/*------------------------------------------------------------------------- * * relnode.c * Relation-node lookup/construction routines * * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $PostgreSQL: pgsql/src/backend/optimizer/util/relnode.c,v 1.89 2008/01/01 19:45:50 momjian Exp $ * *------------------------------------------------------------------------- */ #include "postgres.h" #include "optimizer/cost.h" #include "optimizer/pathnode.h" #include "optimizer/paths.h" #include "optimizer/plancat.h" #include "optimizer/restrictinfo.h" #include "parser/parsetree.h" #include "utils/hsearch.h" typedef struct JoinHashEntry { Relids join_relids; /* hash key --- MUST BE FIRST */ RelOptInfo *join_rel; } JoinHashEntry; static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *input_rel); static List *build_joinrel_restrictlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel); static void build_joinrel_joinlist(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel); static List *subbuild_joinrel_restrictlist(RelOptInfo *joinrel, List *joininfo_list, List *new_restrictlist); static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel, List *joininfo_list, List *new_joininfo); /* * build_simple_rel * Construct a new RelOptInfo for a base relation or 'other' relation. */ RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptKind reloptkind) { RelOptInfo *rel; RangeTblEntry *rte; /* Rel should not exist already */ Assert(relid > 0 && relid < root->simple_rel_array_size); if (root->simple_rel_array[relid] != NULL) elog(ERROR, "rel %d already exists", relid); /* Fetch RTE for relation */ rte = root->simple_rte_array[relid]; Assert(rte != NULL); rel = makeNode(RelOptInfo); rel->reloptkind = reloptkind; rel->relids = bms_make_singleton(relid); rel->rows = 0; rel->width = 0; rel->reltargetlist = NIL; rel->pathlist = NIL; rel->cheapest_startup_path = NULL; rel->cheapest_total_path = NULL; rel->cheapest_unique_path = NULL; rel->relid = relid; rel->rtekind = rte->rtekind; /* min_attr, max_attr, attr_needed, attr_widths are set below */ rel->indexlist = NIL; rel->pages = 0; rel->tuples = 0; rel->subplan = NULL; rel->subrtable = NIL; rel->baserestrictinfo = NIL; rel->baserestrictcost.startup = 0; rel->baserestrictcost.per_tuple = 0; rel->joininfo = NIL; rel->has_eclass_joins = false; rel->index_outer_relids = NULL; rel->index_inner_paths = NIL; /* Check type of rtable entry */ switch (rte->rtekind) { case RTE_RELATION: /* Table --- retrieve statistics from the system catalogs */ get_relation_info(root, rte->relid, rte->inh, rel); break; case RTE_SUBQUERY: case RTE_FUNCTION: case RTE_VALUES: /* * Subquery, function, or values list --- set up attr range and * arrays * * Note: 0 is included in range to support whole-row Vars */ rel->min_attr = 0; rel->max_attr = list_length(rte->eref->colnames); rel->attr_needed = (Relids *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids)); rel->attr_widths = (int32 *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32)); break; default: elog(ERROR, "unrecognized RTE kind: %d", (int) rte->rtekind); break; } /* Save the finished struct in the query's simple_rel_array */ root->simple_rel_array[relid] = rel; /* * If this rel is an appendrel parent, recurse to build "other rel" * RelOptInfos for its children. They are "other rels" because they are * not in the main join tree, but we will need RelOptInfos to plan access * to them. */ if (rte->inh) { ListCell *l; foreach(l, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); /* append_rel_list contains all append rels; ignore others */ if (appinfo->parent_relid != relid) continue; (void) build_simple_rel(root, appinfo->child_relid, RELOPT_OTHER_MEMBER_REL); } } return rel; } /* * find_base_rel * Find a base or other relation entry, which must already exist. */ RelOptInfo * find_base_rel(PlannerInfo *root, int relid) { RelOptInfo *rel; Assert(relid > 0); if (relid < root->simple_rel_array_size) { rel = root->simple_rel_array[relid]; if (rel) return rel; } elog(ERROR, "no relation entry for relid %d", relid); return NULL; /* keep compiler quiet */ } /* * build_join_rel_hash * Construct the auxiliary hash table for join relations. */ static void build_join_rel_hash(PlannerInfo *root) { HTAB *hashtab; HASHCTL hash_ctl; ListCell *l; /* Create the hash table */ MemSet(&hash_ctl, 0, sizeof(hash_ctl)); hash_ctl.keysize = sizeof(Relids); hash_ctl.entrysize = sizeof(JoinHashEntry); hash_ctl.hash = bitmap_hash; hash_ctl.match = bitmap_match; hash_ctl.hcxt = CurrentMemoryContext; hashtab = hash_create("JoinRelHashTable", 256L, &hash_ctl, HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT); /* Insert all the already-existing joinrels */ foreach(l, root->join_rel_list) { RelOptInfo *rel = (RelOptInfo *) lfirst(l); JoinHashEntry *hentry; bool found; hentry = (JoinHashEntry *) hash_search(hashtab, &(rel->relids), HASH_ENTER, &found); Assert(!found); hentry->join_rel = rel; } root->join_rel_hash = hashtab; } /* * find_join_rel * Returns relation entry corresponding to 'relids' (a set of RT indexes), * or NULL if none exists. This is for join relations. */ RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids) { /* * Switch to using hash lookup when list grows "too long". The threshold * is arbitrary and is known only here. */ if (!root->join_rel_hash && list_length(root->join_rel_list) > 32) build_join_rel_hash(root); /* * Use either hashtable lookup or linear search, as appropriate. * * Note: the seemingly redundant hashkey variable is used to avoid taking * the address of relids; unless the compiler is exceedingly smart, doing * so would force relids out of a register and thus probably slow down the * list-search case. */ if (root->join_rel_hash) { Relids hashkey = relids; JoinHashEntry *hentry; hentry = (JoinHashEntry *) hash_search(root->join_rel_hash, &hashkey, HASH_FIND, NULL); if (hentry) return hentry->join_rel; } else { ListCell *l; foreach(l, root->join_rel_list) { RelOptInfo *rel = (RelOptInfo *) lfirst(l); if (bms_equal(rel->relids, relids)) return rel; } } return NULL; } /* * build_join_rel * Returns relation entry corresponding to the union of two given rels, * creating a new relation entry if none already exists. * * 'joinrelids' is the Relids set that uniquely identifies the join * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be * joined * 'jointype': type of join (inner/outer) * 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr * receives the list of RestrictInfo nodes that apply to this * particular pair of joinable relations. * * restrictlist_ptr makes the routine's API a little grotty, but it saves * duplicated calculation of the restrictlist... */ RelOptInfo * build_join_rel(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel, JoinType jointype, List **restrictlist_ptr) { RelOptInfo *joinrel; List *restrictlist; /* * See if we already have a joinrel for this set of base rels. */ joinrel = find_join_rel(root, joinrelids); if (joinrel) { /* * Yes, so we only need to figure the restrictlist for this particular * pair of component relations. */ if (restrictlist_ptr) *restrictlist_ptr = build_joinrel_restrictlist(root, joinrel, outer_rel, inner_rel); return joinrel; } /* * Nope, so make one. */ joinrel = makeNode(RelOptInfo); joinrel->reloptkind = RELOPT_JOINREL; joinrel->relids = bms_copy(joinrelids); joinrel->rows = 0; joinrel->width = 0; joinrel->reltargetlist = NIL; joinrel->pathlist = NIL; joinrel->cheapest_startup_path = NULL; joinrel->cheapest_total_path = NULL; joinrel->cheapest_unique_path = NULL; joinrel->relid = 0; /* indicates not a baserel */ joinrel->rtekind = RTE_JOIN; joinrel->min_attr = 0; joinrel->max_attr = 0; joinrel->attr_needed = NULL; joinrel->attr_widths = NULL; joinrel->indexlist = NIL; joinrel->pages = 0; joinrel->tuples = 0; joinrel->subplan = NULL; joinrel->subrtable = NIL; joinrel->baserestrictinfo = NIL; joinrel->baserestrictcost.startup = 0; joinrel->baserestrictcost.per_tuple = 0; joinrel->joininfo = NIL; joinrel->has_eclass_joins = false; joinrel->index_outer_relids = NULL; joinrel->index_inner_paths = NIL; /* * Create a new tlist containing just the vars that need to be output from * this join (ie, are needed for higher joinclauses or final output). * * NOTE: the tlist order for a join rel will depend on which pair of outer * and inner rels we first try to build it from. But the contents should * be the same regardless. */ build_joinrel_tlist(root, joinrel, outer_rel); build_joinrel_tlist(root, joinrel, inner_rel); /* * Construct restrict and join clause lists for the new joinrel. (The * caller might or might not need the restrictlist, but I need it anyway * for set_joinrel_size_estimates().) */ restrictlist = build_joinrel_restrictlist(root, joinrel, outer_rel, inner_rel); if (restrictlist_ptr) *restrictlist_ptr = restrictlist; build_joinrel_joinlist(joinrel, outer_rel, inner_rel); /* * This is also the right place to check whether the joinrel has any * pending EquivalenceClass joins. */ joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel); /* * Set estimates of the joinrel's size. */ set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel, jointype, restrictlist); /* * Add the joinrel to the query's joinrel list, and store it into the * auxiliary hashtable if there is one. NB: GEQO requires us to append * the new joinrel to the end of the list! */ root->join_rel_list = lappend(root->join_rel_list, joinrel); if (root->join_rel_hash) { JoinHashEntry *hentry; bool found; hentry = (JoinHashEntry *) hash_search(root->join_rel_hash, &(joinrel->relids), HASH_ENTER, &found); Assert(!found); hentry->join_rel = joinrel; } return joinrel; } /* * build_joinrel_tlist * Builds a join relation's target list. * * The join's targetlist includes all Vars of its member relations that * will still be needed above the join. This subroutine adds all such * Vars from the specified input rel's tlist to the join rel's tlist. * * We also compute the expected width of the join's output, making use * of data that was cached at the baserel level by set_rel_width(). */ static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *input_rel) { Relids relids = joinrel->relids; ListCell *vars; foreach(vars, input_rel->reltargetlist) { Var *origvar = (Var *) lfirst(vars); Var *var; RelOptInfo *baserel; int ndx; /* * We can't run into any child RowExprs here, but we could find a * whole-row Var with a ConvertRowtypeExpr atop it. */ var = origvar; while (!IsA(var, Var)) { if (IsA(var, ConvertRowtypeExpr)) var = (Var *) ((ConvertRowtypeExpr *) var)->arg; else elog(ERROR, "unexpected node