/*------------------------------------------------------------------------- * * analyze.c * transform the parse tree into a query tree * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * $PostgreSQL: pgsql/src/backend/parser/analyze.c,v 1.320 2005/04/14 20:03:24 tgl Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/heapam.h" #include "catalog/heap.h" #include "catalog/index.h" #include "catalog/namespace.h" #include "catalog/pg_index.h" #include "catalog/pg_type.h" #include "commands/defrem.h" #include "commands/prepare.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "optimizer/clauses.h" #include "optimizer/var.h" #include "parser/analyze.h" #include "parser/gramparse.h" #include "parser/parsetree.h" #include "parser/parse_agg.h" #include "parser/parse_clause.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_oper.h" #include "parser/parse_relation.h" #include "parser/parse_target.h" #include "parser/parse_type.h" #include "parser/parse_expr.h" #include "rewrite/rewriteManip.h" #include "utils/acl.h" #include "utils/builtins.h" #include "utils/fmgroids.h" #include "utils/guc.h" #include "utils/lsyscache.h" #include "utils/relcache.h" #include "utils/syscache.h" /* State shared by transformCreateSchemaStmt and its subroutines */ typedef struct { const char *stmtType; /* "CREATE SCHEMA" or "ALTER SCHEMA" */ char *schemaname; /* name of schema */ char *authid; /* owner of schema */ List *sequences; /* CREATE SEQUENCE items */ List *tables; /* CREATE TABLE items */ List *views; /* CREATE VIEW items */ List *indexes; /* CREATE INDEX items */ List *triggers; /* CREATE TRIGGER items */ List *grants; /* GRANT items */ List *fwconstraints; /* Forward referencing FOREIGN KEY * constraints */ List *alters; /* Generated ALTER items (from the above) */ List *ixconstraints; /* index-creating constraints */ List *blist; /* "before list" of things to do before * creating the schema */ List *alist; /* "after list" of things to do after * creating the schema */ } CreateSchemaStmtContext; /* State shared by transformCreateStmt and its subroutines */ typedef struct { const char *stmtType; /* "CREATE TABLE" or "ALTER TABLE" */ RangeVar *relation; /* relation to create */ List *inhRelations; /* relations to inherit from */ bool hasoids; /* does relation have an OID column? */ bool isalter; /* true if altering existing table */ List *columns; /* ColumnDef items */ List *ckconstraints; /* CHECK constraints */ List *fkconstraints; /* FOREIGN KEY constraints */ List *ixconstraints; /* index-creating constraints */ List *blist; /* "before list" of things to do before * creating the table */ List *alist; /* "after list" of things to do after * creating the table */ IndexStmt *pkey; /* PRIMARY KEY index, if any */ } CreateStmtContext; typedef struct { Oid *paramTypes; int numParams; } check_parameter_resolution_context; static List *do_parse_analyze(Node *parseTree, ParseState *pstate); static Query *transformStmt(ParseState *pstate, Node *stmt, List **extras_before, List **extras_after); static Query *transformViewStmt(ParseState *pstate, ViewStmt *stmt, List **extras_before, List **extras_after); static Query *transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt); static Query *transformInsertStmt(ParseState *pstate, InsertStmt *stmt, List **extras_before, List **extras_after); static Query *transformIndexStmt(ParseState *pstate, IndexStmt *stmt); static Query *transformRuleStmt(ParseState *query, RuleStmt *stmt, List **extras_before, List **extras_after); static Query *transformSelectStmt(ParseState *pstate, SelectStmt *stmt); static Query *transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt); static Node *transformSetOperationTree(ParseState *pstate, SelectStmt *stmt); static Query *transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt); static Query *transformDeclareCursorStmt(ParseState *pstate, DeclareCursorStmt *stmt); static Query *transformPrepareStmt(ParseState *pstate, PrepareStmt *stmt); static Query *transformExecuteStmt(ParseState *pstate, ExecuteStmt *stmt); static Query *transformCreateStmt(ParseState *pstate, CreateStmt *stmt, List **extras_before, List **extras_after); static Query *transformAlterTableStmt(ParseState *pstate, AlterTableStmt *stmt, List **extras_before, List **extras_after); static void transformColumnDefinition(ParseState *pstate, CreateStmtContext *cxt, ColumnDef *column); static void transformTableConstraint(ParseState *pstate, CreateStmtContext *cxt, Constraint *constraint); static void transformInhRelation(ParseState *pstate, CreateStmtContext *cxt, InhRelation *inhrelation); static void transformIndexConstraints(ParseState *pstate, CreateStmtContext *cxt); static void transformFKConstraints(ParseState *pstate, CreateStmtContext *cxt, bool skipValidation, bool isAddConstraint); static void applyColumnNames(List *dst, List *src); static List *getSetColTypes(ParseState *pstate, Node *node); static void transformForUpdate(Query *qry, List *forUpdate); static void transformConstraintAttrs(List *constraintList); static void transformColumnType(ParseState *pstate, ColumnDef *column); static void release_pstate_resources(ParseState *pstate); static FromExpr *makeFromExpr(List *fromlist, Node *quals); static bool check_parameter_resolution_walker(Node *node, check_parameter_resolution_context *context); /* * parse_analyze * Analyze a raw parse tree and transform it to Query form. * * Optionally, information about $n parameter types can be supplied. * References to $n indexes not defined by paramTypes[] are disallowed. * * The result is a List of Query nodes (we need a list since some commands * produce multiple Queries). Optimizable statements require considerable * transformation, while many utility-type statements are simply hung off * a dummy CMD_UTILITY Query node. */ List * parse_analyze(Node *parseTree, Oid *paramTypes, int numParams) { ParseState *pstate = make_parsestate(NULL); List *result; pstate->p_paramtypes = paramTypes; pstate->p_numparams = numParams; pstate->p_variableparams = false; result = do_parse_analyze(parseTree, pstate); pfree(pstate); return result; } /* * parse_analyze_varparams * * This variant is used when it's okay to deduce information about $n * symbol datatypes from context. The passed-in paramTypes[] array can * be modified or enlarged (via repalloc). */ List * parse_analyze_varparams(Node *parseTree, Oid **paramTypes, int *numParams) { ParseState *pstate = make_parsestate(NULL); List *result; pstate->p_paramtypes = *paramTypes; pstate->p_numparams = *numParams; pstate->p_variableparams = true; result = do_parse_analyze(parseTree, pstate); *paramTypes = pstate->p_paramtypes; *numParams = pstate->p_numparams; pfree(pstate); /* make sure all is well with parameter types */ if (*numParams > 0) { check_parameter_resolution_context context; context.paramTypes = *paramTypes; context.numParams = *numParams; check_parameter_resolution_walker((Node *) result, &context); } return result; } /* * parse_sub_analyze * Entry point for recursively analyzing a sub-statement. */ List * parse_sub_analyze(Node *parseTree, ParseState *parentParseState) { ParseState *pstate = make_parsestate(parentParseState); List *result; result = do_parse_analyze(parseTree, pstate); pfree(pstate); return result; } /* * do_parse_analyze * Workhorse code shared by the above variants of parse_analyze. */ static List * do_parse_analyze(Node *parseTree, ParseState *pstate) { List *result = NIL; /* Lists to return extra commands from transformation */ List *extras_before = NIL; List *extras_after = NIL; Query *query; ListCell *l; query = transformStmt(pstate, parseTree, &extras_before, &extras_after); /* don't need to access result relation any more */ release_pstate_resources(pstate); foreach(l, extras_before) result = list_concat(result, parse_sub_analyze(lfirst(l), pstate)); result = lappend(result, query); foreach(l, extras_after) result = list_concat(result, parse_sub_analyze(lfirst(l), pstate)); /* * Make sure that only the original query is marked original. We have * to do this explicitly since recursive calls of do_parse_analyze * will have marked some of the added-on queries as "original". Also * mark only the original query as allowed to set the command-result * tag. */ foreach(l, result) { Query *q = lfirst(l); if (q == query) { q->querySource = QSRC_ORIGINAL; q->canSetTag = true; } else { q->querySource = QSRC_PARSER; q->canSetTag = false; } } return result; } static void release_pstate_resources(ParseState *pstate) { if (pstate->p_target_relation != NULL) heap_close(pstate->p_target_relation, NoLock); pstate->p_target_relation = NULL; pstate->p_target_rangetblentry = NULL; } /* * transformStmt - * transform a Parse tree into a Query tree. */ static Query * transformStmt(ParseState *pstate, Node *parseTree, List **extras_before, List **extras_after) { Query *result = NULL; switch (nodeTag(parseTree)) { /* * Non-optimizable statements */ case T_CreateStmt: result = transformCreateStmt(pstate, (CreateStmt *) parseTree, extras_before, extras_after); break; case T_IndexStmt: result = transformIndexStmt(pstate, (IndexStmt *) parseTree); break; case T_RuleStmt: result = transformRuleStmt(pstate, (RuleStmt *) parseTree, extras_before, extras_after); break; case T_ViewStmt: result = transformViewStmt(pstate, (ViewStmt *) parseTree, extras_before, extras_after); break; case T_ExplainStmt: { ExplainStmt *n = (ExplainStmt *) parseTree; result = makeNode(Query); result->commandType = CMD_UTILITY; n->query = transformStmt(pstate, (Node *) n->query, extras_before, extras_after); result->utilityStmt = (Node *) parseTree; } break; case T_AlterTableStmt: result = transformAlterTableStmt(pstate, (AlterTableStmt *) parseTree, extras_before, extras_after); break; case T_PrepareStmt: result = transformPrepareStmt(pstate, (PrepareStmt *) parseTree); break; case T_ExecuteStmt: result = transformExecuteStmt(pstate, (ExecuteStmt *) parseTree); break; /* * Optimizable statements */ case T_InsertStmt: result = transformInsertStmt(pstate, (InsertStmt *) parseTree, extras_before, extras_after); break; case T_DeleteStmt: result = transformDeleteStmt(pstate, (DeleteStmt *) parseTree); break; case T_UpdateStmt: result = transformUpdateStmt(pstate, (UpdateStmt *) parseTree); break; case T_SelectStmt: if (((SelectStmt *) parseTree)->op == SETOP_NONE) result = transformSelectStmt(pstate, (SelectStmt *) parseTree); else result = transformSetOperationStmt(pstate, (SelectStmt *) parseTree); break; case T_DeclareCursorStmt: result = transformDeclareCursorStmt(pstate, (DeclareCursorStmt *) parseTree); break; default: /* * other statements don't require any transformation-- just * return the original parsetree, yea! */ result = makeNode(Query); result->commandType = CMD_UTILITY; result->utilityStmt = (Node *) parseTree; break; } /* Mark as original query until we learn differently */ result->querySource = QSRC_ORIGINAL; result->canSetTag = true; /* * Check that we did not produce too many resnos; at the very * least we cannot allow more than 2^16, since that would exceed * the range of a AttrNumber. It seems safest to use * MaxTupleAttributeNumber. */ if (pstate->p_next_resno - 1 > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("target lists can have at most %d entries", MaxTupleAttributeNumber))); return result; } static Query * transformViewStmt(ParseState *pstate, ViewStmt *stmt, List **extras_before, List **extras_after) { Query *result = makeNode(Query); result->commandType = CMD_UTILITY; result->utilityStmt = (Node *) stmt; stmt->query = transformStmt(pstate, (Node *) stmt->query, extras_before, extras_after); /* * If a list of column names was given, run through and insert these * into the actual query tree. - thomas 2000-03-08 * * Outer loop is over targetlist to make it easier to skip junk * targetlist entries. */ if (stmt->aliases != NIL) { ListCell *alist_item = list_head(stmt->aliases); ListCell *targetList; foreach(targetList, stmt->query->targetList) { TargetEntry *te = (TargetEntry *) lfirst(targetList); Assert(IsA(te, TargetEntry)); /* junk columns don't get aliases */ if (te->resjunk) continue; te->resname = pstrdup(strVal(lfirst(alist_item))); alist_item = lnext(alist_item); if (alist_item == NULL) break; /* done assigning aliases */ } if (alist_item != NULL) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("CREATE VIEW specifies more column " "names than columns"))); } return result; } /* * transformDeleteStmt - * transforms a Delete Statement */ static Query * transformDeleteStmt(ParseState *pstate, DeleteStmt *stmt) { Query *qry = makeNode(Query); Node *qual; qry->commandType = CMD_DELETE; /* set up range table with just the result rel */ qry->resultRelation = setTargetTable(pstate, stmt->relation, interpretInhOption(stmt->relation->inhOpt), true, ACL_DELETE); qry->distinctClause = NIL; /* * The USING clause is non-standard SQL syntax, and is equivalent * in functionality to the FROM list that can be specified for * UPDATE. The USING keyword is used rather than FROM because FROM * is already a keyword in the DELETE syntax. */ transformFromClause(pstate, stmt->usingClause); /* fix where clause */ qual = transformWhereClause(pstate, stmt->whereClause, "WHERE"); /* done building the range table and jointree */ qry->rtable = pstate->p_rtable; qry->jointree = makeFromExpr(pstate->p_joinlist, qual); qry->hasSubLinks = pstate->p_hasSubLinks; qry->hasAggs = pstate->p_hasAggs; if (pstate->p_hasAggs) parseCheckAggregates(pstate, qry); return qry; } /* * transformInsertStmt - * transform an Insert Statement */ static Query * transformInsertStmt(ParseState *pstate, InsertStmt *stmt, List **extras_before, List **extras_after) { Query *qry = makeNode(Query); Query *selectQuery = NULL; List *sub_rtable; List *sub_namespace; List *icolumns; List *attrnos; ListCell *icols; ListCell *attnos; ListCell *tl; qry->commandType = CMD_INSERT; pstate->p_is_insert = true; /* * If a non-nil rangetable/namespace was passed in, and we are doing * INSERT/SELECT, arrange to pass the rangetable/namespace down to the * SELECT. This can only happen if we are inside a CREATE RULE, and * in that case we want the rule's OLD and NEW rtable entries to * appear as part of the SELECT's rtable, not as outer references for * it. (Kluge!) The SELECT's joinlist is not affected however. We * must do this before adding the target table to the INSERT's rtable. */ if (stmt->selectStmt) { sub_rtable = pstate->p_rtable; pstate->p_rtable = NIL; sub_namespace = pstate->p_namespace; pstate->p_namespace = NIL; } else { sub_rtable = NIL; /* not used, but keep compiler quiet */ sub_namespace = NIL; } /* * Must get write lock on INSERT target table before scanning SELECT, * else we will grab the wrong kind of initial lock if the target * table is also mentioned in the SELECT part. Note that the target * table is not added to the joinlist or namespace. */ qry->resultRelation = setTargetTable(pstate, stmt->relation, false, false, ACL_INSERT); /* * Is it INSERT ... SELECT or INSERT ... VALUES? */ if (stmt->selectStmt) { /* * We make the sub-pstate a child of the outer pstate so that it * can see any Param definitions supplied from above. Since the * outer pstate's rtable and namespace are presently empty, there * are no side-effects of exposing names the sub-SELECT shouldn't * be able to see. */ ParseState *sub_pstate = make_parsestate(pstate); RangeTblEntry *rte; RangeTblRef *rtr; /* * Process the source SELECT. * * It is important that this be handled just like a standalone * SELECT; otherwise the behavior of SELECT within INSERT might be * different from a stand-alone SELECT. (Indeed, Postgres up * through 6.5 had bugs of just that nature...) */ sub_pstate->p_rtable = sub_rtable; sub_pstate->p_namespace = sub_namespace; /* * Note: we are not expecting that extras_before and extras_after * are going to be used by the transformation of the SELECT * statement. */ selectQuery = transformStmt(sub_pstate, stmt->selectStmt, extras_before, extras_after); release_pstate_resources(sub_pstate); pfree(sub_pstate); Assert(IsA(selectQuery, Query)); Assert(selectQuery->commandType == CMD_SELECT); if (selectQuery->into) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("INSERT ... SELECT may not specify INTO"))); /* * Make the source be a subquery in the INSERT's rangetable, and * add it to the INSERT's joinlist. */ rte = addRangeTableEntryForSubquery(pstate, selectQuery, makeAlias("*SELECT*", NIL), true); rtr = makeNode(RangeTblRef); /* assume new rte is at end */ rtr->rtindex = list_length(pstate->p_rtable); Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable)); pstate->p_joinlist = lappend(pstate->p_joinlist, rtr); /*---------- * Generate a targetlist for the INSERT that selects all the * non-resjunk columns from the subquery. (We need this to be * separate from the subquery's tlist because we may add columns, * insert datatype coercions, etc.) * * HACK: unknown-type constants and params in the SELECT's targetlist * are copied up as-is rather than being referenced as subquery * outputs. This is to ensure that when we try to coerce them to * the target column's datatype, the right things happen (see * special cases in coerce_type). Otherwise, this fails: * INSERT INTO foo SELECT 'bar', ... FROM baz *---------- */ qry->targetList = NIL; foreach(tl, selectQuery->targetList) { TargetEntry *tle = (TargetEntry *) lfirst(tl); Expr *expr; if (tle->resjunk) continue; if (tle->expr && (IsA(tle->expr, Const) || IsA(tle->expr, Param)) && exprType((Node *) tle->expr) == UNKNOWNOID) expr = tle->expr; else expr = (Expr *) makeVar(rtr->rtindex, tle->resno, exprType((Node *) tle->expr), exprTypmod((Node *) tle->expr), 0); tle = makeTargetEntry(expr, (AttrNumber) pstate->p_next_resno++, tle->resname, false); qry->targetList = lappend(qry->targetList, tle); } } else { /* * For INSERT ... VALUES, transform the given list of values to * form a targetlist for the INSERT. */ qry->targetList = transformTargetList(pstate, stmt->targetList); } /* * Now we are done with SELECT-like processing, and can get on with * transforming the target list to match the INSERT target columns. */ /* Prepare to assign non-conflicting resnos to resjunk attributes */ if (pstate->p_next_resno <= pstate->p_target_relation->rd_rel->relnatts) pstate->p_next_resno = pstate->p_target_relation->rd_rel->relnatts + 1; /* Validate stmt->cols list, or build default list if no list given */ icolumns = checkInsertTargets(pstate, stmt->cols, &attrnos); /* * Prepare columns for assignment to target table. */ icols = list_head(icolumns); attnos = list_head(attrnos); foreach(tl, qry->targetList) { TargetEntry *tle = (TargetEntry *) lfirst(tl); ResTarget *col; if (icols == NULL || attnos == NULL) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("INSERT has more expressions than target columns"))); col = (ResTarget *) lfirst(icols); Assert(IsA(col, ResTarget)); Assert(!tle->resjunk); updateTargetListEntry(pstate, tle, col->name, lfirst_int(attnos), col->indirection); icols = lnext(icols); attnos = lnext(attnos); } /* * Ensure that the targetlist has the same number of entries that were * present in the columns list. Don't do the check unless an explicit * columns list was given, though. */ if (stmt->cols != NIL && (icols != NULL || attnos != NULL)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("INSERT has more target columns than expressions"))); /* done building the range table and jointree */ qry->rtable = pstate->p_rtable; qry->jointree = makeFromExpr(pstate->p_joinlist, NULL); qry->hasSubLinks = pstate->p_hasSubLinks; qry->hasAggs = pstate->p_hasAggs; if (pstate->p_hasAggs) parseCheckAggregates(pstate, qry); return qry; } /* * transformCreateStmt - * transforms the "create table" statement * SQL92 allows constraints to be scattered all over, so thumb through * the columns and collect all constraints into one place. * If there are any implied indices (e.g. UNIQUE or PRIMARY KEY) * then expand those into multiple IndexStmt blocks. * - thomas 