallelSlot[i].args = (ParallelArgs *) pg_malloc(sizeof(ParallelArgs)); pstate->parallelSlot[i].args->AH = NULL; pstate->parallelSlot[i].args->te = NULL; /* master's ends of the pipes */ pstate->parallelSlot[i].pipeRead = pipeWM[PIPE_READ]; pstate->parallelSlot[i].pipeWrite = pipeMW[PIPE_WRITE]; /* child's ends of the pipes */ pstate->parallelSlot[i].pipeRevRead = pipeMW[PIPE_READ]; pstate->parallelSlot[i].pipeRevWrite = pipeWM[PIPE_WRITE]; #ifdef WIN32 /* Allocate a new structure for every worker */ wi = (WorkerInfo *) pg_malloc(sizeof(WorkerInfo)); wi->worker = i; wi->AH = AH; wi->pipeRead = pipeMW[PIPE_READ]; wi->pipeWrite = pipeWM[PIPE_WRITE]; handle = _beginthreadex(NULL, 0, (void *) &init_spawned_worker_win32, wi, 0, &(pstate->parallelSlot[i].threadId)); pstate->parallelSlot[i].hThread = handle; #else pid = fork(); if (pid == 0) { /* we are the worker */ int j; int pipefd[2]; pipefd[0] = pipeMW[PIPE_READ]; pipefd[1] = pipeWM[PIPE_WRITE]; pstate->parallelSlot[i].pid = getpid(); /* * Call CloneArchive on Unix as well even though technically we * don't need to because fork() gives us a copy in our own address * space already. But CloneArchive resets the state information * and also clones the database connection (for parallel dump) * which both seem kinda helpful. */ pstate->parallelSlot[i].args->AH = CloneArchive(AH); /* close read end of Worker -> Master */ closesocket(pipeWM[PIPE_READ]); /* close write end of Master -> Worker */ closesocket(pipeMW[PIPE_WRITE]); /* * Close all inherited fds for communication of the master with * previously-forked workers. */ for (j = 0; j < i; j++) { closesocket(pstate->parallelSlot[j].pipeRead); closesocket(pstate->parallelSlot[j].pipeWrite); } SetupWorker(pstate->parallelSlot[i].args->AH, pipefd, i); exit(0); } else if (pid < 0) /* fork failed */ exit_horribly(modulename, "could not create worker process: %s\n", strerror(errno)); /* we are the Master, pid > 0 here */ Assert(pid > 0); /* close read end of Master -> Worker */ closesocket(pipeMW[PIPE_READ]); /* close write end of Worker -> Master */ closesocket(pipeWM[PIPE_WRITE]); pstate->parallelSlot[i].pid = pid; #endif } /* * Having forked off the workers, disable SIGPIPE so that master isn't * killed if it tries to send a command to a dead worker. */ #ifndef WIN32 signal(SIGPIPE, SIG_IGN); #endif return pstate; } /* * Tell all of our workers to terminate. * * Pretty straightforward routine, first we tell everyone to terminate, then * we listen to the workers' replies and finally close the sockets that we * have used for communication. */ void ParallelBackupEnd(ArchiveHandle *AH, ParallelState *pstate) { int i; if (pstate->numWorkers == 1) return; Assert(IsEveryWorkerIdle(pstate)); /* close the sockets so that the workers know they can exit */ for (i = 0; i < pstate->numWorkers; i++) { closesocket(pstate->parallelSlot[i].pipeRead); closesocket(pstate->parallelSlot[i].pipeWrite); } WaitForTerminatingWorkers(pstate); /* * Remove the pstate again, so the exit handler in the parent will now * again fall back to closing AH->connection (if connected). */ shutdown_info.pstate = NULL; free(pstate->parallelSlot); free(pstate); } /* * The sequence is the following (for dump, similar for restore): * * The master process starts the parallel backup in ParllelBackupStart, this * forks the worker processes which enter WaitForCommand(). * * The master process dispatches an individual work item to one of the worker * processes in DispatchJobForTocEntry(). It calls * AH->MasterStartParallelItemPtr, a routine of the output format. This * function's arguments are the parents archive handle AH (containing the full * catalog information), the TocEntry