/*------------------------------------------------------------------------- * * pg_list.h * interface for PostgreSQL generic list package * * Once upon a time, parts of Postgres were written in Lisp and used real * cons-cell lists for major data structures. When that code was rewritten * in C, we initially had a faithful emulation of cons-cell lists, which * unsurprisingly was a performance bottleneck. A couple of major rewrites * later, these data structures are actually simple expansible arrays; * but the "List" name and a lot of the notation survives. * * One important concession to the original implementation is that an empty * list is always represented by a null pointer (preferentially written NIL). * Non-empty lists have a header, which will not be relocated as long as the * list remains non-empty, and an expansible data array. * * We support four types of lists: * * T_List: lists of pointers * (in practice usually pointers to Nodes, but not always; * declared as "void *" to minimize casting annoyances) * T_IntList: lists of integers * T_OidList: lists of Oids * T_XidList: lists of TransactionIds * (the XidList infrastructure is less complete than the other cases) * * (At the moment, ints, Oids, and XIDs are the same size, but they may not * always be so; be careful to use the appropriate list type for your data.) * * * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/nodes/pg_list.h * *------------------------------------------------------------------------- */ #ifndef PG_LIST_H #define PG_LIST_H #include "nodes/nodes.h" typedef union ListCell { void *ptr_value; int int_value; Oid oid_value; TransactionId xid_value; } ListCell; typedef struct List { NodeTag type; /* T_List, T_IntList, T_OidList, or T_XidList */ int length; /* number of elements currently present */ int max_length; /* allocated length of elements[] */ ListCell *elements; /* re-allocatable array of cells */ /* We may allocate some cells along with the List header: */ ListCell initial_elements[FLEXIBLE_ARRAY_MEMBER]; /* If elements == initial_elements, it's not a separate allocation */ } List; /* * The *only* valid representation of an empty list is NIL; in other * words, a non-NIL list is guaranteed to have length >= 1. */ #define NIL ((List *) NULL) /* * State structs for various looping macros below. */ typedef struct ForEachState { const List *l; /* list we're looping through */ int i; /* current element index */ } ForEachState; typedef struct ForBothState { const List *l1; /* lists we're looping through */ const List *l2; int i; /* common element index */ } ForBothState; typedef struct ForBothCellState { const List *l1; /* lists we're looping through */ const List *l2; int i1; /* current element indexes */ int i2; } ForBothCellState; typedef struct ForThreeState { const List *l1; /* lists we're looping through */ const List *l2; const List *l3; int i; /* common element index */ } ForThreeState; typedef struct ForFourState { const List *l1; /* lists we're looping through */ const List *l2; const List *l3; const List *l4; int i; /* common element index */ } ForFourState; typedef struct ForFiveState { const List *l1; /* lists we're looping through */ const List *l2; const List *l3; const List *l4; const List *l5; int i; /* common element index */ } ForFiveState; /* * These routines are small enough, and used often enough, to justify being * inline. */ /* Fetch address of list's first cell; NULL if empty list */ static inline ListCell * list_head(const List *l) { return l ? &l->elements[0] : NULL; } /* Fetch address of list's last cell; NULL if empty list */ static inline ListCell * list_tail(const List *l) { return l ? &l->elements[l->length - 1] : NULL; } /* Fetch address of list's second cell, if it has one, else NULL */ static inline ListCell * list_second_cell(const List *l) { if (l && l->length >= 2) return &l->elements[1]; else return NULL; } /* Fetch list's length */ static inline int list_length(const List *l) { return l ? l->length : 0; } /* * Macros to access the data values within List cells. * * Note that with the exception of the "xxx_node" macros, these are * lvalues and can be assigned to. * * NB: There is an unfortunate legacy from a previous incarnation of * the List API: the macro lfirst() was used to mean "the data in this * cons cell". To avoid changing every usage of lfirst(), that meaning * has been kept. As a result, lfirst() takes