1997-12-02 */ static Query * transformCreateStmt(ParseState *pstate, CreateStmt *stmt, List **extras_before, List **extras_after) { CreateStmtContext cxt; Query *q; ListCell *elements; cxt.stmtType = "CREATE TABLE"; cxt.relation = stmt->relation; cxt.inhRelations = stmt->inhRelations; cxt.isalter = false; cxt.columns = NIL; cxt.ckconstraints = NIL; cxt.fkconstraints = NIL; cxt.ixconstraints = NIL; cxt.blist = NIL; cxt.alist = NIL; cxt.pkey = NULL; cxt.hasoids = interpretOidsOption(stmt->hasoids); /* * Run through each primary element in the table creation clause. * Separate column defs from constraints, and do preliminary analysis. */ foreach(elements, stmt->tableElts) { Node *element = lfirst(elements); switch (nodeTag(element)) { case T_ColumnDef: transformColumnDefinition(pstate, &cxt, (ColumnDef *) element); break; case T_Constraint: transformTableConstraint(pstate, &cxt, (Constraint *) element); break; case T_FkConstraint: /* No pre-transformation needed */ cxt.fkconstraints = lappend(cxt.fkconstraints, element); break; case T_InhRelation: transformInhRelation(pstate, &cxt, (InhRelation *) element); break; default: elog(ERROR, "unrecognized node type: %d", (int) nodeTag(element)); break; } } Assert(stmt->constraints == NIL); /* * Postprocess constraints that give rise to index definitions. */ transformIndexConstraints(pstate, &cxt); /* * Postprocess foreign-key constraints. */ transformFKConstraints(pstate, &cxt, true, false); /* * Output results. */ q = makeNode(Query); q->commandType = CMD_UTILITY; q->utilityStmt = (Node *) stmt; stmt->tableElts = cxt.columns; stmt->constraints = cxt.ckconstraints; *extras_before = list_concat(*extras_before, cxt.blist); *extras_after = list_concat(cxt.alist, *extras_after); return q; } static void transformColumnDefinition(ParseState *pstate, CreateStmtContext *cxt, ColumnDef *column) { bool is_serial; bool saw_nullable; Constraint *constraint; ListCell *clist; cxt->columns = lappend(cxt->columns, column); /* Check for SERIAL pseudo-types */ is_serial = false; if (list_length(column->typename->names) == 1) { char *typname = strVal(linitial(column->typename->names)); if (strcmp(typname, "serial") == 0 || strcmp(typname, "serial4") == 0) { is_serial = true; column->typename->names = NIL; column->typename->typeid = INT4OID; } else if (strcmp(typname, "bigserial") == 0 || strcmp(typname, "serial8") == 0) { is_serial = true; column->typename->names = NIL; column->typename->typeid = INT8OID; } } /* Do necessary work on the column type declaration */ transformColumnType(pstate, column); /* Special actions for SERIAL pseudo-types */ if (is_serial) { Oid snamespaceid; char *snamespace; char *sname; char *qstring; A_Const *snamenode; FuncCall *funccallnode; CreateSeqStmt *seqstmt; /* * Determine namespace and name to use for the sequence. * * Although we use ChooseRelationName, it's not guaranteed that the * selected sequence name won't conflict; given sufficiently long * field names, two different serial columns in the same table * could be assigned the same sequence name, and we'd not notice * since we aren't creating the sequence quite yet. In practice * this seems quite unlikely to be a problem, especially since few * people would need two serial columns in one table. */ snamespaceid = RangeVarGetCreationNamespace(cxt->relation); snamespace = get_namespace_name(snamespaceid); sname = ChooseRelationName(cxt->relation->relname, column->colname, "seq", snamespaceid); ereport(NOTICE, (errmsg("%s will create implicit sequence \"%s\" for serial column \"%s.%s\"", cxt->stmtType, sname, cxt->relation->relname, column->colname))); /* * Build a CREATE SEQUENCE command to create the sequence object, * and add it to the list of things to be done before this * CREATE/ALTER TABLE. */ seqstmt = makeNode(CreateSeqStmt); seqstmt->sequence = makeRangeVar(snamespace, sname); seqstmt->options = NIL; cxt->blist = lappend(cxt->blist, seqstmt); /* * Mark the ColumnDef so that during execution, an appropriate * dependency will be added from the sequence to the column. */ column->support = makeRangeVar(snamespace, sname); /* * Create appropriate constraints for SERIAL. We do this in full, * rather than shortcutting, so that we will detect any * conflicting constraints the user wrote (like a different * DEFAULT). * * Create an expression tree representing the function call * nextval('"sequencename"') */ qstring = quote_qualified_identifier(snamespace, sname); snamenode = makeNode(A_Const); snamenode->val.type = T_String; snamenode->val.val.str = qstring; funccallnode = makeNode(FuncCall); funccallnode->funcname = SystemFuncName("nextval"); funccallnode->args = list_make1(snamenode); funccallnode->agg_star = false; funccallnode->agg_distinct = false; constraint = makeNode(Constraint); constraint->contype = CONSTR_DEFAULT; constraint->raw_expr = (Node *) funccallnode; constraint->cooked_expr = NULL; constraint->keys = NIL; column->constraints = lappend(column->constraints, constraint); constraint = makeNode(Constraint); constraint->contype = CONSTR_NOTNULL; column->constraints = lappend(column->constraints, constraint); } /* Process column constraints, if any... */ transformConstraintAttrs(column->constraints); saw_nullable = false; foreach(clist, column->constraints) { constraint = lfirst(clist); /* * If this column constraint is a FOREIGN KEY constraint, then we * fill in the current attribute's name and throw it into the list * of FK constraints to be processed later. */ if (IsA(constraint, FkConstraint)) { FkConstraint *fkconstraint = (FkConstraint *) constraint; fkconstraint->fk_attrs = list_make1(makeString(column->colname)); cxt->fkconstraints = lappend(cxt->fkconstraints, fkconstraint); continue; } Assert(IsA(constraint, Constraint)); switch (constraint->contype) { case CONSTR_NULL: if (saw_nullable && column->is_not_null) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\"", column->colname, cxt->relation->relname))); column->is_not_null = FALSE; saw_nullable = true; break; case CONSTR_NOTNULL: if (saw_nullable && !column->is_not_null) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("conflicting NULL/NOT NULL declarations for column \"%s\" of table \"%s\"", column->colname, cxt->relation->relname))); column->is_not_null = TRUE; saw_nullable = true; break; case CONSTR_DEFAULT: if (column->raw_default != NULL) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("multiple default values specified for column \"%s\" of table \"%s\"", column->colname, cxt->relation->relname))); column->raw_default = constraint->raw_expr; Assert(constraint->cooked_expr == NULL); break; case CONSTR_PRIMARY: case CONSTR_UNIQUE: if (constraint->keys == NIL) constraint->keys = list_make1(makeString(column->colname)); cxt->ixconstraints = lappend(cxt->ixconstraints, constraint); break; case CONSTR_CHECK: cxt->ckconstraints = lappend(cxt->ckconstraints, constraint); break; case CONSTR_ATTR_DEFERRABLE: case CONSTR_ATTR_NOT_DEFERRABLE: case CONSTR_ATTR_DEFERRED: case CONSTR_ATTR_IMMEDIATE: /* transformConstraintAttrs took care of these */ break; default: elog(ERROR, "unrecognized constraint type: %d", constraint->contype); break; } } } static void transformTableConstraint(ParseState *pstate, CreateStmtContext *cxt, Constraint *constraint) { switch (constraint->contype) { case CONSTR_PRIMARY: case CONSTR_UNIQUE: cxt->ixconstraints = lappend(cxt->ixconstraints, constraint); break; case CONSTR_CHECK: cxt->ckconstraints = lappend(cxt->ckconstraints, constraint); break; case CONSTR_NULL: case CONSTR_NOTNULL: case CONSTR_DEFAULT: case CONSTR_ATTR_DEFERRABLE: case CONSTR_ATTR_NOT_DEFERRABLE: case CONSTR_ATTR_DEFERRED: case CONSTR_ATTR_IMMEDIATE: elog(ERROR, "invalid context for constraint type %d", constraint->contype); break; default: elog(ERROR, "unrecognized constraint type: %d", constraint->contype); break; } } /* * transformInhRelation * * Change the LIKE portion of a CREATE TABLE statement into the * column definitions which recreate the user defined column portions of . */ static void transformInhRelation(ParseState *pstate, CreateStmtContext *cxt, InhRelation *inhRelation) { AttrNumber parent_attno; Relation relation; TupleDesc tupleDesc; TupleConstr *constr; AclResult aclresult; relation = heap_openrv(inhRelation->relation, AccessShareLock); if (relation->rd_rel->relkind != RELKIND_RELATION) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("inherited relation \"%s\" is not a table", inhRelation->relation->relname))); /* * Check for SELECT privilages */ aclresult = pg_class_aclcheck(RelationGetRelid(relation), GetUserId(), ACL_SELECT); if (aclresult != ACLCHECK_OK) aclcheck_error(aclresult, ACL_KIND_CLASS, RelationGetRelationName(relation)); tupleDesc = RelationGetDescr(relation); constr = tupleDesc->constr; /* * Insert the inherited attributes into the cxt for the new table * definition. */ for (parent_attno = 1; parent_attno <= tupleDesc->natts; parent_attno++) { Form_pg_attribute attribute = tupleDesc->attrs[parent_attno - 1]; char *attributeName = NameStr(attribute->attname); ColumnDef *def; TypeName *typename; /* * Ignore dropped columns in the parent. */ if (attribute->attisdropped) continue; /* * Create a new inherited column. * * For constraints, ONLY the NOT NULL constraint is inherited by the * new column definition per SQL99. */ def = makeNode(ColumnDef); def->colname = pstrdup(attributeName); typename = makeNode(TypeName); typename->typeid = attribute->atttypid; typename->typmod = attribute->atttypmod; def->typename = typename; def->inhcount = 0; def->is_local = false; def->is_not_null = attribute->attnotnull; def->raw_default = NULL; def->cooked_default = NULL; def->constraints = NIL; def->support = NULL; /* * Add to column list */ cxt->columns = lappend(cxt->columns, def); /* * Copy default if any, and the default has been requested */ if (attribute->atthasdef && inhRelation->including_defaults) { char *this_default = NULL; AttrDefault *attrdef; int i; /* Find default in constraint structure */ Assert(constr != NULL); attrdef = constr->defval; for (i = 0; i < constr->num_defval; i++) { if (attrdef[i].adnum == parent_attno) { this_default = attrdef[i].adbin; break; } } Assert(this_default != NULL); /* * If default expr could contain any vars, we'd need to fix * 'em, but it can't; so default is ready to apply to child. */ def->cooked_default = pstrdup(this_default); } } /* * Close the parent rel, but keep our AccessShareLock on it until xact * commit. That will prevent someone else from deleting or ALTERing * the parent before the child is committed. */ heap_close(relation, NoLock); } static void transformIndexConstraints(ParseState *pstate, CreateStmtContext *cxt) { IndexStmt *index; List *indexlist = NIL; ListCell *listptr; ListCell *l; /* * Run through the constraints that need to generate an index. For * PRIMARY KEY, mark each column as NOT NULL and create an index. For * UNIQUE, create an index as for PRIMARY KEY, but do not insist on * NOT NULL. */ foreach(listptr, cxt->ixconstraints) { Constraint *constraint = lfirst(listptr); ListCell *keys; IndexElem *iparam; Assert(IsA(constraint, Constraint)); Assert((constraint->contype == CONSTR_PRIMARY) || (constraint->contype == CONSTR_UNIQUE)); index = makeNode(IndexStmt); index->unique = true; index->primary = (constraint->contype == CONSTR_PRIMARY); if (index->primary) { if (cxt->pkey != NULL) ereport(ERROR, (errcode(ERRCODE_INVALID_TABLE_DEFINITION), errmsg("multiple primary keys for table \"%s\" are not allowed", cxt->relation->relname))); cxt->pkey = index; /* * In ALTER TABLE case, a primary index might already exist, * but DefineIndex will check for it. */ } index->isconstraint = true; if (constraint->name != NULL) index->idxname = pstrdup(constraint->name); else index->idxname = NULL; /* DefineIndex will choose name */ index->relation = cxt->relation; index->accessMethod = DEFAULT_INDEX_TYPE; index->tableSpace = constraint->indexspace; index->indexParams = NIL; index->whereClause = NULL; /* * Make sure referenced keys exist. If we are making a PRIMARY * KEY index, also make sure they are NOT NULL, if possible. * (Although we could leave it to DefineIndex to mark the columns * NOT NULL, it's more efficient to get it right the first time.) */ foreach(keys, constraint->keys) { char *key = strVal(lfirst(keys)); bool found = false; ColumnDef *column = NULL; ListCell *columns; foreach(columns, cxt->columns) { column = (ColumnDef *) lfirst(columns); Assert(IsA(column, ColumnDef)); if (strcmp(column->colname, key) == 0) { found = true; break; } } if (found) { /* found column in the new table; force it to be NOT NULL */ if (constraint->contype == CONSTR_PRIMARY) column->is_not_null = TRUE; } else if (SystemAttributeByName(key, cxt->hasoids) != NULL) { /* * column will be a system column in the new table, so * accept it. System columns can't ever be null, so no * need to worry about PRIMARY/NOT NULL constraint. */ found = true; } else if (cxt->inhRelations) { /* try inherited tables */ ListCell *inher; foreach(inher, cxt->inhRelations) { RangeVar *inh = (RangeVar *) lfirst(inher); Relation rel; int count; Assert(IsA(inh, RangeVar)); rel = heap_openrv(inh, AccessShareLock); if (rel->rd_rel->relkind != RELKIND_RELATION) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("inherited relation \"%s\" is not a table", inh->relname))); for (count = 0; count < rel->rd_att->natts; count++) { Form_pg_attribute inhattr = rel->rd_att->attrs[count]; char *inhname = NameStr(inhattr->attname); if (inhattr->attisdropped) continue; if (strcmp(key, inhname) == 0) { found = true; /* * We currently have no easy way to force an * inherited column to be NOT NULL at * creation, if its parent wasn't so already. * We leave it to DefineIndex to fix things up * in this case. */ break; } } heap_close(rel, NoLock); if (found) break; } } /* * In the ALTER TABLE case, don't complain about index keys * not created in the command; they may well exist already. * DefineIndex will complain about them if not, and will also * take care of marking them NOT NULL. */ if (!found && !cxt->isalter) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_COLUMN), errmsg("column \"%s\" named in key does not exist", key))); /* Check for PRIMARY KEY(foo, foo) */ foreach(columns, index->indexParams) { iparam = (IndexElem *) lfirst(columns); if (iparam->name && strcmp(key, iparam->name) == 0) { if (index->primary) ereport(ERROR, (errcode(ERRCODE_DUPLICATE_COLUMN), errmsg("column \"%s\" appears twice in primary key constraint", key))); else ereport(ERROR, (errcode(ERRCODE_DUPLICATE_COLUMN), errmsg("column \"%s\" appears twice in unique constraint", key))); } } /* OK, add it to the index definition */ iparam = makeNode(IndexElem); iparam->name = pstrdup(key); iparam->expr = NULL; iparam->opclass = NIL; index->indexParams = lappend(index->indexParams, iparam); } indexlist = lappend(indexlist, index); } /* * Scan the index list and remove any redundant index specifications. * This can happen if, for instance, the user writes UNIQUE PRIMARY * KEY. A strict reading of SQL92 would suggest raising an error * instead, but that strikes me as too anal-retentive. - tgl * 2001-02-14 * * XXX in ALTER TABLE case, it'd be nice to look for duplicate * pre-existing indexes, too. */ cxt->alist = NIL; if (cxt->pkey != NULL) { /* Make sure we keep the PKEY index in preference to others... */ cxt->alist = list_make1(cxt->pkey); } foreach(l, indexlist) { bool keep = true; ListCell *k; index = lfirst(l); /* if it's pkey, it's already in cxt->alist */ if (index == cxt->pkey) continue; foreach(k, cxt->alist) { IndexStmt *priorindex = lfirst(k); if (equal(index->indexParams, priorindex->indexParams)) { /* * If the prior index is as yet unnamed, and this one is * named, then transfer the name to the prior index. This * ensures that if we have named and unnamed constraints, * we'll use (at least one of) the names for the index. */ if (priorindex->idxname == NULL) priorindex->idxname = index->idxname; keep = false; break; } } if (keep) cxt->alist = lappend(cxt->alist, index); } } static void transformFKConstraints(ParseState *pstate, CreateStmtContext *cxt, bool skipValidation, bool isAddConstraint) { ListCell *fkclist; if (cxt->fkconstraints == NIL) return; /* * If CREATE TABLE or adding a column with NULL default, we can safely * skip validation of the constraint. */ if (skipValidation) { foreach(fkclist, cxt->fkconstraints) { FkConstraint *fkconstraint = (FkConstraint *) lfirst(fkclist); fkconstraint->skip_validation = true; } } /* * For CREATE TABLE or ALTER TABLE ADD COLUMN, gin up an ALTER TABLE * ADD CONSTRAINT command to execute after the basic command is * complete. (If called from ADD CONSTRAINT, that routine will add the * FK constraints to its own subcommand list.) * * Note: the ADD CONSTRAINT command must also execute after any index * creation commands. Thus, this should run after * transformIndexConstraints, so that the CREATE INDEX commands are * already in cxt->alist. */ if (!isAddConstraint) { AlterTableStmt *alterstmt = makeNode(AlterTableStmt); alterstmt->relation = cxt->relation; alterstmt->cmds = NIL; alterstmt->relkind = OBJECT_TABLE; foreach(fkclist, cxt->fkconstraints) { FkConstraint *fkconstraint = (FkConstraint *) lfirst(fkclist); AlterTableCmd *altercmd = makeNode(AlterTableCmd); altercmd->subtype = AT_ProcessedConstraint; altercmd->name = NULL; altercmd->def = (Node *) fkconstraint; alterstmt->cmds = lappend(alterstmt->cmds, altercmd); } cxt->alist = lappend(cxt->alist, alterstmt); } } /* * transformIndexStmt - * transforms the qualification of the index statement */ static Query * transformIndexStmt(ParseState *pstate, IndexStmt *stmt) { Query *qry; RangeTblEntry *rte = NULL; ListCell *l; qry = makeNode(Query); qry->commandType = CMD_UTILITY; /* take care of the where clause */ if (stmt->whereClause) { /* * Put the parent table into the rtable so that the WHERE clause * can refer to its fields without qualification. Note that this * only works if the parent table already exists --- so we can't * easily support predicates on indexes created implicitly by * CREATE TABLE. Fortunately, that's not necessary. */ rte = addRangeTableEntry(pstate, stmt->relation, NULL, false, true); /* no to join list, yes to namespace */ addRTEtoQuery(pstate, rte, false, true); stmt->whereClause = transformWhereClause(pstate, stmt->whereClause, "WHERE"); } /* take care of any index expressions */ foreach(l, stmt->indexParams) { IndexElem *ielem = (IndexElem *) lfirst(l); if (ielem->expr) { /* Set up rtable as for predicate, see notes above */ if (rte == NULL) { rte = addRangeTableEntry(pstate, stmt->relation, NULL, false, true); /* no to join list, yes to namespace */ addRTEtoQuery(pstate, rte, false, true); } ielem->expr = transformExpr(pstate, ielem->expr); /* * We check only that the result type is legitimate; this is * for consistency with what transformWhereClause() checks for * the predicate. DefineIndex() will make more checks. */ if (expression_returns_set(ielem->expr)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("index expression may not return a set"))); } } qry->hasSubLinks = pstate->p_hasSubLinks; stmt->rangetable = pstate->p_rtable; qry->utilityStmt = (Node *) stmt; return qry; } /* * transformRuleStmt - * transform a Create Rule Statement. The actions is a list of parse * trees which is transformed into a list of query trees. */ static Query * transformRuleStmt(ParseState *pstate, RuleStmt *stmt, List **extras_before, List **extras_after) { Query *qry; Relation rel; RangeTblEntry *oldrte; RangeTblEntry *newrte; qry = makeNode(Query); qry->commandType = CMD_UTILITY; qry->utilityStmt = (Node *) stmt; /* * To avoid deadlock, make sure the first thing we do is grab * AccessExclusiveLock on the target relation. This will be needed by * DefineQueryRewrite(), and we don't want to grab a lesser lock * beforehand. */ rel = heap_openrv(stmt->relation, AccessExclusiveLock); /* * NOTE: 'OLD' must always have a varno equal to 1 and 'NEW' equal to * 2. Set up their RTEs in