that the worker should work on and a * T_Action act indicating whether this is a backup or a restore item. The * function then converts the TocEntry assignment into a string that is then * sent over to the worker process. In the simplest case that would be * something like "DUMP 1234", with 1234 being the TocEntry id. * * The worker receives the message in the routine pointed to by * WorkerJobDumpPtr or WorkerJobRestorePtr. These are also pointers to * corresponding routines of the respective output format, e.g. * _WorkerJobDumpDirectory(). * * Remember that we have forked off the workers only after we have read in the * catalog. That's why our worker processes can also access the catalog * information. Now they re-translate the textual representation to a TocEntry * on their side and do the required action (restore or dump). * * The result is again a textual string that is sent back to the master and is * interpreted by AH->MasterEndParallelItemPtr. This function can update state * or catalog information on the master's side, depending on the reply from * the worker process. In the end it returns status which is 0 for successful * execution. * * --------------------------------------------------------------------- * Master Worker * * enters WaitForCommands() * DispatchJobForTocEntry(...te...) * * [ Worker is IDLE ] * * arg = (MasterStartParallelItemPtr)() * send: DUMP arg * receive: DUMP arg * str = (WorkerJobDumpPtr)(arg) * [ Worker is WORKING ] ... gets te from arg ... * ... dump te ... * send: OK DUMP info * * In ListenToWorkers(): * * [ Worker is FINISHED ] * receive: OK DUMP info * status = (MasterEndParallelItemPtr)(info) * * In ReapWorkerStatus(&ptr): * *ptr = status; * [ Worker is IDLE ] * --------------------------------------------------------------------- */ void DispatchJobForTocEntry(ArchiveHandle *AH, ParallelState *pstate, TocEntry *te, T_Action act) { int worker; char *arg; /* our caller makes sure that at least one worker is idle */ Assert(GetIdleWorker(pstate) != NO_SLOT); worker = GetIdleWorker(pstate); Assert(worker != NO_SLOT); arg = (AH->MasterStartParallelItemPtr) (AH, te, act); sendMessageToWorker(pstate, worker, arg); pstate->parallelSlot[worker].workerStatus = WRKR_WORKING; pstate->parallelSlot[worker].args->te = te; } /* * Find the first free parallel slot (if any). */ int GetIdleWorker(ParallelState *pstate) { int i; for (i = 0; i < pstate->numWorkers; i++) if (pstate->parallelSlot[i].workerStatus == WRKR_IDLE) return i; return NO_SLOT; } /* * Return true iff every worker process is in the WRKR_TERMINATED state. */ static bool HasEveryWorkerTerminated(ParallelState *pstate) { int i; for (i = 0; i < pstate->numWorkers; i++) if (pstate->parallelSlot[i].workerStatus != WRKR_TERMINATED) return false; return true; } /* * Return true iff every worker is in the WRKR_IDLE state. */ bool IsEveryWorkerIdle(ParallelState *pstate) { int i; for (i = 0; i < pstate->numWorkers; i++) if (pstate->parallelSlot[i].workerStatus != WRKR_IDLE) return false; return true; } /* * --------------------------------------------------------------------- * One danger of the parallel backup is a possible deadlock: * * 1) Master dumps the schema and locks all tables in ACCESS SHARE mode. * 2) Another process requests an ACCESS EXCLUSIVE lock (which is not granted * because the master holds a conflicting ACCESS SHARE lock). * 3) The worker process also requests an ACCESS SHARE lock to read the table. * The worker's not granted that lock but is enqueued behind the ACCESS * EXCLUSIVE lock request. * --------------------------------------------------------------------- * * Now what we do here is to just request a lock in ACCESS