/*------------------------------------------------------------------------- * * tsm_system_time.c * support routines for SYSTEM_TIME tablesample method * * The desire here is to produce a random sample with as many rows as possible * in no more than the specified amount of time. We use a block-sampling * approach. To ensure that the whole relation will be visited if necessary, * we start at a randomly chosen block and then advance with a stride that * is randomly chosen but is relatively prime to the relation's nblocks. * * Because of the time dependence, this method is necessarily unrepeatable. * However, we do what we can to reduce surprising behavior by selecting * the sampling pattern just once per query, much as in tsm_system_rows. * * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * contrib/tsm_system_time/tsm_system_time.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include "access/relscan.h" #include "access/tsmapi.h" #include "catalog/pg_type.h" #include "miscadmin.h" #include "optimizer/optimizer.h" #include "utils/sampling.h" #include "utils/spccache.h" PG_MODULE_MAGIC; PG_FUNCTION_INFO_V1(tsm_system_time_handler); /* Private state */ typedef struct { uint32 seed; /* random seed */ double millis; /* time limit for sampling */ instr_time start_time; /* scan start time */ OffsetNumber lt; /* last tuple returned from current block */ BlockNumber doneblocks; /* number of already-scanned blocks */ BlockNumber lb; /* last block visited */ /* these three values are not changed during a rescan: */ BlockNumber nblocks; /* number of blocks in relation */ BlockNumber firstblock; /* first block to sample from */ BlockNumber step; /* step size, or 0 if not set yet */ } SystemTimeSamplerData; static void system_time_samplescangetsamplesize(PlannerInfo *root, RelOptInfo *baserel, List *paramexprs, BlockNumber *pages, double *tuples); static void system_time_initsamplescan(SampleScanState *node, int eflags); static void system_time_beginsamplescan(SampleScanState *node, Datum *params, int nparams, uint32 seed); static BlockNumber system_time_nextsampleblock(SampleScanState *node, BlockNumber nblocks); static OffsetNumber system_time_nextsampletuple(SampleScanState *node, BlockNumber blockno, OffsetNumber maxoffset); static uint32 random_relative_prime(uint32 n, pg_prng_state *randstate); /* * Create a TsmRoutine descriptor for the SYSTEM_TIME method. */ Datum tsm_system_time_handler(PG_FUNCTION_ARGS) { TsmRoutine *tsm = makeNode(TsmRoutine); tsm->parameterTypes = list_make1_oid(FLOAT8OID); /* See notes at head of file */ tsm->repeatable_across_queries = false; tsm->repeatable_across_scans = false; tsm->SampleScanGetSampleSize = system_time_samplescangetsamplesize; tsm->InitSampleScan = system_time_initsamplescan; tsm->BeginSampleScan = system_time_beginsamplescan; tsm->NextSampleBlock = system_time_nextsampleblock; tsm->NextSampleTuple = system_time_nextsampletuple; tsm->EndSampleScan = NULL; PG_RETURN_POINTER(tsm); } /* * Sample size estimation. */ static void system_time_samplescangetsamplesize(PlannerInfo *root, RelOptInfo *baserel, List *paramexprs, BlockNumber *pages, double *tuples) { Node *limitnode; double millis; double spc_random_page_cost; double npages; double ntuples; /* Try to extract an estimate for the limit time spec */ limitnode = (Node *) linitial(paramexprs); limitnode = estimate_expression_value(root, limitnode); if (IsA(limitnode, Const) && !((Const *) limitnode)->constisnull) { millis = DatumGetFloat8(((Const *) limitnode)->constvalue); if (millis < 0 || isnan(millis)) { /* Default millis if the value is bogus */ millis = 1000; } } else { /* Default millis if we didn't obtain a non-null Const */ millis = 1000; } /* Get the planner's idea of cost per page read */ get_tablespace_page_costs(baserel->reltablespace, &spc_random_page_cost, NULL); /* * Estimate the number of pages we can read by assuming that the cost * figure is expressed in milliseconds. This is completely, unmistakably * bogus, but we have to do something to produce an estimate and there's * no better answer. */ if (spc_random_page_cost > 0) npages = millis / spc_random_page_cost; else npages = millis; /* even more bogus, but whatcha gonna do? */ /* Clamp to sane value */ npages = clamp_row_est(Min((double) baserel->pages, npages)); if (baserel->tuples > 0 && baserel->pages > 0) { /* Estimate number of tuples returned based on tuple density */ double density = baserel->tuples / (double) baserel->pages; ntuples = npages * density; } else { /* For lack of data, assume one tuple