the main pstate for use in parsing the * rule qualification. */ Assert(pstate->p_rtable == NIL); oldrte = addRangeTableEntryForRelation(pstate, rel, makeAlias("*OLD*", NIL), false, true); newrte = addRangeTableEntryForRelation(pstate, rel, makeAlias("*NEW*", NIL), false, true); /* Must override addRangeTableEntry's default access-check flags */ oldrte->requiredPerms = 0; newrte->requiredPerms = 0; /* * They must be in the namespace too for lookup purposes, but only add * the one(s) that are relevant for the current kind of rule. In an * UPDATE rule, quals must refer to OLD.field or NEW.field to be * unambiguous, but there's no need to be so picky for INSERT & * DELETE. (Note we marked the RTEs "inFromCl = true" above to allow * unqualified references to their fields.) We do not add them to the * joinlist. */ switch (stmt->event) { case CMD_SELECT: addRTEtoQuery(pstate, oldrte, false, true); break; case CMD_UPDATE: addRTEtoQuery(pstate, oldrte, false, true); addRTEtoQuery(pstate, newrte, false, true); break; case CMD_INSERT: addRTEtoQuery(pstate, newrte, false, true); break; case CMD_DELETE: addRTEtoQuery(pstate, oldrte, false, true); break; default: elog(ERROR, "unrecognized event type: %d", (int) stmt->event); break; } /* take care of the where clause */ stmt->whereClause = transformWhereClause(pstate, stmt->whereClause, "WHERE"); if (list_length(pstate->p_rtable) != 2) /* naughty, naughty... */ ereport(ERROR, (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), errmsg("rule WHERE condition may not contain references to other relations"))); /* aggregates not allowed (but subselects are okay) */ if (pstate->p_hasAggs) ereport(ERROR, (errcode(ERRCODE_GROUPING_ERROR), errmsg("rule WHERE condition may not contain aggregate functions"))); /* save info about sublinks in where clause */ qry->hasSubLinks = pstate->p_hasSubLinks; /* * 'instead nothing' rules with a qualification need a query * rangetable so the rewrite handler can add the negated rule * qualification to the original query. We create a query with the new * command type CMD_NOTHING here that is treated specially by the * rewrite system. */ if (stmt->actions == NIL) { Query *nothing_qry = makeNode(Query); nothing_qry->commandType = CMD_NOTHING; nothing_qry->rtable = pstate->p_rtable; nothing_qry->jointree = makeFromExpr(NIL, NULL); /* no join wanted */ stmt->actions = list_make1(nothing_qry); } else { ListCell *l; List *newactions = NIL; /* * transform each statement, like parse_sub_analyze() */ foreach(l, stmt->actions) { Node *action = (Node *) lfirst(l); ParseState *sub_pstate = make_parsestate(pstate->parentParseState); Query *sub_qry, *top_subqry; bool has_old, has_new; /* * Set up OLD/NEW in the rtable for this statement. The * entries are marked not inFromCl because we don't want them * to be referred to by unqualified field names nor "*" in the * rule actions. We must add them to the namespace, however, * or they won't be accessible at all. We decide later * whether to put them in the joinlist. */ oldrte = addRangeTableEntryForRelation(sub_pstate, rel, makeAlias("*OLD*", NIL), false, false); newrte = addRangeTableEntryForRelation(sub_pstate, rel, makeAlias("*NEW*", NIL), false, false); oldrte->requiredPerms = 0; newrte->requiredPerms = 0; addRTEtoQuery(sub_pstate, oldrte, false, true); addRTEtoQuery(sub_pstate, newrte, false, true); /* Transform the rule action statement */ top_subqry = transformStmt(sub_pstate, action, extras_before, extras_after); /* * We cannot support utility-statement actions (eg NOTIFY) * with nonempty rule WHERE conditions, because there's no way * to make the utility action execute conditionally. */ if (top_subqry->commandType == CMD_UTILITY && stmt->whereClause != NULL) ereport(ERROR, (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), errmsg("rules with WHERE conditions may only have SELECT, INSERT, UPDATE, or DELETE actions"))); /* * If the action is INSERT...SELECT, OLD/NEW have been pushed * down into the SELECT, and that's what we need to look at. * (Ugly kluge ... try to fix this when we redesign * querytrees.) */ sub_qry = getInsertSelectQuery(top_subqry, NULL); /* * If the sub_qry is a setop, we cannot attach any * qualifications to it, because the planner won't notice * them. This could perhaps be relaxed someday, but for now, * we may as well reject such a rule immediately. */ if (sub_qry->setOperations != NULL && stmt->whereClause != NULL) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("conditional UNION/INTERSECT/EXCEPT statements are not implemented"))); /* * Validate action's use of OLD/NEW, qual too */ has_old = rangeTableEntry_used((Node *) sub_qry, PRS2_OLD_VARNO, 0) || rangeTableEntry_used(stmt->whereClause, PRS2_OLD_VARNO, 0); has_new = rangeTableEntry_used((Node *) sub_qry, PRS2_NEW_VARNO, 0) || rangeTableEntry_used(stmt->whereClause, PRS2_NEW_VARNO, 0); switch (stmt->event) { case CMD_SELECT: if (has_old) ereport(ERROR, (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), errmsg("ON SELECT rule may not use OLD"))); if (has_new) ereport(ERROR, (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), errmsg("ON SELECT rule may not use NEW"))); break; case CMD_UPDATE: /* both are OK */ break; case CMD_INSERT: if (has_old) ereport(ERROR, (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), errmsg("ON INSERT rule may not use OLD"))); break; case CMD_DELETE: if (has_new) ereport(ERROR, (errcode(ERRCODE_INVALID_OBJECT_DEFINITION), errmsg("ON DELETE rule may not use NEW"))); break; default: elog(ERROR, "unrecognized event type: %d", (int) stmt->event); break; } /* * For efficiency's sake, add OLD to the rule action's * jointree only if it was actually referenced in the * statement or qual. * * For INSERT, NEW is not really a relation (only a reference to * the to-be-inserted tuple) and should never be added to the * jointree. * * For UPDATE, we treat NEW as being another kind of reference to * OLD, because it represents references to *transformed* * tuples of the existing relation. It would be wrong to * enter NEW separately in the jointree, since that would * cause a double join of the updated relation. It's also * wrong to fail to make a jointree entry if only NEW and not * OLD is mentioned. */ if (has_old || (has_new && stmt->event == CMD_UPDATE)) { /* * If sub_qry is a setop, manipulating its jointree will * do no good at all, because the jointree is dummy. (This * should be a can't-happen case because of prior tests.) */ if (sub_qry->setOperations != NULL) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("conditional UNION/INTERSECT/EXCEPT statements are not implemented"))); /* hack so we can use addRTEtoQuery() */ sub_pstate->p_rtable = sub_qry->rtable; sub_pstate->p_joinlist = sub_qry->jointree->fromlist; addRTEtoQuery(sub_pstate, oldrte, true, false); sub_qry->jointree->fromlist = sub_pstate->p_joinlist; } newactions = lappend(newactions, top_subqry); release_pstate_resources(sub_pstate); pfree(sub_pstate); } stmt->actions = newactions; } /* Close relation, but keep the exclusive lock */ heap_close(rel, NoLock); return qry; } /* * transformSelectStmt - * transforms a Select Statement * * Note: this is also used for DECLARE CURSOR statements. */ static Query * transformSelectStmt(ParseState *pstate, SelectStmt *stmt) { Query *qry = makeNode(Query); Node *qual; qry->commandType = CMD_SELECT; /* make FOR UPDATE clause available to addRangeTableEntry */ pstate->p_forUpdate = stmt->forUpdate; /* process the FROM clause */ transformFromClause(pstate, stmt->fromClause); /* transform targetlist */ qry->targetList = transformTargetList(pstate, stmt->targetList); /* handle any SELECT INTO/CREATE TABLE AS spec */ qry->into = stmt->into; if (stmt->intoColNames) applyColumnNames(qry->targetList, stmt->intoColNames); qry->intoHasOids = interpretOidsOption(stmt->intoHasOids); /* mark column origins */ markTargetListOrigins(pstate, qry->targetList); /* transform WHERE */ qual = transformWhereClause(pstate, stmt->whereClause, "WHERE"); /* * Initial processing of HAVING clause is just like WHERE clause. */ qry->havingQual = transformWhereClause(pstate, stmt->havingClause, "HAVING"); /* * Transform sorting/grouping stuff. Do ORDER BY first because both * transformGroupClause and transformDistinctClause need the results. */ qry->sortClause = transformSortClause(pstate, stmt->sortClause, &qry->targetList, true /* fix unknowns */ ); qry->groupClause = transformGroupClause(pstate, stmt->groupClause, &qry->targetList, qry->sortClause); qry->distinctClause = transformDistinctClause(pstate, stmt->distinctClause, &qry->targetList, &qry->sortClause); qry->limitOffset = transformLimitClause(pstate, stmt->limitOffset, "OFFSET"); qry->limitCount = transformLimitClause(pstate, stmt->limitCount, "LIMIT"); qry->rtable = pstate->p_rtable; qry->jointree = makeFromExpr(pstate->p_joinlist, qual); qry->hasSubLinks = pstate->p_hasSubLinks; qry->hasAggs = pstate->p_hasAggs; if (pstate->p_hasAggs || qry->groupClause || qry->havingQual) parseCheckAggregates(pstate, qry); if (stmt->forUpdate != NIL) transformForUpdate(qry, stmt->forUpdate); return qry; } /* * transformSetOperationsStmt - * transforms a set-operations tree * * A set-operation tree is just a SELECT, but with UNION/INTERSECT/EXCEPT * structure to it. We must transform each leaf SELECT and build up a top- * level Query that contains the leaf SELECTs as subqueries in its rangetable. * The tree of set operations is converted into the setOperations field of * the top-level Query. */ static Query * transformSetOperationStmt(ParseState *pstate, SelectStmt *stmt) { Query *qry = makeNode(Query); SelectStmt *leftmostSelect; int leftmostRTI; Query *leftmostQuery; SetOperationStmt *sostmt; RangeVar *into; List *intoColNames; List *sortClause; Node *limitOffset; Node *limitCount; List *forUpdate; Node *node; ListCell *left_tlist, *dtlist; List *targetvars, *targetnames, *sv_namespace, *sv_rtable; RangeTblEntry *jrte; RangeTblRef *jrtr; int tllen; qry->commandType = CMD_SELECT; /* * Find