/*------------------------------------------------------------------------- * * regexp.c * Postgres' interface to the regular expression package. * * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/utils/adt/regexp.c * * Alistair Crooks added the code for the regex caching * agc - cached the regular expressions used - there's a good chance * that we'll get a hit, so this saves a compile step for every * attempted match. I haven't actually measured the speed improvement, * but it `looks' a lot quicker visually when watching regression * test output. * * agc - incorporated Keith Bostic's Berkeley regex code into * the tree for all ports. To distinguish this regex code from any that * is existent on a platform, I've prepended the string "pg_" to * the functions regcomp, regerror, regexec and regfree. * Fixed a bug that was originally a typo by me, where `i' was used * instead of `oldest' when compiling regular expressions - benign * results mostly, although occasionally it bit you... * *------------------------------------------------------------------------- */ #include "postgres.h" #include "catalog/pg_type.h" #include "funcapi.h" #include "miscadmin.h" #include "regex/regex.h" #include "utils/array.h" #include "utils/builtins.h" #define PG_GETARG_TEXT_PP_IF_EXISTS(_n) \ (PG_NARGS() > (_n) ? PG_GETARG_TEXT_PP(_n) : NULL) /* all the options of interest for regex functions */ typedef struct pg_re_flags { int cflags; /* compile flags for Spencer's regex code */ bool glob; /* do it globally (for each occurrence) */ } pg_re_flags; /* cross-call state for regexp_matches(), also regexp_split() */ typedef struct regexp_matches_ctx { text *orig_str; /* data string in original TEXT form */ int nmatches; /* number of places where pattern matched */ int npatterns; /* number of capturing subpatterns */ /* We store start char index and end+1 char index for each match */ /* so the number of entries in match_locs is nmatches * npatterns * 2 */ int *match_locs; /* 0-based character indexes */ int next_match; /* 0-based index of next match to process */ /* workspace for build_regexp_matches_result() */ Datum *elems; /* has npatterns elements */ bool *nulls; /* has npatterns elements */ } regexp_matches_ctx; /* * We cache precompiled regular expressions using a "self organizing list" * structure, in which recently-used items tend to be near the front. * Whenever we use an entry, it's moved up to the front of the list. * Over time, an item's average position corresponds to its frequency of use. * * When we first create an entry, it's inserted at the front of * the array, dropping the entry at the end of the array if necessary to * make room. (This might seem to be weighting the new entry too heavily, * but if we insert new entries further back, we'll be unable to adjust to * a sudden shift in the query mix where we are presented with MAX_CACHED_RES * never-before-seen items used circularly. We ought to be able to handle * that case, so we have to insert at the front.) * * Knuth mentions a variant strategy in which a used item is moved up just * one place in the list. Although he says this uses fewer comparisons on * average, it seems not to adapt very well to the situation where you have * both some reusable patterns and a steady stream of non-reusable patterns. * A reusable pattern that isn't used at least as often as non-reusable * patterns are seen will "fail to keep up" and will drop off the end of the * cache. With move-to-front, a reusable pattern is guaranteed to stay in * the cache as long as it's used at least once in every MAX_CACHED_RES uses. */ /* this is the maximum number of cached regular expressions */ #ifndef MAX_CACHED_RES #define MAX_CACHED_RES 32 #endif /* this structure describes one cached