SHARE but with * NOWAIT in the worker prior to touching the table. If we don't get the lock, * then we know that somebody else has requested an ACCESS EXCLUSIVE lock and * are good to just fail the whole backup because we have detected a deadlock. */ static void lockTableNoWait(ArchiveHandle *AH, TocEntry *te) { Archive *AHX = (Archive *) AH; const char *qualId; PQExpBuffer query = createPQExpBuffer(); PGresult *res; Assert(AH->format == archDirectory); Assert(strcmp(te->desc, "BLOBS") != 0); appendPQExpBuffer(query, "SELECT pg_namespace.nspname," " pg_class.relname " " FROM pg_class " " JOIN pg_namespace on pg_namespace.oid = relnamespace " " WHERE pg_class.oid = %u", te->catalogId.oid); res = PQexec(AH->connection, query->data); if (!res || PQresultStatus(res) != PGRES_TUPLES_OK) exit_horribly(modulename, "could not get relation name for OID %u: %s\n", te->catalogId.oid, PQerrorMessage(AH->connection)); resetPQExpBuffer(query); qualId = fmtQualifiedId(AHX->remoteVersion, PQgetvalue(res, 0, 0), PQgetvalue(res, 0, 1)); appendPQExpBuffer(query, "LOCK TABLE %s IN ACCESS SHARE MODE NOWAIT", qualId); PQclear(res); res = PQexec(AH->connection, query->data); if (!res || PQresultStatus(res) != PGRES_COMMAND_OK) exit_horribly(modulename, "could not obtain lock on relation \"%s\"\n" "This usually means that someone requested an ACCESS EXCLUSIVE lock " "on the table after the pg_dump parent process had gotten the " "initial ACCESS SHARE lock on the table.\n", qualId); PQclear(res); destroyPQExpBuffer(query); } /* * That's the main routine for the worker. * When it starts up it enters this routine and waits for commands from the * master process. After having processed a command it comes back to here to * wait for the next command. Finally it will receive a TERMINATE command and * exit. */ static void WaitForCommands(ArchiveHandle *AH, int pipefd[2]) { char *command; DumpId dumpId; int nBytes; char *str = NULL; TocEntry *te; for (;;) { if (!(command = getMessageFromMaster(pipefd))) { PQfinish(AH->connection); AH->connection = NULL; return; } if (messageStartsWith(command, "DUMP ")) { Assert(AH->format == archDirectory); sscanf(command + strlen("DUMP "), "%d%n", &dumpId, &nBytes); Assert(nBytes == strlen(command) - strlen("DUMP ")); te = getTocEntryByDumpId(AH, dumpId); Assert(te != NULL); /* * Lock the table but with NOWAIT. Note that the parent is already * holding a lock. If we cannot acquire another ACCESS SHARE MODE * lock, then somebody else has requested an exclusive lock in the * meantime. lockTableNoWait dies in this case to prevent a * deadlock. */ if (strcmp(te->desc, "BLOBS") != 0) lockTableNoWait(AH, te); /* * The message we return here has been pg_malloc()ed and we are * responsible for free()ing it. */ str = (AH->WorkerJobDumpPtr) (AH, te); Assert(AH->connection != NULL); sendMessageToMaster(pipefd, str); free(str); } else if (messageStartsWith(command, "RESTORE ")) { Assert(AH->format == archDirectory || AH->format == archCustom); Assert(AH->connection != NULL); sscanf(command + strlen("RESTORE "), "%d%n", &dumpId, &nBytes); Assert(nBytes == strlen(command) - strlen("RESTORE ")); te = getTocEntryByDumpId(AH, dumpId); Assert(te != NULL); /* * The message we return here has been pg_malloc()ed and we are * responsible for free()ing it. */ str = (AH->WorkerJobRestorePtr) (AH, te); Assert(AH->connection != NULL); sendMessageToMaster(pipefd, str); free(str); } else exit_horribly(modulename, "unrecognized command on communication channel: %s\n", command); /* command was pg_malloc'd and we are responsible for free()ing it. */ free(command); } } /* * --------------------------------------------------------------------- * Note