leftmost leaf SelectStmt; extract the one-time-only items from * it and from the top-level node. */ leftmostSelect = stmt->larg; while (leftmostSelect && leftmostSelect->op != SETOP_NONE) leftmostSelect = leftmostSelect->larg; Assert(leftmostSelect && IsA(leftmostSelect, SelectStmt) && leftmostSelect->larg == NULL); into = leftmostSelect->into; intoColNames = leftmostSelect->intoColNames; /* clear them to prevent complaints in transformSetOperationTree() */ leftmostSelect->into = NULL; leftmostSelect->intoColNames = NIL; /* * These are not one-time, exactly, but we want to process them here * and not let transformSetOperationTree() see them --- else it'll * just recurse right back here! */ sortClause = stmt->sortClause; limitOffset = stmt->limitOffset; limitCount = stmt->limitCount; forUpdate = stmt->forUpdate; stmt->sortClause = NIL; stmt->limitOffset = NULL; stmt->limitCount = NULL; stmt->forUpdate = NIL; /* We don't support forUpdate with set ops at the moment. */ if (forUpdate) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT"))); /* * Recursively transform the components of the tree. */ sostmt = (SetOperationStmt *) transformSetOperationTree(pstate, stmt); Assert(sostmt && IsA(sostmt, SetOperationStmt)); qry->setOperations = (Node *) sostmt; /* * Re-find leftmost SELECT (now it's a sub-query in rangetable) */ node = sostmt->larg; while (node && IsA(node, SetOperationStmt)) node = ((SetOperationStmt *) node)->larg; Assert(node && IsA(node, RangeTblRef)); leftmostRTI = ((RangeTblRef *) node)->rtindex; leftmostQuery = rt_fetch(leftmostRTI, pstate->p_rtable)->subquery; Assert(leftmostQuery != NULL); /* * Generate dummy targetlist for outer query using column names of * leftmost select and common datatypes of topmost set operation. Also * make lists of the dummy vars and their names for use in parsing * ORDER BY. * * Note: we use leftmostRTI as the varno of the dummy variables. It * shouldn't matter too much which RT index they have, as long as they * have one that corresponds to a real RT entry; else funny things may * happen when the tree is mashed by rule rewriting. */ qry->targetList = NIL; targetvars = NIL; targetnames = NIL; left_tlist = list_head(leftmostQuery->targetList); foreach(dtlist, sostmt->colTypes) { Oid colType = lfirst_oid(dtlist); TargetEntry *lefttle = (TargetEntry *) lfirst(left_tlist); char *colName; TargetEntry *tle; Expr *expr; Assert(!lefttle->resjunk); colName = pstrdup(lefttle->resname); expr = (Expr *) makeVar(leftmostRTI, lefttle->resno, colType, -1, 0); tle = makeTargetEntry(expr, (AttrNumber) pstate->p_next_resno++, colName, false); qry->targetList = lappend(qry->targetList, tle); targetvars = lappend(targetvars, expr); targetnames = lappend(targetnames, makeString(colName)); left_tlist = lnext(left_tlist); } /* * Handle SELECT INTO/CREATE TABLE AS. * * Any column names from CREATE TABLE AS need to be attached to both the * top level and the leftmost subquery. We do not do this earlier * because we do *not* want the targetnames list to be affected. */ qry->into = into; if (intoColNames) { applyColumnNames(qry->targetList, intoColNames); applyColumnNames(leftmostQuery->targetList, intoColNames); } /* * As a first step towards supporting sort clauses that are * expressions using the output columns, generate a namespace entry * that makes the output columns visible. A Join RTE node is handy * for this, since we can easily control the Vars generated upon * matches. * * Note: we don't yet do anything useful with such cases, but at least * "ORDER BY upper(foo)" will draw the right error message rather than * "foo not found". */ jrte = addRangeTableEntryForJoin(NULL, targetnames, JOIN_INNER, targetvars, NULL, true); jrtr = makeNode(RangeTblRef); jrtr->rtindex = 1; /* only entry in dummy rtable */ sv_rtable = pstate->p_rtable; pstate->p_rtable = list_make1(jrte); sv_namespace = pstate->p_namespace; pstate->p_namespace = list_make1(jrtr); /* * For now, we don't support resjunk sort clauses on the output of a * setOperation tree --- you can only use the SQL92-spec options of * selecting an output column by name or number. Enforce by checking * that transformSortClause doesn't add any items to tlist. */ tllen = list_length(qry->targetList); qry->sortClause = transformSortClause(pstate, sortClause, &qry->targetList, false /* no unknowns expected */ ); pstate->p_namespace = sv_namespace; pstate->p_rtable = sv_rtable; if (tllen != list_length(qry->targetList)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("ORDER BY on a UNION/INTERSECT/EXCEPT result must be on one of the result columns"))); qry->limitOffset = transformLimitClause(pstate, limitOffset, "OFFSET"); qry->limitCount = transformLimitClause(pstate, limitCount, "LIMIT"); qry->rtable = pstate->p_rtable; qry->jointree = makeFromExpr(pstate->p_joinlist, NULL); qry->hasSubLinks = pstate->p_hasSubLinks; qry->hasAggs = pstate->p_hasAggs; if (pstate->p_hasAggs || qry->groupClause || qry->havingQual) parseCheckAggregates(pstate, qry); if (forUpdate != NIL) transformForUpdate(qry, forUpdate); return qry; } /* * transformSetOperationTree * Recursively transform leaves and internal nodes of a set-op tree */ static Node * transformSetOperationTree(ParseState *pstate, SelectStmt *stmt) { bool isLeaf; Assert(stmt && IsA(stmt, SelectStmt)); /* * Validity-check both leaf and internal SELECTs for disallowed ops. */ if (stmt->into) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("INTO is only allowed on first SELECT of UNION/INTERSECT/EXCEPT"))); /* We don't support forUpdate with set ops at the moment. */ if (stmt->forUpdate) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT"))); /* * If an internal node of a set-op tree has ORDER BY, UPDATE, or LIMIT * clauses attached, we need to treat it like a leaf node to generate * an independent sub-Query tree. Otherwise, it can be represented by * a SetOperationStmt node underneath the parent Query. */ if (stmt->op == SETOP_NONE) { Assert(stmt->larg == NULL && stmt->rarg == NULL); isLeaf = true; } else { Assert(stmt->larg != NULL && stmt->rarg != NULL); if (stmt->sortClause || stmt->limitOffset || stmt->limitCount || stmt->forUpdate) isLeaf = true; else isLeaf = false; } if (isLeaf) { /* Process leaf SELECT */ List *selectList; Query *selectQuery; char selectName[32]; RangeTblEntry *rte; RangeTblRef *rtr; /* * Transform SelectStmt into a Query. * * Note: previously transformed sub-queries don't affect the parsing * of this sub-query, because they are not in the toplevel * pstate's namespace list. */ selectList = parse_sub_analyze((Node *) stmt, pstate); Assert(list_length(selectList) == 1); selectQuery = (Query *) linitial(selectList); Assert(IsA(selectQuery, Query)); /* * Check for bogus references to Vars on the current query level * (but upper-level references are okay). Normally this can't * happen because the namespace will be empty, but it could happen * if we are inside a rule. */ if (pstate->p_namespace) { if (contain_vars_of_level((Node *) selectQuery, 1)) ereport(ERROR, (errcode(ERRCODE_INVALID_COLUMN_REFERENCE), errmsg("UNION/INTERSECT/EXCEPT member statement may not refer to other relations of same query level"))); } /* * Make the leaf query be a subquery in the top-level rangetable. */ snprintf(selectName, sizeof(selectName), "*SELECT* %d", list_length(pstate->p_rtable) + 1); rte = addRangeTableEntryForSubquery(pstate, selectQuery, makeAlias(selectName, NIL), false); /* * Return a RangeTblRef to replace the SelectStmt in the set-op * tree. */ rtr = makeNode(RangeTblRef); /* assume new rte is at end */ rtr->rtindex = list_length(pstate->p_rtable); Assert(rte == rt_fetch(rtr->rtindex, pstate->p_rtable)); return (Node *) rtr; } else { /* Process an internal node (set operation node) */ SetOperationStmt *op = makeNode(SetOperationStmt); List *lcoltypes; List *rcoltypes; ListCell *l; ListCell *r; const char *context; context = (stmt->op == SETOP_UNION ? "UNION" : (stmt->op == SETOP_INTERSECT ? "INTERSECT" : "EXCEPT")); op->op = stmt->op; op->all = stmt->all; /* * Recursively transform the child nodes. */ op->larg = transformSetOperationTree(pstate, stmt->larg); op->rarg = transformSetOperationTree(pstate, stmt->rarg); /* * Verify that the two children have the same number of non-junk * columns, and determine the types of the merged output columns. */ lcoltypes = getSetColTypes(pstate, op->larg); rcoltypes = getSetColTypes(pstate, op->rarg); if (list_length(lcoltypes) != list_length(rcoltypes)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("each %s query must have the same number of columns", context))); op->colTypes = NIL; forboth(l, lcoltypes, r, rcoltypes) { Oid lcoltype = lfirst_oid(l); Oid rcoltype = lfirst_oid(r); Oid rescoltype; rescoltype = select_common_type(list_make2_oid(lcoltype, rcoltype), context); op->colTypes = lappend_oid(op->colTypes, rescoltype); } return (Node *) op; } } /* * getSetColTypes * Get output column types of an (already transformed) set-op node */ static List * getSetColTypes(ParseState *pstate, Node *node) { if (IsA(node, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) node; RangeTblEntry *rte = rt_fetch(rtr->rtindex, pstate->p_rtable); Query *selectQuery = rte->subquery; List *result = NIL; ListCell *tl; Assert(selectQuery != NULL); /* Get types of non-junk columns */ foreach(tl, selectQuery->targetList) { TargetEntry *tle = (TargetEntry *) lfirst(tl); if (tle->resjunk) continue; result = lappend_oid(result, exprType((Node *) tle->expr)); } return result; } else if (IsA(node, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) node; /* Result already computed during transformation of node */ Assert(op->colTypes != NIL); return op->colTypes; } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(node)); return NIL; /* keep compiler quiet */ } } /* Attach column names from a ColumnDef list to a TargetEntry list */ static void applyColumnNames(List *dst, List *src) { ListCell *dst_item; ListCell *src_item; if (list_length(src) > list_length(dst)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("CREATE