regular expression */ typedef struct cached_re_str { char *cre_pat; /* original RE (not null terminated!) */ int cre_pat_len; /* length of original RE, in bytes */ int cre_flags; /* compile flags: extended,icase etc */ Oid cre_collation; /* collation to use */ regex_t cre_re; /* the compiled regular expression */ } cached_re_str; static int num_res = 0; /* # of cached re's */ static cached_re_str re_array[MAX_CACHED_RES]; /* cached re's */ /* Local functions */ static regexp_matches_ctx *setup_regexp_matches(text *orig_str, text *pattern, text *flags, Oid collation, bool force_glob, bool use_subpatterns, bool ignore_degenerate); static void cleanup_regexp_matches(regexp_matches_ctx *matchctx); static ArrayType *build_regexp_matches_result(regexp_matches_ctx *matchctx); static Datum build_regexp_split_result(regexp_matches_ctx *splitctx); /* * RE_compile_and_cache - compile a RE, caching if possible * * Returns regex_t * * * text_re --- the pattern, expressed as a TEXT object * cflags --- compile options for the pattern * collation --- collation to use for LC_CTYPE-dependent behavior * * Pattern is given in the database encoding. We internally convert to * an array of pg_wchar, which is what Spencer's regex package wants. */ static regex_t * RE_compile_and_cache(text *text_re, int cflags, Oid collation) { int text_re_len = VARSIZE_ANY_EXHDR(text_re); char *text_re_val = VARDATA_ANY(text_re); pg_wchar *pattern; int pattern_len; int i; int regcomp_result; cached_re_str re_temp; char errMsg[100]; /* * Look for a match among previously compiled REs. Since the data * structure is self-organizing with most-used entries at the front, our * search strategy can just be to scan from the front. */ for (i = 0; i < num_res; i++) { if (re_array[i].cre_pat_len == text_re_len && re_array[i].cre_flags == cflags && re_array[i].cre_collation == collation && memcmp(re_array[i].cre_pat, text_re_val, text_re_len) == 0) { /* * Found a match; move it to front if not there already. */ if (i > 0) { re_temp = re_array[i]; memmove(&re_array[1], &re_array[0], i * sizeof(cached_re_str)); re_array[0] = re_temp; } return &re_array[0].cre_re; } } /* * Couldn't find it, so try to compile the new RE. To avoid leaking * resources on failure, we build into the re_temp local. */ /* Convert pattern string to wide characters */ pattern = (pg_wchar *) palloc((text_re_len + 1) * sizeof(pg_wchar)); pattern_len = pg_mb2wchar_with_len(text_re_val, pattern, text_re_len); regcomp_result = pg_regcomp(&re_temp.cre_re, pattern, pattern_len, cflags, collation); pfree(pattern); if (regcomp_result != REG_OKAY) { /* re didn't compile (no need for pg_regfree, if so) */ /* * Here and in other places in this file, do CHECK_FOR_INTERRUPTS * before reporting a regex error. This is so that if the regex * library aborts and returns REG_CANCEL, we don't print an error * message that implies the regex was invalid. */ CHECK_FOR_INTERRUPTS(); pg_regerror(regcomp_result, &re_temp.cre_re, errMsg, sizeof(errMsg)); ereport(ERROR, (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), errmsg("invalid regular expression: %s", errMsg))); } /* * We use malloc/free for the cre_pat field because the storage has to * persist across transactions, and because we want to get control back on * out-of-memory. The Max() is because some malloc implementations return * NULL for malloc(0). */ re_temp.cre_pat = malloc(Max(text_re_len, 1)); if (re_temp.cre_pat == NULL) { pg_regfree(&re_temp.cre_re); ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } memcpy(re_temp.cre_pat, text_re_val, text_re_len); re_temp.cre_pat_len = text_re_len; re_temp.cre_flags = cflags; re_temp.cre_collation = collation; /* * Okay, we have a valid new item in re_temp; insert it into the storage * array. Discard