type in reltargetlist: %d", (int) nodeTag(var)); } /* Get the Var's original base rel */ baserel = find_base_rel(root, var->varno); /* Is it still needed above this joinrel? */ ndx = var->varattno - baserel->min_attr; if (bms_nonempty_difference(baserel->attr_needed[ndx], relids)) { /* Yup, add it to the output */ joinrel->reltargetlist = lappend(joinrel->reltargetlist, origvar); joinrel->width += baserel->attr_widths[ndx]; } } } /* * build_joinrel_restrictlist * build_joinrel_joinlist * These routines build lists of restriction and join clauses for a * join relation from the joininfo lists of the relations it joins. * * These routines are separate because the restriction list must be * built afresh for each pair of input sub-relations we consider, whereas * the join list need only be computed once for any join RelOptInfo. * The join list is fully determined by the set of rels making up the * joinrel, so we should get the same results (up to ordering) from any * candidate pair of sub-relations. But the restriction list is whatever * is not handled in the sub-relations, so it depends on which * sub-relations are considered. * * If a join clause from an input relation refers to base rels still not * present in the joinrel, then it is still a join clause for the joinrel; * we put it into the joininfo list for the joinrel. Otherwise, * the clause is now a restrict clause for the joined relation, and we * return it to the caller of build_joinrel_restrictlist() to be stored in * join paths made from this pair of sub-relations. (It will not need to * be considered further up the join tree.) * * In many case we will find the same RestrictInfos in both input * relations' joinlists, so be careful to eliminate duplicates. * Pointer equality should be a sufficient test for dups, since all * the various joinlist entries ultimately refer to RestrictInfos * pushed into them by distribute_restrictinfo_to_rels(). * * 'joinrel' is a join relation node * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined * to form joinrel. * * build_joinrel_restrictlist() returns a list of relevant restrictinfos, * whereas build_joinrel_joinlist() stores its results in the joinrel's * joininfo list. One or the other must accept each given clause! * * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass * up to the join relation. I believe this is no longer necessary, because * RestrictInfo nodes are no longer context-dependent. Instead, just include * the original nodes in the lists made for the join relation. */ static List * build_joinrel_restrictlist(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel) { List *result; /* * Collect all the clauses that syntactically belong at this level, * eliminating any duplicates (important since we will see many of the * same clauses arriving from both input relations). */ result = subbuild_joinrel_restrictlist(joinrel, outer_rel->joininfo, NIL); result = subbuild_joinrel_restrictlist(joinrel, inner_rel->joininfo, result); /* * Add on any clauses derived from EquivalenceClasses. These cannot be * redundant with the clauses in the joininfo lists, so don't bother * checking. */ result = list_concat(result, generate_join_implied_equalities(root, joinrel, outer_rel, inner_rel)); return result; } static void build_joinrel_joinlist(RelOptInfo *joinrel, RelOptInfo *outer_rel, RelOptInfo *inner_rel) { List *result; /* * Collect all the clauses that syntactically belong above this level, * eliminating any duplicates (important since we will see many of the * same clauses arriving from both input relations). */ result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL); result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result); joinrel->joininfo = result; } static List * subbuild_joinrel_restrictlist(RelOptInfo *joinrel, List *joininfo_list, List *new_restrictlist) { ListCell *l; foreach(l, joininfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); if (bms_is_subset(rinfo->required_relids, joinrel->relids)) { /* * This clause becomes a restriction clause for the joinrel, since * it refers to no outside rels. Add it to the list, being * careful to eliminate duplicates. (Since RestrictInfo nodes in * different joinlists will have been multiply-linked rather than * copied, pointer equality should be a sufficient test.) */ new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo); } else { /* * This clause is still a join clause at this level, so we ignore * it in this routine. */ } } return new_restrictlist; } static List * subbuild_joinrel_joinlist(RelOptInfo *joinrel, List *joininfo_list, List *new_joininfo) { ListCell *l; foreach(l, joininfo_list) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); if (bms_is_subset(rinfo->required_relids, joinrel->relids)) { /* * This clause becomes a restriction clause for the joinrel, since * it refers to no outside rels. So we can ignore it in this * routine. */ } else { /* * This clause is still a join clause at this level, so add it to * the new joininfo list, being careful to eliminate duplicates. * (Since RestrictInfo nodes in different joinlists will have been * multiply-linked rather than copied, pointer equality should be * a sufficient test.) */ new_joininfo = list_append_unique_ptr(new_joininfo, rinfo); } } return new_joininfo; }