TABLE AS specifies too many column names"))); forboth(dst_item, dst, src_item, src) { TargetEntry *d = (TargetEntry *) lfirst(dst_item); ColumnDef *s = (ColumnDef *) lfirst(src_item); Assert(!d->resjunk); d->resname = pstrdup(s->colname); } } /* * transformUpdateStmt - * transforms an update statement */ static Query * transformUpdateStmt(ParseState *pstate, UpdateStmt *stmt) { Query *qry = makeNode(Query); Node *qual; ListCell *origTargetList; ListCell *tl; qry->commandType = CMD_UPDATE; pstate->p_is_update = true; qry->resultRelation = setTargetTable(pstate, stmt->relation, interpretInhOption(stmt->relation->inhOpt), true, ACL_UPDATE); /* * the FROM clause is non-standard SQL syntax. We used to be able to * do this with REPLACE in POSTQUEL so we keep the feature. */ transformFromClause(pstate, stmt->fromClause); qry->targetList = transformTargetList(pstate, stmt->targetList); qual = transformWhereClause(pstate, stmt->whereClause, "WHERE"); qry->rtable = pstate->p_rtable; qry->jointree = makeFromExpr(pstate->p_joinlist, qual); qry->hasSubLinks = pstate->p_hasSubLinks; qry->hasAggs = pstate->p_hasAggs; if (pstate->p_hasAggs) parseCheckAggregates(pstate, qry); /* * Now we are done with SELECT-like processing, and can get on with * transforming the target list to match the UPDATE target columns. */ /* Prepare to assign non-conflicting resnos to resjunk attributes */ if (pstate->p_next_resno <= pstate->p_target_relation->rd_rel->relnatts) pstate->p_next_resno = pstate->p_target_relation->rd_rel->relnatts + 1; /* Prepare non-junk columns for assignment to target table */ origTargetList = list_head(stmt->targetList); foreach(tl, qry->targetList) { TargetEntry *tle = (TargetEntry *) lfirst(tl); ResTarget *origTarget; if (tle->resjunk) { /* * Resjunk nodes need no additional processing, but be sure * they have resnos that do not match any target columns; else * rewriter or planner might get confused. They don't need a * resname either. */ tle->resno = (AttrNumber) pstate->p_next_resno++; tle->resname = NULL; continue; } if (origTargetList == NULL) elog(ERROR, "UPDATE target count mismatch --- internal error"); origTarget = (ResTarget *) lfirst(origTargetList); Assert(IsA(origTarget, ResTarget)); updateTargetListEntry(pstate, tle, origTarget->name, attnameAttNum(pstate->p_target_relation, origTarget->name, true), origTarget->indirection); origTargetList = lnext(origTargetList); } if (origTargetList != NULL) elog(ERROR, "UPDATE target count mismatch --- internal error"); return qry; } /* * tranformAlterTableStmt - * transform an Alter Table Statement */ static Query * transformAlterTableStmt(ParseState *pstate, AlterTableStmt *stmt, List **extras_before, List **extras_after) { CreateStmtContext cxt; Query *qry; ListCell *lcmd, *l; List *newcmds = NIL; bool skipValidation = true; AlterTableCmd *newcmd; cxt.stmtType = "ALTER TABLE"; cxt.relation = stmt->relation; cxt.inhRelations = NIL; cxt.isalter = true; cxt.hasoids = false; /* need not be right */ cxt.columns = NIL; cxt.ckconstraints = NIL; cxt.fkconstraints = NIL; cxt.ixconstraints = NIL; cxt.blist = NIL; cxt.alist = NIL; cxt.pkey = NULL; /* * The only subtypes that currently require parse transformation * handling are ADD COLUMN and ADD CONSTRAINT. These largely re-use * code from CREATE TABLE. */ foreach(lcmd, stmt->cmds) { AlterTableCmd *cmd = (AlterTableCmd *) lfirst(lcmd); switch (cmd->subtype) { case AT_AddColumn: { ColumnDef *def = (ColumnDef *) cmd->def; Assert(IsA(cmd->def, ColumnDef)); transformColumnDefinition(pstate, &cxt, (ColumnDef *) cmd->def); /* * If the column has a non-null default, we can't skip * validation of foreign keys. */ if (((ColumnDef *) cmd->def)->raw_default != NULL) skipValidation = false; newcmds = lappend(newcmds, cmd); /* * Convert an ADD COLUMN ... NOT NULL constraint to a * separate command */ if (def->is_not_null) { /* Remove NOT NULL from AddColumn */ def->is_not_null = false; /* Add as a separate AlterTableCmd */ newcmd = makeNode(AlterTableCmd); newcmd->subtype = AT_SetNotNull; newcmd->name = pstrdup(def->colname); newcmds = lappend(newcmds, newcmd); } /* * All constraints are processed in other ways. Remove * the original list */ def->constraints = NIL; break; } case AT_AddConstraint: /* * The original AddConstraint cmd node doesn't go to * newcmds */ if (IsA(cmd->def, Constraint)) transformTableConstraint(pstate, &cxt, (Constraint *) cmd->def); else if (IsA(cmd->def, FkConstraint)) { cxt.fkconstraints = lappend(cxt.fkconstraints, cmd->def); skipValidation = false; } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(cmd->def)); break; case AT_ProcessedConstraint: /* * Already-transformed ADD CONSTRAINT, so just make it * look like the standard case. */ cmd->subtype = AT_AddConstraint; newcmds = lappend(newcmds, cmd); break; default: newcmds = lappend(newcmds, cmd); break; } } /* Postprocess index and FK constraints */ transformIndexConstraints(pstate, &cxt); transformFKConstraints(pstate, &cxt, skipValidation, true); /* * Push any index-creation commands into the ALTER, so that they can * be scheduled nicely by tablecmds.c. */ foreach(l, cxt.alist) { Node *idxstmt = (Node *) lfirst(l); Assert(IsA(idxstmt, IndexStmt)); newcmd = makeNode(AlterTableCmd); newcmd->subtype = AT_AddIndex; newcmd->def = idxstmt; newcmds = lappend(newcmds, newcmd); } cxt.alist = NIL; /* Append any CHECK or FK constraints to the commands list */ foreach(l, cxt.ckconstraints) { newcmd = makeNode(AlterTableCmd); newcmd->subtype = AT_AddConstraint; newcmd->def = (Node *) lfirst(l); newcmds = lappend(newcmds, newcmd); } foreach(l, cxt.fkconstraints) { newcmd = makeNode(AlterTableCmd); newcmd->subtype = AT_AddConstraint; newcmd->def = (Node *) lfirst(l); newcmds = lappend(newcmds, newcmd); } /* Update statement's commands list */ stmt->cmds = newcmds; qry = makeNode(Query); qry->commandType = CMD_UTILITY; qry->utilityStmt = (Node *) stmt; *extras_before = list_concat(*extras_before, cxt.blist); *extras_after = list_concat(cxt.alist, *extras_after); return qry; } static Query * transformDeclareCursorStmt(ParseState *pstate, DeclareCursorStmt *stmt) { Query *result = makeNode(Query); List *extras_before = NIL, *extras_after = NIL; result->commandType = CMD_UTILITY; result->utilityStmt = (Node *) stmt; /* * Don't allow both SCROLL and NO SCROLL to be specified */ if ((stmt->options & CURSOR_OPT_SCROLL) && (stmt->options & CURSOR_OPT_NO_SCROLL)) ereport(ERROR, (errcode(ERRCODE_INVALID_CURSOR_DEFINITION), errmsg("cannot specify both SCROLL and NO SCROLL"))); stmt->query = (Node *) transformStmt(pstate, stmt->query, &extras_before, &extras_after); /* Shouldn't get any extras, since grammar only allows SelectStmt */ if (extras_before || extras_after) elog(ERROR, "unexpected extra stuff in cursor statement"); return result; } static Query * transformPrepareStmt(ParseState *pstate, PrepareStmt *stmt) { Query *result = makeNode(Query); List *argtype_oids = NIL; /* argtype OIDs in a list */ Oid *argtoids = NULL; /* and as an array */ int nargs; List *queries; result->commandType = CMD_UTILITY; result->utilityStmt = (Node *) stmt; /* Transform list of TypeNames to list (and array) of type OIDs */ nargs = list_length(stmt->argtypes); if (nargs) { ListCell *l; int i = 0; argtoids = (Oid *) palloc(nargs * sizeof(Oid)); foreach(l, stmt->argtypes) { TypeName *tn = lfirst(l); Oid toid = typenameTypeId(tn); argtype_oids = lappend_oid(argtype_oids, toid); argtoids[i++] = toid; } } stmt->argtype_oids = argtype_oids; /* * Analyze the statement using these parameter types (any parameters * passed in from above us will not be visible to it). */ queries = parse_analyze((Node *) stmt->query, argtoids, nargs); /* * Shouldn't get any extra statements, since grammar only allows * OptimizableStmt */ if (list_length(queries) != 1) elog(ERROR, "unexpected extra stuff in prepared statement"); stmt->query = linitial(queries); return result; } static Query * transformExecuteStmt(ParseState *pstate, ExecuteStmt *stmt) { Query *result = makeNode(Query); List *paramtypes; result->commandType = CMD_UTILITY; result->utilityStmt = (Node *) stmt; paramtypes = FetchPreparedStatementParams(stmt->name); if (stmt->params || paramtypes) { int nparams = list_length(stmt->params); int nexpected = list_length(paramtypes); ListCell *l, *l2; int i = 1; if (nparams != nexpected) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("wrong number of parameters for prepared statement \"%s\"", stmt->name), errdetail("Expected %d parameters but got %d.", nexpected, nparams))); forboth(l, stmt->params, l2, paramtypes) { Node *expr = lfirst(l); Oid expected_type_id = lfirst_oid(l2); Oid given_type_id; expr = transformExpr(pstate, expr); /* Cannot contain subselects or aggregates */ if (pstate->p_hasSubLinks) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot use subquery in EXECUTE parameter"))); if (pstate->p_hasAggs) ereport(ERROR, (errcode(ERRCODE_GROUPING_ERROR), errmsg("cannot use aggregate function in EXECUTE parameter"))); given_type_id = exprType(expr); expr = coerce_to_target_type(pstate, expr, given_type_id, expected_type_id, -1, COERCION_ASSIGNMENT, COERCE_IMPLICIT_CAST); if (expr == NULL) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("parameter $%d of type %s cannot be coerced to the expected type %s", i, format_type_be(given_type_id), format_type_be(expected_type_id)), errhint("You will need to rewrite or cast the expression."))); lfirst(l) = expr; i++; } } return result; } /* exported so planner can check again after rewriting, query pullup, etc */ void CheckSelectForUpdate(Query *qry) { if (qry->setOperations) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT"))); if (qry->distinctClause != NIL) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with DISTINCT clause"))); if (qry->groupClause != NIL) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with GROUP BY clause"))); if (qry->havingQual != NULL) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with HAVING