a ListCell and returns * the data it contains; to get the data in the first cell of a * List, use linitial(). Worse, lsecond() is more closely related to * linitial() than lfirst(): given a List, lsecond() returns the data * in the second list cell. */ #define lfirst(lc) ((lc)->ptr_value) #define lfirst_int(lc) ((lc)->int_value) #define lfirst_oid(lc) ((lc)->oid_value) #define lfirst_xid(lc) ((lc)->xid_value) #define lfirst_node(type,lc) castNode(type, lfirst(lc)) #define linitial(l) lfirst(list_nth_cell(l, 0)) #define linitial_int(l) lfirst_int(list_nth_cell(l, 0)) #define linitial_oid(l) lfirst_oid(list_nth_cell(l, 0)) #define linitial_node(type,l) castNode(type, linitial(l)) #define lsecond(l) lfirst(list_nth_cell(l, 1)) #define lsecond_int(l) lfirst_int(list_nth_cell(l, 1)) #define lsecond_oid(l) lfirst_oid(list_nth_cell(l, 1)) #define lsecond_node(type,l) castNode(type, lsecond(l)) #define lthird(l) lfirst(list_nth_cell(l, 2)) #define lthird_int(l) lfirst_int(list_nth_cell(l, 2)) #define lthird_oid(l) lfirst_oid(list_nth_cell(l, 2)) #define lthird_node(type,l) castNode(type, lthird(l)) #define lfourth(l) lfirst(list_nth_cell(l, 3)) #define lfourth_int(l) lfirst_int(list_nth_cell(l, 3)) #define lfourth_oid(l) lfirst_oid(list_nth_cell(l, 3)) #define lfourth_node(type,l) castNode(type, lfourth(l)) #define llast(l) lfirst(list_last_cell(l)) #define llast_int(l) lfirst_int(list_last_cell(l)) #define llast_oid(l) lfirst_oid(list_last_cell(l)) #define llast_xid(l) lfirst_xid(list_last_cell(l)) #define llast_node(type,l) castNode(type, llast(l)) /* * Convenience macros for building fixed-length lists */ #define list_make_ptr_cell(v) ((ListCell) {.ptr_value = (v)}) #define list_make_int_cell(v) ((ListCell) {.int_value = (v)}) #define list_make_oid_cell(v) ((ListCell) {.oid_value = (v)}) #define list_make_xid_cell(v) ((ListCell) {.xid_value = (v)}) #define list_make1(x1) \ list_make1_impl(T_List, list_make_ptr_cell(x1)) #define list_make2(x1,x2) \ list_make2_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2)) #define list_make3(x1,x2,x3) \ list_make3_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \ list_make_ptr_cell(x3)) #define list_make4(x1,x2,x3,x4) \ list_make4_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \ list_make_ptr_cell(x3), list_make_ptr_cell(x4)) #define list_make5(x1,x2,x3,x4,x5) \ list_make5_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \ list_make_ptr_cell(x3), list_make_ptr_cell(x4), \ list_make_ptr_cell(x5)) #define list_make1_int(x1) \ list_make1_impl(T_IntList, list_make_int_cell(x1)) #define list_make2_int(x1,x2) \ list_make2_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2)) #define list_make3_int(x1,x2,x3) \ list_make3_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \ list_make_int_cell(x3)) #define list_make4_int(x1,x2,x3,x4) \ list_make4_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \ list_make_int_cell(x3), list_make_int_cell(x4)) #define list_make5_int(x1,x2,x3,x4,x5) \ list_make5_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \ list_make_int_cell(x3), list_make_int_cell(x4), \ list_make_int_cell(x5)) #define list_make1_oid(x1) \ list_make1_impl(T_OidList, list_make_oid_cell(x1)) #define list_make2_oid(x1,x2) \ list_make2_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2)) #define list_make3_oid(x1,x2,x3) \ list_make3_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \ list_make_oid_cell(x3)) #define list_make4_oid(x1,x2,x3,x4) \ list_make4_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \ list_make_oid_cell(x3), list_make_oid_cell(x4)) #define list_make5_oid(x1,x2,x3,x4,x5) \ list_make5_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \ list_make_oid_cell(x3), list_make_oid_cell(x4), \ list_make_oid_cell(x5)) #define list_make1_xid(x1) \ list_make1_impl(T_XidList, list_make_xid_cell(x1)) #define list_make2_xid(x1,x2) \ list_make2_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2)) #define list_make3_xid(x1,x2,x3) \ list_make3_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2), \ list_make_xid_cell(x3)) #define list_make4_xid(x1,x2,x3,x4) \ list_make4_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2), \ list_make_xid_cell(x3), list_make_xid_cell(x4)) #define list_make5_xid(x1,x2,x3,x4,x5) \ list_make5_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2), \ list_make_xid_cell(x3), list_make_xid_cell(x4), \ list_make_xid_cell(x5)) /* * Locate the n'th cell (counting from 0) of the list. * It is an assertion failure if there is no such cell. */ static inline ListCell * list_nth_cell(const List *list, int n) { Assert(list != NIL); Assert(n >= 0 && n < list->length); return &list->elements[n]; } /* * Return the last cell in a non-NIL List. */ static inline ListCell * list_last_cell(const List *list) { Assert(list != NIL); return &list->elements[list->length - 1]; } /* * Return the pointer value contained in the n'th element of the * specified list. (List elements begin at 0.) */ static inline void * list_nth(const List *list, int n) { Assert(IsA(list, List)); return lfirst(list_nth_cell(list, n)); } /* * Return the integer value contained in the n'th element of the * specified list. */ static inline int list_nth_int(const List *list, int n) { Assert(IsA(list, IntList)); return lfirst_int(list_nth_cell(list, n)); } /* * Return the OID value contained in the n'th element of the specified * list. */ static inline Oid list_nth_oid(const List *list, int n) { Assert(IsA(list, OidList)); return lfirst_oid(list_nth_cell(list, n)); } #define list_nth_node(type,list,n) castNode(type, list_nth(list, n)) /* * Get the given ListCell's index (from 0) in the given List. */ static inline int list_cell_number(const List *l, const ListCell *c) { Assert(c >= &l->elements[0] && c < &l->elements[l->length]); return c - l->elements; } /* * Get the address of the next cell after "c" within list "l", or NULL if none. */ static inline ListCell * lnext(const List *l, const ListCell *c) { Assert(c >= &l->elements[0] && c < &l->elements[l->length]); c++; if (c < &l->elements[l->length]) return (ListCell *) c; else return NULL; } /* * foreach - * a convenience macro for looping through a list * * "cell" must be the name of a "ListCell *" variable; it's made to point * to each List element in turn. "cell" will be NULL after normal exit from * the loop, but an early "break" will leave it pointing at the current * List element. * * Beware of changing the List object while the loop is iterating. * The current semantics are that we examine successive list indices in * each iteration, so that insertion or deletion of list elements could * cause elements to be re-visited or skipped unexpectedly. Previous * implementations of foreach() behaved differently. However, it's safe * to append elements to the List (or in general, insert them after the * current element); such new elements are guaranteed to be visited. * Also, the current element of the List can be deleted, if you use * foreach_delete_current() to do so. BUT: either of these actions will * invalidate the "cell" pointer for the remainder of the current iteration. */ #define foreach(cell, lst) \ for (ForEachState cell##__state = {(lst), 0}; \ (cell##__state.l != NIL && \ cell##__state.i < cell##__state.l->length) ? \ (cell = &cell##__state.l->elements[cell##__state.i], true) : \ (cell = NULL, false); \ cell##__state.i++) /* * foreach_delete_current - * delete the current list element from the List associated with a * surrounding foreach() loop, returning the new List pointer. * * This is equivalent to list_delete_cell(), but it also adjusts the foreach * loop's state so that no list elements will be missed. Do not delete * elements from an active foreach loop's list in any other way! */ #define foreach_delete_current(lst, cell) \ (cell##__state.i--, \ (List *) (cell##__state.l = list_delete_cell(lst, cell))) /* * foreach_current_index - * get the zero-based list index of a surrounding foreach() loop's * current element; pass the name of the "ListCell *" iterator variable. * * Beware of using this after foreach_delete_current(); the value will be * out of sync for the rest of the current loop iteration. Anyway, since * you just deleted the current element, the value is pretty meaningless. */ #define foreach_current_index(cell) (cell##__state.i) /* * for_each_from - * Like foreach(), but start from the N'th (zero-based) list element, * not necessarily the first one. * * It's okay for N to exceed the list length, but not for it to be negative. * * The caveats for foreach() apply equally here. */ #define for_each_from(cell, lst, N) \ for (ForEachState cell##__state = for_each_from_setup(lst, N); \ (cell##__state.l != NIL && \ cell##__state.i < cell##__state.l->length) ? \ (cell = &cell##__state.l->elements[cell##__state.i], true) : \ (cell = NULL, false); \ cell##__state.i++) static inline ForEachState for_each_from_setup(const List *lst, int N) { ForEachState r = {lst, N}; Assert(N >= 0); return r; } /* * for_each_cell - * a convenience macro which loops through a list starting from a * specified cell * * The caveats for foreach() apply equally here. */ #define for_each_cell(cell, lst, initcell) \ for (ForEachState cell##__state = for_each_cell_setup(lst, initcell); \ (cell##__state.l != NIL && \ cell##__state.i < cell##__state.l->length) ? \ (cell = &cell##__state.l->elements[cell##__state.i], true) : \ (cell = NULL, false); \ cell##__state.i++) static inline ForEachState for_each_cell_setup(const List *lst, const ListCell *initcell) { ForEachState r = {lst, initcell ? list_cell_number(lst, initcell) : list_length(lst)}; return r; } /* * forboth - * a convenience macro for advancing through two linked lists * simultaneously. This macro loops through both lists at the same * time, stopping when either list runs out of elements. Depending * on the requirements of the call site, it may also be wise to * assert that the lengths of the two lists are equal. (But, if they * are not, some callers rely on the ending cell values being separately * NULL or non-NULL as defined here; don't try to optimize that.) * * The caveats for foreach() apply equally here. */ #define forboth(cell1, list1, cell2, list2) \ for (ForBothState cell1##__state = {(list1), (list2), 0}; \ multi_for_advance_cell(cell1, cell1##__state, l1, i), \ multi_for_advance_cell(cell2, cell1##__state, l2, i), \ (cell1 != NULL && cell2 != NULL); \ cell1##__state.i++) #define multi_for_advance_cell(cell, state, l, i) \ (cell = (state.l != NIL && state.i < state.l->length) ? \ &state.l->elements[state.i] : NULL) /* * for_both_cell - * a convenience macro which loops through two lists starting from the * specified cells of each. This macro loops through both lists at the same * time, stopping when either list runs out of elements. Depending on the * requirements of the call site, it may also be wise to assert that the * lengths of the two lists are equal, and initcell1 and initcell2 are at * the same position in the respective lists. * * The caveats for foreach() apply equally here. */ #define for_both_cell(cell1, list1, initcell1, cell2, list2, initcell2) \ for (ForBothCellState cell1##__state = \ for_both_cell_setup(list1, initcell1, list2, initcell2); \ multi_for_advance_cell(cell1, cell1##__state, l1, i1), \ multi_for_advance_cell(cell2, cell1##__state, l2, i2), \ (cell1 != NULL && cell2 != NULL); \ cell1##__state.i1++, cell1##__state.i2++) static inline ForBothCellState for_both_cell_setup(const List *list1, const ListCell *initcell1, const List *list2, const ListCell *initcell2) { ForBothCellState r = {list1, list2, initcell1 ? list_cell_number(list1, initcell1) : list_length(list1), initcell2 ? list_cell_number(list2, initcell2) : list_length(list2)}; return r; } /* * forthree - * the same for three lists */ #define forthree(cell1, list1, cell2, list2, cell3, list3) \ for (ForThreeState cell1##__state = {(list1), (list2), (list3), 0}; \ multi_for_advance_cell(cell1, cell1##__state, l1, i), \ multi_for_advance_cell(cell2, cell1##__state, l2, i), \ multi_for_advance_cell(cell3, cell1##__state, l3, i), \ (cell1 != NULL && cell2 != NULL && cell3 != NULL); \ cell1##__state.i++) /* * forfour - * the same for four lists */ #define forfour(cell1, list1, cell2, list2, cell3, list3, cell4, list4) \ for (ForFourState cell1##__state = {(list1), (list2), (list3), (list4), 0}; \ multi_for_advance_cell(cell1, cell1##__state, l1, i), \ multi_for_advance_cell(cell2, cell1##__state, l2, i), \ multi_for_advance_cell(cell3, cell1##__state, l3, i), \ multi_for_advance_cell(cell4, cell1##__state, l4, i), \ (cell1 != NULL && cell2 != NULL && cell3 != NULL && cell4 != NULL); \ cell1##__state.i++) /* * forfive - * the same for five lists */ #define forfive(cell1, list1, cell2, list2, cell3, list3, cell4, list4, cell5, list5) \ for (ForFiveState cell1##__state = {(list1), (list2), (list3), (list4), (list5), 0}; \ multi_for_advance_cell(cell1, cell1##__state, l1, i), \ multi_for_advance_cell(cell2, cell1##__state, l2, i), \ multi_for_advance_cell(cell3, cell1##__state, l3, i), \ multi_for_advance_cell(cell4, cell1##__state, l4, i), \ multi_for_advance_cell(cell5, cell1##__state, l5, i), \ (cell1 != NULL && cell2 != NULL && cell3 != NULL && \ cell4 != NULL && cell5 != NULL); \ cell1##__state.i++) /* Functions in src/backend/nodes/list.c */ extern List *list_make1_impl(NodeTag t, ListCell datum1); extern List *list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2); extern List *list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2, ListCell datum3); extern List *list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2, ListCell datum3, ListCell datum4); extern List *list_make5_impl(NodeTag t, ListCell datum1, ListCell datum2, ListCell datum3, ListCell datum4, ListCell datum5); extern pg_nodiscard List *lappend(List *list, void *datum); extern pg_nodiscard List *lappend_int(List *list, int datum); extern pg_nodiscard List *lappend_oid(List *list, Oid datum); extern pg_nodiscard List *lappend_xid(List *list, TransactionId datum); extern pg_nodiscard List *list_insert_nth(List *list, int pos, void *datum); extern pg_nodiscard List *list_insert_nth_int(List *list, int pos, int datum); extern pg_nodiscard List *list_insert_nth_oid(List *list, int pos, Oid datum); extern pg_nodiscard List *lcons(void *datum, List *list); extern pg_nodiscard List *lcons_int(int datum, List *list); extern pg_nodiscard List *lcons_oid(Oid datum, List *list); extern pg_nodiscard List *list_concat(List *list1, const List *list2); extern pg_nodiscard List *list_concat_copy(const List *list1, const List *list2); extern pg_nodiscard List *list_truncate(List *list, int new_size); extern bool list_member(const List *list, const void *datum); extern bool list_member_ptr(const List *list, const void *datum); extern bool list_member_int(const List *list, int datum); extern bool list_member_oid(const List *list, Oid datum); extern bool list_member_xid(const List *list, TransactionId datum); extern pg_nodiscard List *list_delete(List *list, void *datum); extern pg_nodiscard List *list_delete_ptr(List *list, void *datum); extern pg_nodiscard List *list_delete_int(List *list, int datum); extern pg_nodiscard List *list_delete_oid(List *list, Oid datum); extern pg_nodiscard List *list_delete_first(List *list); extern pg_nodiscard List *list_delete_last(List *list); extern pg_nodiscard List *list_delete_first_n(List *list, int n); extern pg_nodiscard List *list_delete_nth_cell(List *list, int n); extern pg_nodiscard List *list_delete_cell(List *list, ListCell *cell); extern List *list_union(const List *list1, const List *list2); extern List *list_union_ptr(const List *list1, const List *list2); extern List *list_union_int(const List *list1, const List *list2); extern List *list_union_oid(const List *list1, const List *list2); extern List *list_intersection(const List *list1, const List *list2); extern List *list_intersection_int(const List *list1, const List *list2); /* currently, there's no need for list_intersection_ptr etc */ extern List *list_difference(const List *list1, const List *list2); extern List *list_difference_ptr(const List *list1, const List *list2); extern List *list_difference_int(const List *list1, const List *list2); extern List *list_difference_oid(const List *list1, const List *list2); extern pg_nodiscard List *list_append_unique(List *list, void *datum); extern pg_nodiscard List *list_append_unique_ptr(List *list, void *datum); extern pg_nodiscard List *list_append_unique_int(List *list, int datum); extern pg_nodiscard List *list_append_unique_oid(List *list, Oid datum); extern pg_nodiscard List *list_concat_unique(List *list1, const List *list2); extern pg_nodiscard List *list_concat_unique_ptr(List *list1, const List *list2); extern pg_nodiscard List *list_concat_unique_int(List *list1, const List *list2); extern pg_nodiscard List *list_concat_unique_oid(List *list1, const List *list2); extern void list_deduplicate_oid(List *list); extern void list_free(List *list); extern void list_free_deep(List *list); extern pg_nodiscard List *list_copy(const List *oldlist); extern pg_nodiscard List *list_copy_head(const List *oldlist, int len); extern pg_nodiscard List *list_copy_tail(const List *oldlist, int nskip); extern pg_nodiscard List *list_copy_deep(const List *oldlist); typedef int (*list_sort_comparator) (const ListCell *a, const ListCell *b); extern void list_sort(List *list, list_sort_comparator cmp); extern int list_int_cmp(const ListCell *p1, const ListCell *p2); extern int list_oid_cmp(const ListCell *p1, const ListCell *p2); #endif /* PG_LIST_H */