last entry if needed. */ if (num_res >= MAX_CACHED_RES) { --num_res; Assert(num_res < MAX_CACHED_RES); pg_regfree(&re_array[num_res].cre_re); free(re_array[num_res].cre_pat); } if (num_res > 0) memmove(&re_array[1], &re_array[0], num_res * sizeof(cached_re_str)); re_array[0] = re_temp; num_res++; return &re_array[0].cre_re; } /* * RE_wchar_execute - execute a RE on pg_wchar data * * Returns TRUE on match, FALSE on no match * * re --- the compiled pattern as returned by RE_compile_and_cache * data --- the data to match against (need not be null-terminated) * data_len --- the length of the data string * start_search -- the offset in the data to start searching * nmatch, pmatch --- optional return area for match details * * Data is given as array of pg_wchar which is what Spencer's regex package * wants. */ static bool RE_wchar_execute(regex_t *re, pg_wchar *data, int data_len, int start_search, int nmatch, regmatch_t *pmatch) { int regexec_result; char errMsg[100]; /* Perform RE match and return result */ regexec_result = pg_regexec(re, data, data_len, start_search, NULL, /* no details */ nmatch, pmatch, 0); if (regexec_result != REG_OKAY && regexec_result != REG_NOMATCH) { /* re failed??? */ CHECK_FOR_INTERRUPTS(); pg_regerror(regexec_result, re, errMsg, sizeof(errMsg)); ereport(ERROR, (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), errmsg("regular expression failed: %s", errMsg))); } return (regexec_result == REG_OKAY); } /* * RE_execute - execute a RE * * Returns TRUE on match, FALSE on no match * * re --- the compiled pattern as returned by RE_compile_and_cache * dat --- the data to match against (need not be null-terminated) * dat_len --- the length of the data string * nmatch, pmatch --- optional return area for match details * * Data is given in the database encoding. We internally * convert to array of pg_wchar which is what Spencer's regex package wants. */ static bool RE_execute(regex_t *re, char *dat, int dat_len, int nmatch, regmatch_t *pmatch) { pg_wchar *data; int data_len; bool match; /* Convert data string to wide characters */ data = (pg_wchar *) palloc((dat_len + 1) * sizeof(pg_wchar)); data_len = pg_mb2wchar_with_len(dat, data, dat_len); /* Perform RE match and return result */ match = RE_wchar_execute(re, data, data_len, 0, nmatch, pmatch); pfree(data); return match; } /* * RE_compile_and_execute - compile and execute a RE * * Returns TRUE on match, FALSE on no match * * text_re --- the pattern, expressed as a TEXT object * dat --- the data to match against (need not be null-terminated) * dat_len --- the length of the data string * cflags --- compile options for the pattern * collation --- collation to use for LC_CTYPE-dependent behavior * nmatch, pmatch --- optional return area for match details * * Both pattern and data are given in the database encoding. We internally * convert to array of pg_wchar which is what Spencer's regex package wants. */ static bool RE_compile_and_execute(text *text_re, char *dat, int dat_len, int cflags, Oid collation, int nmatch, regmatch_t *pmatch) { regex_t *re; /* Compile RE */ re = RE_compile_and_cache(text_re, cflags, collation); return RE_execute(re, dat, dat_len, nmatch, pmatch); } /* * parse_re_flags - parse the options argument of regexp_matches and friends * * flags --- output argument, filled with desired options * opts --- TEXT object, or NULL for defaults * * This accepts all the options allowed by any of the callers; callers that * don't want some have to reject them after the fact. */ static void parse_re_flags(pg_re_flags *flags, text *opts) { /* regex flavor is always folded into the compile flags */ flags->cflags = REG_ADVANCED; flags->glob = false; if (opts) { char *opt_p = VARDATA_ANY(opts); int opt_len = VARSIZE_ANY_EXHDR(opts); int i; for (i = 0; i < opt_len; i++) { switch (opt_p[i]) { case 'g': flags->glob = true; break; case 'b': /* BREs (but why???) */ flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED | REG_QUOTE); break; case 'c': /* case sensitive */ flags->cflags &= ~REG_ICASE; break; case 'e': /* plain EREs */ flags->cflags |= REG_EXTENDED; flags->cflags &= ~(REG_ADVANCED | REG_QUOTE); break; case 'i': /* case insensitive */ flags->cflags |= REG_ICASE; break; case 'm': /* Perloid synonym for n */ case 'n': /* \n affects ^ $ . [^ */ flags->cflags |= REG_NEWLINE; break; case 'p': /* ~Perl, \n affects . [^ */ flags->cflags |= REG_NLSTOP; flags->cflags &= ~REG_NLANCH; break; case 'q': /* literal string */ flags->cflags |= REG_QUOTE; flags->cflags &= ~(REG_ADVANCED | REG_EXTENDED); break; case 's': /* single line, \n ordinary */ flags->cflags &= ~REG_NEWLINE; break; case 't': /* tight syntax */ flags->cflags &= ~REG_EXPANDED; break; case 'w': /* weird, \n affects ^ $ only */ flags->cflags &= ~REG_NLSTOP; flags->cflags |= REG_NLANCH; break; case 'x': /* expanded syntax */ flags->cflags |= REG_EXPANDED; break; default: ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid regexp option: \"%c\"", opt_p[i]))); break; } } } } /* * interface routines called by the function manager */ Datum nameregexeq(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(RE_compile_and_execute(p, NameStr(*n), strlen(NameStr(*n)), REG_ADVANCED, PG_GET_COLLATION(), 0, NULL)); } Datum nameregexne(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, NameStr(*n), strlen(NameStr(*n)), REG_ADVANCED, PG_GET_COLLATION(), 0, NULL)); } Datum textregexeq(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(RE_compile_and_execute(p, VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), REG_ADVANCED, PG_GET_COLLATION(), 0, NULL)); } Datum textregexne(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), REG_ADVANCED, PG_GET_COLLATION(), 0, NULL)); } /* * routines that use the regexp stuff, but ignore the case. * for this, we use the REG_ICASE flag to pg_regcomp */ Datum nameicregexeq(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(RE_compile_and_execute(p, NameStr(*n), strlen(NameStr(*n)), REG_ADVANCED | REG_ICASE, PG_GET_COLLATION(), 0, NULL)); } Datum nameicregexne(PG_FUNCTION_ARGS) { Name n = PG_GETARG_NAME(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, NameStr(*n), strlen(NameStr(*n)), REG_ADVANCED | REG_ICASE, PG_GET_COLLATION(), 0, NULL)); } Datum texticregexeq(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(RE_compile_and_execute(p, VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), REG_ADVANCED | REG_ICASE, PG_GET_COLLATION(), 0, NULL)); } Datum texticregexne(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); PG_RETURN_BOOL(!RE_compile_and_execute(p, VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), REG_ADVANCED | REG_ICASE, PG_GET_COLLATION(), 0, NULL)); } /* * textregexsubstr() * Return a substring matched by a regular expression. */ Datum textregexsubstr(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); regex_t *re; regmatch_t pmatch[2]; int so, eo; /* Compile RE */ re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); /* * We pass two regmatch_t structs to get info about the overall match and * the match for the first parenthesized subexpression (if any). If there * is a parenthesized subexpression, we return what it matched; else * return what the whole regexp matched. */ if (!RE_execute(re, VARDATA_ANY(s), VARSIZE_ANY_EXHDR(s), 2, pmatch)) PG_RETURN_NULL(); /* definitely no match */ if (re->re_nsub > 0) { /* has parenthesized subexpressions, use the first one */ so = pmatch[1].rm_so; eo = pmatch[1].rm_eo; } else { /* no parenthesized subexpression, use whole match */ so = pmatch[0].rm_so; eo = pmatch[0].rm_eo; } /* * It is possible to have a match to the whole pattern but no match for a * subexpression; for example 'foo(bar)?' is considered to match 'foo' but * there is no subexpression match. So this extra test for match failure * is not redundant. */ if (so < 0 || eo < 0) PG_RETURN_NULL(); return DirectFunctionCall3(text_substr, PointerGetDatum(s), Int32GetDatum(so + 1), Int32GetDatum(eo - so)); } /* * textregexreplace_noopt() * Return a string matched by a regular expression, with replacement. * * This version doesn't have an option argument: we default to case * sensitive match, replace the first instance only. */ Datum textregexreplace_noopt(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); text *r = PG_GETARG_TEXT_PP(2); regex_t *re; re = RE_compile_and_cache(p, REG_ADVANCED, PG_GET_COLLATION()); PG_RETURN_TEXT_P(replace_text_regexp(s, (void *) re, r, false)); } /* * textregexreplace() * Return a string matched by a regular expression, with replacement. */ Datum textregexreplace(PG_FUNCTION_ARGS) { text *s = PG_GETARG_TEXT_PP(0); text *p = PG_GETARG_TEXT_PP(1); text *r = PG_GETARG_TEXT_PP(2); text *opt = PG_GETARG_TEXT_PP(3); regex_t *re; pg_re_flags flags; parse_re_flags(&flags, opt); re = RE_compile_and_cache(p, flags.cflags, PG_GET_COLLATION()); PG_RETURN_TEXT_P(replace_text_regexp(s, (void *) re, r, flags.glob)); } /* * similar_escape() * Convert a SQL:2008 regexp pattern to POSIX style, so it can be used by * our regexp engine. */ Datum similar_escape(PG_FUNCTION_ARGS) { text *pat_text; text *esc_text; text *result; char *p, *e, *r; int plen, elen; bool afterescape = false; bool incharclass = false; int nquotes = 0; /* This function is not strict, so must test explicitly */ if (PG_ARGISNULL(0)) PG_RETURN_NULL(); pat_text = PG_GETARG_TEXT_PP(0); p = VARDATA_ANY(pat_text); plen = VARSIZE_ANY_EXHDR(pat_text); if (PG_ARGISNULL(1)) { /* No ESCAPE clause provided; default to backslash as escape */ e = "\\"; elen = 1; } else { esc_text = PG_GETARG_TEXT_PP(1); e = VARDATA_ANY(esc_text); elen = VARSIZE_ANY_EXHDR(esc_text); if (elen == 0) e = NULL; /* no escape character */ else if (elen != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_ESCAPE_SEQUENCE), errmsg("invalid escape string"), errhint("Escape string must be empty or one character."))); } /*---------- * We surround the transformed input string with * ^(?: ... )$ * which requires some explanation. We need "^" and "$" to force * the pattern to match the entire input string as per SQL99 spec. * The "(?:" and ")" are a non-capturing set of parens; we have to have * parens in case the string contains "|", else the "^" and "$" will * be bound into the first and last alternatives which is not what we * want, and the parens must be non capturing because we don't want them * to count when selecting output for SUBSTRING. *---------- */ /* * We need room for the prefix/postfix plus as many as 3 output bytes per * input byte; since the input is at most 1GB this can't overflow */ result = (text *) palloc(VARHDRSZ + 6 + 3 * plen); r = VARDATA(result); *r++ = '^'; *r++ = '('; *r++ = '?'; *r++ = ':'; while (plen > 0) { char pchar = *p; if (afterescape) { if (pchar == '"' && !incharclass) /* for SUBSTRING patterns */ *r++ = ((nquotes++ % 2) == 0) ? '(' : ')'; else { *r++ = '\\'; *r++ = pchar; } afterescape = false; } else if (e && pchar == *e) { /* SQL99 escape character; do not send to output */ afterescape = true; } else if (incharclass) { if (pchar == '\\') *r++ = '\\'; *r++ = pchar; if (pchar == ']') incharclass = false; } else if (pchar == '[') { *r++ = pchar; incharclass = true; } else if (pchar == '%') { *r++ = '.'; *r++ = '*'; } else if (pchar == '_') *r++ = '.'; else if (pchar == '(') { /* convert