clause"))); if (qry->hasAggs) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE is not allowed with aggregate functions"))); } /* * Convert FOR UPDATE name list into rowMarks list of integer relids * * NB: if you need to change this, see also markQueryForUpdate() * in rewriteHandler.c. */ static void transformForUpdate(Query *qry, List *forUpdate) { List *rowMarks = qry->rowMarks; ListCell *l; ListCell *rt; Index i; CheckSelectForUpdate(qry); if (linitial(forUpdate) == NULL) { /* all regular tables used in query */ i = 0; foreach(rt, qry->rtable) { RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); ++i; switch (rte->rtekind) { case RTE_RELATION: if (!list_member_int(rowMarks, i)) /* avoid duplicates */ rowMarks = lappend_int(rowMarks, i); rte->requiredPerms |= ACL_SELECT_FOR_UPDATE; break; case RTE_SUBQUERY: /* * FOR UPDATE of subquery is propagated to subquery's * rels */ transformForUpdate(rte->subquery, list_make1(NULL)); break; default: /* ignore JOIN, SPECIAL, FUNCTION RTEs */ break; } } } else { /* just the named tables */ foreach(l, forUpdate) { char *relname = strVal(lfirst(l)); i = 0; foreach(rt, qry->rtable) { RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); ++i; if (strcmp(rte->eref->aliasname, relname) == 0) { switch (rte->rtekind) { case RTE_RELATION: if (!list_member_int(rowMarks, i)) /* avoid duplicates */ rowMarks = lappend_int(rowMarks, i); rte->requiredPerms |= ACL_SELECT_FOR_UPDATE; break; case RTE_SUBQUERY: /* * FOR UPDATE of subquery is propagated to * subquery's rels */ transformForUpdate(rte->subquery, list_make1(NULL)); break; case RTE_JOIN: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE cannot be applied to a join"))); break; case RTE_SPECIAL: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE cannot be applied to NEW or OLD"))); break; case RTE_FUNCTION: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("SELECT FOR UPDATE cannot be applied to a function"))); break; default: elog(ERROR, "unrecognized RTE type: %d", (int) rte->rtekind); break; } break; /* out of foreach loop */ } } if (rt == NULL) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_TABLE), errmsg("relation \"%s\" in FOR UPDATE clause not found in FROM clause", relname))); } } qry->rowMarks = rowMarks; } /* * Preprocess a list of column constraint clauses * to attach constraint attributes to their primary constraint nodes * and detect inconsistent/misplaced constraint attributes. * * NOTE: currently, attributes are only supported for FOREIGN KEY primary * constraints, but someday they ought to be supported for other constraints. */ static void transformConstraintAttrs(List *constraintList) { Node *lastprimarynode = NULL; bool saw_deferrability = false; bool saw_initially = false; ListCell *clist; foreach(clist, constraintList) { Node *node = lfirst(clist); if (!IsA(node, Constraint)) { lastprimarynode = node; /* reset flags for new primary node */ saw_deferrability = false; saw_initially = false; } else { Constraint *con = (Constraint *) node; switch (con->contype) { case CONSTR_ATTR_DEFERRABLE: if (lastprimarynode == NULL || !IsA(lastprimarynode, FkConstraint)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("misplaced DEFERRABLE clause"))); if (saw_deferrability) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed"))); saw_deferrability = true; ((FkConstraint *) lastprimarynode)->deferrable = true; break; case CONSTR_ATTR_NOT_DEFERRABLE: if (lastprimarynode == NULL || !IsA(lastprimarynode, FkConstraint)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("misplaced NOT DEFERRABLE clause"))); if (saw_deferrability) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed"))); saw_deferrability = true; ((FkConstraint *) lastprimarynode)->deferrable = false; if (saw_initially && ((FkConstraint *) lastprimarynode)->initdeferred) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("constraint declared INITIALLY DEFERRED must be DEFERRABLE"))); break; case CONSTR_ATTR_DEFERRED: if (lastprimarynode == NULL || !IsA(lastprimarynode, FkConstraint)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("misplaced INITIALLY DEFERRED clause"))); if (saw_initially) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed"))); saw_initially = true; ((FkConstraint *) lastprimarynode)->initdeferred = true; /* * If only INITIALLY DEFERRED appears, assume * DEFERRABLE */ if (!saw_deferrability) ((FkConstraint *) lastprimarynode)->deferrable = true; else if (!((FkConstraint *) lastprimarynode)->deferrable) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("constraint declared INITIALLY DEFERRED must be DEFERRABLE"))); break; case CONSTR_ATTR_IMMEDIATE: if (lastprimarynode == NULL || !IsA(lastprimarynode, FkConstraint)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("misplaced INITIALLY IMMEDIATE clause"))); if (saw_initially) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed"))); saw_initially = true; ((FkConstraint *) lastprimarynode)->initdeferred = false; break; default: /* Otherwise it's not an attribute */ lastprimarynode = node; /* reset flags for new primary node */ saw_deferrability = false; saw_initially = false; break; } } } } /* Build a FromExpr node */ static FromExpr * makeFromExpr(List *fromlist, Node *quals) { FromExpr *f = makeNode(FromExpr); f->fromlist = fromlist; f->quals = quals; return f; } /* * Special handling of type definition for a column */ static void transformColumnType(ParseState *pstate, ColumnDef *column) { /* * All we really need to do here is verify that the type is valid. */ Type ctype = typenameType(column->typename); ReleaseSysCache(ctype); } static void setSchemaName(char *context_schema, char **stmt_schema_name) { if (*stmt_schema_name == NULL) *stmt_schema_name = context_schema; else if (strcmp(context_schema, *stmt_schema_name) != 0) ereport(ERROR, (errcode(ERRCODE_INVALID_SCHEMA_DEFINITION), errmsg("CREATE specifies a schema (%s) " "different from the one being created (%s)", *stmt_schema_name, context_schema))); } /* * analyzeCreateSchemaStmt - * analyzes the "create schema" statement * * Split the schema element list into individual commands and place * them in the result list in an order such that there are no forward * references (e.g. GRANT to a table created later in the list). Note * that the logic we use for determining forward references is * presently quite incomplete. * * SQL92 also allows constraints to make forward references, so thumb through * the table columns and move forward references to a posterior alter-table * command. * * The result is a list of parse nodes that still need to be analyzed --- * but we can't analyze the later commands until we've executed the earlier * ones, because of possible inter-object references. * * Note: Called from commands/schemacmds.c */ List * analyzeCreateSchemaStmt(CreateSchemaStmt *stmt) { CreateSchemaStmtContext cxt; List *result; ListCell *elements; cxt.stmtType = "CREATE SCHEMA"; cxt.schemaname = stmt->schemaname; cxt.authid = stmt->authid; cxt.sequences = NIL; cxt.tables = NIL; cxt.views = NIL; cxt.indexes = NIL; cxt.grants = NIL; cxt.triggers = NIL; cxt.fwconstraints = NIL; cxt.alters = NIL; cxt.blist = NIL; cxt.alist = NIL; /* * Run through each schema element in the schema element list. * Separate statements by type, and do preliminary analysis. */ foreach(elements, stmt->schemaElts) { Node *element = lfirst(elements); switch (nodeTag(element)) { case T_CreateSeqStmt: { CreateSeqStmt *elp = (CreateSeqStmt *) element; setSchemaName(cxt.schemaname, &elp->sequence->schemaname); cxt.sequences = lappend(cxt.sequences, element); } break; case T_CreateStmt: { CreateStmt *elp = (CreateStmt *) element; setSchemaName(cxt.schemaname, &elp->relation->schemaname); /* * XXX todo: deal with constraints */ cxt.tables = lappend(cxt.tables, element); } break; case T_ViewStmt: { ViewStmt *elp = (ViewStmt *) element; setSchemaName(cxt.schemaname, &elp->view->schemaname); /* * XXX todo: deal with references between views */ cxt.views = lappend(cxt.views, element); } break; case T_IndexStmt: { IndexStmt *elp = (IndexStmt *) element; setSchemaName(cxt.schemaname, &elp->relation->schemaname); cxt.indexes = lappend(cxt.indexes, element); } break; case T_CreateTrigStmt: { CreateTrigStmt *elp = (CreateTrigStmt *) element; setSchemaName(cxt.schemaname, &elp->relation->schemaname); cxt.triggers = lappend(cxt.triggers, element); } break; case T_GrantStmt: cxt.grants = lappend(cxt.grants, element); break; default: elog(ERROR, "unrecognized node type: %d", (int) nodeTag(element)); } } result = NIL; result = list_concat(result, cxt.sequences); result = list_concat(result, cxt.tables); result = list_concat(result, cxt.views); result = list_concat(result, cxt.indexes); result = list_concat(result, cxt.triggers); result = list_concat(result, cxt.grants); return result; } /* * Traverse a fully-analyzed tree to verify that parameter symbols * match their types. We need this because some Params might still * be UNKNOWN, if there wasn't anything to force their coercion, * and yet other instances seen later might have gotten coerced. */ static bool check_parameter_resolution_walker(Node *node, check_parameter_resolution_context *context) { if (node == NULL) return false; if (IsA(node, Param)) { Param *param = (Param *) node; if (param->paramkind == PARAM_NUM) { int paramno = param->paramid; if (paramno <= 0 || /* shouldn't happen, but... */ paramno > context->numParams) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_PARAMETER), errmsg("there is no parameter $%d", paramno))); if (param->paramtype != context->paramTypes[paramno - 1]) ereport(ERROR, (errcode(ERRCODE_AMBIGUOUS_PARAMETER), errmsg("could not determine data type of parameter $%d", paramno))); } return false; } if (IsA(node, Query)) { /* Recurse into RTE subquery or not-yet-planned sublink subquery */ return query_tree_walker((Query *) node, check_parameter_resolution_walker, (void *) context, 0); } return expression_tree_walker(node, check_parameter_resolution_walker, (void *) context); }