the status change: * * DispatchJobForTocEntry WRKR_IDLE -> WRKR_WORKING * ListenToWorkers WRKR_WORKING -> WRKR_FINISHED / WRKR_TERMINATED * ReapWorkerStatus WRKR_FINISHED -> WRKR_IDLE * --------------------------------------------------------------------- * * Just calling ReapWorkerStatus() when all workers are working might or might * not give you an idle worker because you need to call ListenToWorkers() in * between and only thereafter ReapWorkerStatus(). This is necessary in order * to get and deal with the status (=result) of the worker's execution. */ void ListenToWorkers(ArchiveHandle *AH, ParallelState *pstate, bool do_wait) { int worker; char *msg; msg = getMessageFromWorker(pstate, do_wait, &worker); if (!msg) { if (do_wait) exit_horribly(modulename, "a worker process died unexpectedly\n"); return; } if (messageStartsWith(msg, "OK ")) { char *statusString; TocEntry *te; pstate->parallelSlot[worker].workerStatus = WRKR_FINISHED; te = pstate->parallelSlot[worker].args->te; if (messageStartsWith(msg, "OK RESTORE ")) { statusString = msg + strlen("OK RESTORE "); pstate->parallelSlot[worker].status = (AH->MasterEndParallelItemPtr) (AH, te, statusString, ACT_RESTORE); } else if (messageStartsWith(msg, "OK DUMP ")) { statusString = msg + strlen("OK DUMP "); pstate->parallelSlot[worker].status = (AH->MasterEndParallelItemPtr) (AH, te, statusString, ACT_DUMP); } else exit_horribly(modulename, "invalid message received from worker: \"%s\"\n", msg); } else exit_horribly(modulename, "invalid message received from worker: \"%s\"\n", msg); /* both Unix and Win32 return pg_malloc()ed space, so we free it */ free(msg); } /* * This function is executed in the master process. * * This function is used to get the return value of a terminated worker * process. If a process has terminated, its status is stored in *status and * the id of the worker is returned. */ int ReapWorkerStatus(ParallelState *pstate, int *status) { int i; for (i = 0; i < pstate->numWorkers; i++) { if (pstate->parallelSlot[i].workerStatus == WRKR_FINISHED) { *status = pstate->parallelSlot[i].status; pstate->parallelSlot[i].status = 0; pstate->parallelSlot[i].workerStatus = WRKR_IDLE; return i; } } return NO_SLOT; } /* * This function is executed in the master process. * * It looks for an idle worker process and only returns if there is one. */ void EnsureIdleWorker(ArchiveHandle *AH, ParallelState *pstate) { int ret_worker; int work_status; for (;;) { int nTerm = 0; while ((ret_worker = ReapWorkerStatus(pstate, &work_status)) != NO_SLOT) { if (work_status != 0) exit_horribly(modulename, "error processing a parallel work item\n"); nTerm++; } /* * We need to make sure that we have an idle worker before dispatching * the next item. If nTerm > 0 we already have that (quick check). */ if (nTerm > 0) return; /* explicit check for an idle worker */ if (GetIdleWorker(pstate) != NO_SLOT) return; /* * If we have no idle worker, read the result of one or more workers * and loop the loop to call ReapWorkerStatus() on them */ ListenToWorkers(AH, pstate, true); } } /* * This function is executed in the master process. * * It waits for all workers to terminate. */ void EnsureWorkersFinished(ArchiveHandle *AH, ParallelState *pstate) { int work_status; if (!pstate || pstate->numWorkers == 1) return; /* Waiting for the remaining worker processes to finish */ while (!IsEveryWorkerIdle(pstate)) { if (ReapWorkerStatus(pstate, &work_status) == NO_SLOT) ListenToWorkers(AH, pstate, true); else if (work_status != 0) exit_horribly(modulename, "error processing a parallel work item\n"); } } /* * This function is executed in the worker process. * * It returns the next message on the