to non-capturing parenthesis */ *r++ = '('; *r++ = '?'; *r++ = ':'; } else if (pchar == '\\' || pchar == '.' || pchar == '^' || pchar == '$') { *r++ = '\\'; *r++ = pchar; } else *r++ = pchar; p++, plen--; } *r++ = ')'; *r++ = '$'; SET_VARSIZE(result, r - ((char *) result)); PG_RETURN_TEXT_P(result); } /* * regexp_matches() * Return a table of matches of a pattern within a string. */ Datum regexp_matches(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; regexp_matches_ctx *matchctx; if (SRF_IS_FIRSTCALL()) { text *pattern = PG_GETARG_TEXT_PP(1); text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); MemoryContext oldcontext; funcctx = SRF_FIRSTCALL_INIT(); oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* be sure to copy the input string into the multi-call ctx */ matchctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, flags, PG_GET_COLLATION(), false, true, false); /* Pre-create workspace that build_regexp_matches_result needs */ matchctx->elems = (Datum *) palloc(sizeof(Datum) * matchctx->npatterns); matchctx->nulls = (bool *) palloc(sizeof(bool) * matchctx->npatterns); MemoryContextSwitchTo(oldcontext); funcctx->user_fctx = (void *) matchctx; } funcctx = SRF_PERCALL_SETUP(); matchctx = (regexp_matches_ctx *) funcctx->user_fctx; if (matchctx->next_match < matchctx->nmatches) { ArrayType *result_ary; result_ary = build_regexp_matches_result(matchctx); matchctx->next_match++; SRF_RETURN_NEXT(funcctx, PointerGetDatum(result_ary)); } /* release space in multi-call ctx to avoid intraquery memory leak */ cleanup_regexp_matches(matchctx); SRF_RETURN_DONE(funcctx); } /* This is separate to keep the opr_sanity regression test from complaining */ Datum regexp_matches_no_flags(PG_FUNCTION_ARGS) { return regexp_matches(fcinfo); } /* * setup_regexp_matches --- do the initial matching for regexp_matches() * or regexp_split() * * To avoid having to re-find the compiled pattern on each call, we do * all the matching in one swoop. The returned regexp_matches_ctx contains * the locations of all the substrings matching the pattern. * * The three bool parameters have only two patterns (one for each caller) * but it seems clearer to distinguish the functionality this way than to * key it all off one "is_split" flag. */ static regexp_matches_ctx * setup_regexp_matches(text *orig_str, text *pattern, text *flags, Oid collation, bool force_glob, bool use_subpatterns, bool ignore_degenerate) { regexp_matches_ctx *matchctx = palloc0(sizeof(regexp_matches_ctx)); int orig_len; pg_wchar *wide_str; int wide_len; pg_re_flags re_flags; regex_t *cpattern; regmatch_t *pmatch; int pmatch_len; int array_len; int array_idx; int prev_match_end; int start_search; /* save original string --- we'll extract result substrings from it */ matchctx->orig_str = orig_str; /* convert string to pg_wchar form for matching */ orig_len = VARSIZE_ANY_EXHDR(orig_str); wide_str = (pg_wchar *) palloc(sizeof(pg_wchar) * (orig_len + 1)); wide_len = pg_mb2wchar_with_len(VARDATA_ANY(orig_str), wide_str, orig_len); /* determine options */ parse_re_flags(&re_flags, flags); if (force_glob) { /* user mustn't specify 'g' for regexp_split */ if (re_flags.glob) ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("regexp_split does not support the global option"))); /* but we find all the matches anyway */ re_flags.glob = true; } /* set up the compiled pattern */ cpattern = RE_compile_and_cache(pattern, re_flags.cflags, collation); /* do we want to remember subpatterns? */ if (use_subpatterns && cpattern->re_nsub > 0) { matchctx->npatterns = cpattern->re_nsub; pmatch_len = cpattern->re_nsub + 1; } else { use_subpatterns = false; matchctx->npatterns = 1; pmatch_len = 1; } /* temporary output space for RE package */ pmatch = palloc(sizeof(regmatch_t) * pmatch_len); /* the real output space (grown dynamically if needed) */ array_len = re_flags.glob ? 