per page */ ntuples = npages; } /* Clamp to the estimated relation size */ ntuples = clamp_row_est(Min(baserel->tuples, ntuples)); *pages = npages; *tuples = ntuples; } /* * Initialize during executor setup. */ static void system_time_initsamplescan(SampleScanState *node, int eflags) { node->tsm_state = palloc0(sizeof(SystemTimeSamplerData)); /* Note the above leaves tsm_state->step equal to zero */ } /* * Examine parameters and prepare for a sample scan. */ static void system_time_beginsamplescan(SampleScanState *node, Datum *params, int nparams, uint32 seed) { SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state; double millis = DatumGetFloat8(params[0]); if (millis < 0 || isnan(millis)) ereport(ERROR, (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT), errmsg("sample collection time must not be negative"))); sampler->seed = seed; sampler->millis = millis; sampler->lt = InvalidOffsetNumber; sampler->doneblocks = 0; /* start_time, lb will be initialized during first NextSampleBlock call */ /* we intentionally do not change nblocks/firstblock/step here */ } /* * Select next block to sample. * * Uses linear probing algorithm for picking next block. */ static BlockNumber system_time_nextsampleblock(SampleScanState *node, BlockNumber nblocks) { SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state; instr_time cur_time; /* First call within scan? */ if (sampler->doneblocks == 0) { /* First scan within query? */ if (sampler->step == 0) { /* Initialize now that we have scan descriptor */ pg_prng_state randstate; /* If relation is empty, there's nothing to scan */ if (nblocks == 0) return InvalidBlockNumber; /* We only need an RNG during this setup step */ sampler_random_init_state(sampler->seed, &randstate); /* Compute nblocks/firstblock/step only once per query */ sampler->nblocks = nblocks; /* Choose random starting block within the relation */ /* (Actually this is the predecessor of the first block visited) */ sampler->firstblock = sampler_random_fract(&randstate) * sampler->nblocks; /* Find relative prime as step size for linear probing */ sampler->step = random_relative_prime(sampler->nblocks, &randstate); } /* Reinitialize lb and start_time */ sampler->lb = sampler->firstblock; INSTR_TIME_SET_CURRENT(sampler->start_time); } /* If we've read all blocks in relation, we're done */ if (++sampler->doneblocks > sampler->nblocks) return InvalidBlockNumber; /* If we've used up all the allotted time, we're done */ INSTR_TIME_SET_CURRENT(cur_time); INSTR_TIME_SUBTRACT(cur_time, sampler->start_time); if (INSTR_TIME_GET_MILLISEC(cur_time) >= sampler->millis) return InvalidBlockNumber; /* * It's probably impossible for scan->rs_nblocks to decrease between scans * within a query; but just in case, loop until we select a block number * less than scan->rs_nblocks. We don't care if scan->rs_nblocks has * increased since the first scan. */ do { /* Advance lb, using uint64 arithmetic to forestall overflow */ sampler->lb = ((uint64) sampler->lb + sampler->step) % sampler->nblocks; } while (sampler->lb >= nblocks); return sampler->lb; } /* * Select next sampled tuple in current block. * * In block sampling, we just want to sample all the tuples in each selected * block. * * When we reach end of the block, return InvalidOffsetNumber which tells * SampleScan to go to next block. */ static OffsetNumber system_time_nextsampletuple(SampleScanState *node, BlockNumber blockno, OffsetNumber maxoffset) { SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state; OffsetNumber tupoffset = sampler->lt; /* Advance to next possible offset on page */ if (tupoffset == InvalidOffsetNumber) tupoffset = FirstOffsetNumber; else tupoffset++; /* Done? */ if (tupoffset > maxoffset) tupoffset = InvalidOffsetNumber; sampler->lt = tupoffset; return tupoffset; } /* * Compute greatest common divisor of two uint32's. */ static uint32 gcd(uint32 a, uint32 b) { uint32 c; while (a != 0) { c = a; a = b % a; b = c; } return b; } /* * Pick a random value less than and relatively prime to n, if possible * (else return 1). */ static uint32 random_relative_prime(uint32 n, pg_prng_state *randstate) { uint32 r; /* Safety check to avoid infinite loop or zero result for small n. */ if (n <= 1) return 1; /* * This should only take 2 or 3 iterations as the probability of 2 numbers * being relatively prime is ~61%; but just in case, we'll include a * CHECK_FOR_INTERRUPTS in the loop. */ do { CHECK_FOR_INTERRUPTS(); r = (uint32) (sampler_random_fract(randstate) * n); } while (r == 0 || gcd(r, n) > 1); return r; }