communication channel, blocking until it * becomes available. */ static char * getMessageFromMaster(int pipefd[2]) { return readMessageFromPipe(pipefd[PIPE_READ]); } /* * This function is executed in the worker process. * * It sends a message to the master on the communication channel. */ static void sendMessageToMaster(int pipefd[2], const char *str) { int len = strlen(str) + 1; if (pipewrite(pipefd[PIPE_WRITE], str, len) != len) exit_horribly(modulename, "could not write to the communication channel: %s\n", strerror(errno)); } /* * A select loop that repeats calling select until a descriptor in the read * set becomes readable. On Windows we have to check for the termination event * from time to time, on Unix we can just block forever. */ static int select_loop(int maxFd, fd_set *workerset) { int i; fd_set saveSet = *workerset; #ifdef WIN32 /* should always be the master */ Assert(tMasterThreadId == GetCurrentThreadId()); for (;;) { /* * sleep a quarter of a second before checking if we should terminate. */ struct timeval tv = {0, 250000}; *workerset = saveSet; i = select(maxFd + 1, workerset, NULL, NULL, &tv); if (i == SOCKET_ERROR && WSAGetLastError() == WSAEINTR) continue; if (i) break; } #else /* UNIX */ for (;;) { *workerset = saveSet; i = select(maxFd + 1, workerset, NULL, NULL, NULL); /* * If we Ctrl-C the master process, it's likely that we interrupt * select() here. The signal handler will set wantAbort == true and * the shutdown journey starts from here. Note that we'll come back * here later when we tell all workers to terminate and read their * responses. But then we have aborting set to true. */ if (wantAbort && !aborting) exit_horribly(modulename, "terminated by user\n"); if (i < 0 && errno == EINTR) continue; break; } #endif return i; } /* * This function is executed in the master process. * * It returns the next message from the worker on the communication channel, * optionally blocking (do_wait) until it becomes available. * * The id of the worker is returned in *worker. */ static char * getMessageFromWorker(ParallelState *pstate, bool do_wait, int *worker) { int i; fd_set workerset; int maxFd = -1; struct timeval nowait = {0, 0}; FD_ZERO(&workerset); for (i = 0; i < pstate->numWorkers; i++) { if (pstate->parallelSlot[i].workerStatus == WRKR_TERMINATED) continue; FD_SET(pstate->parallelSlot[i].pipeRead, &workerset); /* actually WIN32 ignores the first parameter to select()... */ if (pstate->parallelSlot[i].pipeRead > maxFd) maxFd = pstate->parallelSlot[i].pipeRead; } if (do_wait) { i = select_loop(maxFd, &workerset); Assert(i != 0); } else { if ((i = select(maxFd + 1, &workerset, NULL, NULL, &nowait)) == 0) return NULL; } if (i < 0) exit_horribly(modulename, "error in ListenToWorkers(): %s\n", strerror(errno)); for (i = 0; i < pstate->numWorkers; i++) { char *msg; if (!FD_ISSET(pstate->parallelSlot[i].pipeRead, &workerset)) continue; msg = readMessageFromPipe(pstate->parallelSlot[i].pipeRead); *worker = i; return msg; } Assert(false); return NULL; } /* * This function is executed in the master process. * * It sends a message to a certain worker on the communication channel. */ static void sendMessageToWorker(ParallelState *pstate, int worker, const char *str) { int len = strlen(str) + 1; if (pipewrite(pstate->parallelSlot[worker].pipeWrite, str, len) != len) { /* * If we're already aborting anyway, don't care if we succeed or not. * The child might have gone already. */ #ifndef WIN32 if (!aborting) #endif exit_horribly(modulename, "could not write to the communication channel: %s\n", strerror(errno)); } } /* * The underlying function to read a message from the communication channel * (fd) with optional