256 : 32; matchctx->match_locs = (int *) palloc(sizeof(int) * array_len); array_idx = 0; /* search for the pattern, perhaps repeatedly */ prev_match_end = 0; start_search = 0; while (RE_wchar_execute(cpattern, wide_str, wide_len, start_search, pmatch_len, pmatch)) { /* * If requested, ignore degenerate matches, which are zero-length * matches occurring at the start or end of a string or just after a * previous match. */ if (!ignore_degenerate || (pmatch[0].rm_so < wide_len && pmatch[0].rm_eo > prev_match_end)) { /* enlarge output space if needed */ while (array_idx + matchctx->npatterns * 2 > array_len) { array_len *= 2; matchctx->match_locs = (int *) repalloc(matchctx->match_locs, sizeof(int) * array_len); } /* save this match's locations */ if (use_subpatterns) { int i; for (i = 1; i <= matchctx->npatterns; i++) { matchctx->match_locs[array_idx++] = pmatch[i].rm_so; matchctx->match_locs[array_idx++] = pmatch[i].rm_eo; } } else { matchctx->match_locs[array_idx++] = pmatch[0].rm_so; matchctx->match_locs[array_idx++] = pmatch[0].rm_eo; } matchctx->nmatches++; } prev_match_end = pmatch[0].rm_eo; /* if not glob, stop after one match */ if (!re_flags.glob) break; /* * Advance search position. Normally we start the next search at the * end of the previous match; but if the match was of zero length, we * have to advance by one character, or we'd just find the same match * again. */ start_search = prev_match_end; if (pmatch[0].rm_so == pmatch[0].rm_eo) start_search++; if (start_search > wide_len) break; } /* Clean up temp storage */ pfree(wide_str); pfree(pmatch); return matchctx; } /* * cleanup_regexp_matches - release memory of a regexp_matches_ctx */ static void cleanup_regexp_matches(regexp_matches_ctx *matchctx) { pfree(matchctx->orig_str); pfree(matchctx->match_locs); if (matchctx->elems) pfree(matchctx->elems); if (matchctx->nulls) pfree(matchctx->nulls); pfree(matchctx); } /* * build_regexp_matches_result - build output array for current match */ static ArrayType * build_regexp_matches_result(regexp_matches_ctx *matchctx) { Datum *elems = matchctx->elems; bool *nulls = matchctx->nulls; int dims[1]; int lbs[1]; int loc; int i; /* Extract matching substrings from the original string */ loc = matchctx->next_match * matchctx->npatterns * 2; for (i = 0; i < matchctx->npatterns; i++) { int so = matchctx->match_locs[loc++]; int eo = matchctx->match_locs[loc++]; if (so < 0 || eo < 0) { elems[i] = (Datum) 0; nulls[i] = true; } else { elems[i] = DirectFunctionCall3(text_substr, PointerGetDatum(matchctx->orig_str), Int32GetDatum(so + 1), Int32GetDatum(eo - so)); nulls[i] = false; } } /* And form an array */ dims[0] = matchctx->npatterns; lbs[0] = 1; /* XXX: this hardcodes assumptions about the text type */ return construct_md_array(elems, nulls, 1, dims, lbs, TEXTOID, -1, false, 'i'); } /* * regexp_split_to_table() * Split the string at matches of the pattern, returning the * split-out substrings as a table. */ Datum regexp_split_to_table(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; regexp_matches_ctx *splitctx; if (SRF_IS_FIRSTCALL()) { text *pattern = PG_GETARG_TEXT_PP(1); text *flags = PG_GETARG_TEXT_PP_IF_EXISTS(2); MemoryContext oldcontext; funcctx = SRF_FIRSTCALL_INIT(); oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* be sure to copy the input string into the multi-call ctx */ splitctx = setup_regexp_matches(PG_GETARG_TEXT_P_COPY(0), pattern, flags, PG_GET_COLLATION(), true, false, true); MemoryContextSwitchTo(oldcontext); funcctx->user_fctx = (void *) splitctx; } funcctx = SRF_PERCALL_SETUP(); splitctx = (regexp_matches_ctx *) funcctx->user_fctx; if (splitctx->next_match <= splitctx->nmatches) { Datum result = build_regexp_split_result(splitctx); splitctx->next_match++; SRF_RETURN_NEXT(funcctx, result); } /* release space in multi-call ctx to avoid intraquery memory leak */ cleanup_regexp_matches(splitctx); SRF_RETURN_DONE(funcctx); } /* This is separate to keep the opr_sanity regression test from complaining */ Datum regexp_split_to_table_no_flags(PG_FUNCTION_ARGS) { return regexp_split_to_table(fcinfo); } /* * regexp_split_to_array() * Split the string at matches of the pattern, returning the * split-out substrings as an array. */ Datum regexp_split_to_array(PG_FUNCTION_ARGS) { ArrayBuildState *astate = NULL; regexp_matches_ctx *splitctx; splitctx = setup_regexp_matches(PG_GETARG_TEXT_PP(0), PG_GETARG_TEXT_PP(1), PG_GETARG_TEXT_PP_IF_EXISTS(2), PG_GET_COLLATION(), true, false, true); while (splitctx->next_match <= splitctx->nmatches) { astate = accumArrayResult(astate, build_regexp_split_result(splitctx), false, TEXTOID, CurrentMemoryContext); splitctx->next_match++; } /* * We don't call cleanup_regexp_matches here; it would try to pfree the * input string, which we didn't copy. The space is not in a long-lived * memory context anyway. */ PG_RETURN_ARRAYTYPE_P(makeArrayResult(astate, CurrentMemoryContext)); } /* This is separate to keep the opr_sanity regression test from complaining */ Datum regexp_split_to_array_no_flags(PG_FUNCTION_ARGS) { return regexp_split_to_array(fcinfo); } /* * build_regexp_split_result - build output string for current match * * We return the string between the current match and the previous one, * or the string after the last match when next_match == nmatches. */ static Datum build_regexp_split_result(regexp_matches_ctx *splitctx) { int startpos; int endpos; if (splitctx->next_match > 0) startpos = splitctx->match_locs[splitctx->next_match * 2 - 1]; else startpos = 0; if (startpos < 0) elog(ERROR, "invalid match ending position"); if (splitctx->next_match < splitctx->nmatches) { endpos = splitctx->match_locs[splitctx->next_match * 2]; if (endpos < startpos) elog(ERROR, "invalid match starting position"); return DirectFunctionCall3(text_substr, PointerGetDatum(splitctx->orig_str), Int32GetDatum(startpos + 1), Int32GetDatum(endpos - startpos)); } else { /* no more matches, return rest of string */ return DirectFunctionCall2(text_substr_no_len, PointerGetDatum(splitctx->orig_str), Int32GetDatum(startpos + 1)); } } /* * regexp_fixed_prefix - extract fixed prefix, if any, for a regexp * * The result is NULL if there is no fixed prefix, else a palloc'd string. * If it is an exact match, not just a prefix, *exact is returned as TRUE. */ char * regexp_fixed_prefix(text *text_re, bool case_insensitive, Oid collation, bool *exact) { char *result; regex_t *re; int cflags; int re_result; pg_wchar *str; size_t slen; size_t maxlen; char errMsg[100]; *exact = false; /* default result */ /* Compile RE */ cflags = REG_ADVANCED; if (case_insensitive) cflags |= REG_ICASE; re = RE_compile_and_cache(text_re, cflags, collation); /* Examine it to see if there's a fixed prefix */ re_result = pg_regprefix(re, &str, &slen); switch (re_result) { case REG_NOMATCH: return NULL; case REG_PREFIX: /* continue with wchar conversion */ break; case REG_EXACT: *exact = true; /* continue with wchar conversion */ break; default: /* re failed??? */ CHECK_FOR_INTERRUPTS(); pg_regerror(re_result, re, errMsg, sizeof(errMsg)); ereport(ERROR, (errcode(ERRCODE_INVALID_REGULAR_EXPRESSION), errmsg("regular expression failed: %s", errMsg))); break; } /* Convert pg_wchar result back to database encoding */ maxlen = pg_database_encoding_max_length() * slen + 1; result = (char *) palloc(maxlen); slen = pg_wchar2mb_with_len(str, result, slen); Assert(slen < maxlen); free(str); return result; }