blocking (do_wait). */ static char * readMessageFromPipe(int fd) { char *msg; int msgsize, bufsize; int ret; /* * The problem here is that we need to deal with several possibilities: we * could receive only a partial message or several messages at once. The * caller expects us to return exactly one message however. * * We could either read in as much as we can and keep track of what we * delivered back to the caller or we just read byte by byte. Once we see * (char) 0, we know that it's the message's end. This would be quite * inefficient for more data but since we are reading only on the command * channel, the performance loss does not seem worth the trouble of * keeping internal states for different file descriptors. */ bufsize = 64; /* could be any number */ msg = (char *) pg_malloc(bufsize); msgsize = 0; for (;;) { Assert(msgsize <= bufsize); ret = piperead(fd, msg + msgsize, 1); /* worker has closed the connection or another error happened */ if (ret <= 0) break; Assert(ret == 1); if (msg[msgsize] == '\0') return msg; msgsize++; if (msgsize == bufsize) { /* could be any number */ bufsize += 16; msg = (char *) pg_realloc(msg, bufsize); } } /* * Worker has closed the connection, make sure to clean up before return * since we are not returning msg (but did allocate it). */ pg_free(msg); return NULL; } #ifdef WIN32 /* * This is a replacement version of pipe for Win32 which allows returned * handles to be used in select(). Note that read/write calls must be replaced * with recv/send. "handles" have to be integers so we check for errors then * cast to integers. */ static int pgpipe(int handles[2]) { pgsocket s, tmp_sock; struct sockaddr_in serv_addr; int len = sizeof(serv_addr); /* We have to use the Unix socket invalid file descriptor value here. */ handles[0] = handles[1] = -1; /* * setup listen socket */ if ((s = socket(AF_INET, SOCK_STREAM, 0)) == PGINVALID_SOCKET) { write_msg(modulename, "pgpipe: could not create socket: error code %d\n", WSAGetLastError()); return -1; } memset((void *) &serv_addr, 0, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; serv_addr.sin_port = htons(0); serv_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); if (bind(s, (SOCKADDR *) &serv_addr, len) == SOCKET_ERROR) { write_msg(modulename, "pgpipe: could not bind: error code %d\n", WSAGetLastError()); closesocket(s); return -1; } if (listen(s, 1) == SOCKET_ERROR) { write_msg(modulename, "pgpipe: could not listen: error code %d\n", WSAGetLastError()); closesocket(s); return -1; } if (getsockname(s, (SOCKADDR *) &serv_addr, &len) == SOCKET_ERROR) { write_msg(modulename, "pgpipe: getsockname() failed: error code %d\n", WSAGetLastError()); closesocket(s); return -1; } /* * setup pipe handles */ if ((tmp_sock = socket(AF_INET, SOCK_STREAM, 0)) == PGINVALID_SOCKET) { write_msg(modulename, "pgpipe: could not create second socket: error code %d\n", WSAGetLastError()); closesocket(s); return -1; } handles[1] = (int) tmp_sock; if (connect(handles[1], (SOCKADDR *) &serv_addr, len) == SOCKET_ERROR) { write_msg(modulename, "pgpipe: could not connect socket: error code %d\n", WSAGetLastError()); closesocket(s); return -1; } if ((tmp_sock = accept(s, (SOCKADDR *) &serv_addr, &len)) == PGINVALID_SOCKET) { write_msg(modulename, "pgpipe: could not accept connection: error code %d\n", WSAGetLastError()); closesocket(handles[1]); handles[1] = -1; closesocket(s); return -1; } handles[0] = (int) tmp_sock; closesocket(s); return 0; } static int piperead(int s, char *buf, int len) { int ret = recv(s, buf, len, 0); if (ret < 0 && WSAGetLastError() == WSAECONNRESET) /* EOF on the pipe! (win32 socket based implementation) */ ret = 0; return ret; } #endif