/*------------------------------------------------------------------------- * * parse_func.c * handle function calls in parser * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/parser/parse_func.c,v 1.43 1999/05/10 00:45:27 momjian Exp $ * *------------------------------------------------------------------------- */ #include #include "postgres.h" #include "access/genam.h" #include "access/heapam.h" #include "access/itup.h" #include "access/relscan.h" #include "access/sdir.h" #include "catalog/catname.h" #include "catalog/heap.h" #include "catalog/indexing.h" #include "catalog/pg_inherits.h" #include "catalog/pg_proc.h" #include "catalog/pg_type.h" #include "catalog/pg_aggregate.h" #include "fmgr.h" #include "lib/dllist.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "nodes/relation.h" #include "parser/parse_agg.h" #include "parser/parse_expr.h" #include "parser/parse_func.h" #include "parser/parse_node.h" #include "parser/parse_relation.h" #include "parser/parse_target.h" #include "parser/parse_type.h" #include "parser/parse_coerce.h" #include "storage/bufmgr.h" #include "storage/lmgr.h" #include "utils/acl.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/syscache.h" static Node *ParseComplexProjection(ParseState *pstate, char *funcname, Node *first_arg, bool *attisset); static Oid **argtype_inherit(int nargs, Oid *oid_array); static int find_inheritors(Oid relid, Oid **supervec); static CandidateList func_get_candidates(char *funcname, int nargs); static bool func_get_detail(char *funcname, int nargs, Oid *oid_array, Oid *funcid, /* return value */ Oid *rettype, /* return value */ bool *retset, /* return value */ Oid **true_typeids); static Oid funcid_get_rettype(Oid funcid); static Oid **gen_cross_product(InhPaths *arginh, int nargs); static void make_arguments(ParseState *pstate, int nargs, List *fargs, Oid *input_typeids, Oid *function_typeids); static int match_argtypes(int nargs, Oid *input_typeids, CandidateList function_typeids, CandidateList *candidates); static List *setup_tlist(char *attname, Oid relid); static List *setup_base_tlist(Oid typeid); static Oid *func_select_candidate(int nargs, Oid *input_typeids, CandidateList candidates); static int agg_get_candidates(char *aggname, Oid typeId, CandidateList *candidates); static Oid agg_select_candidate(Oid typeid, CandidateList candidates); #define ISCOMPLEX(type) (typeidTypeRelid(type) ? true : false) #define MAXFARGS 8 /* max # args to a c or postquel function */ typedef struct _SuperQE { Oid sqe_relid; } SuperQE; /* ** ParseNestedFuncOrColumn ** Given a nested dot expression (i.e. (relation func ... attr), build up ** a tree with of Iter and Func nodes. */ Node * ParseNestedFuncOrColumn(ParseState *pstate, Attr *attr, int *curr_resno, int precedence) { List *mutator_iter; Node *retval = NULL; if (attr->paramNo != NULL) { Param *param = (Param *) transformExpr(pstate, (Node *) attr->paramNo, EXPR_RELATION_FIRST); retval = ParseFuncOrColumn(pstate, strVal(lfirst(attr->attrs)), lcons(param, NIL), curr_resno, precedence); } else { Ident *ident = makeNode(Ident); ident->name = attr->relname; ident->isRel = TRUE; retval = ParseFuncOrColumn(pstate, strVal(lfirst(attr->attrs)), lcons(ident, NIL), curr_resno, precedence); } /* Do more attributes follow this one? */ foreach(mutator_iter, lnext(attr->attrs)) { retval = ParseFuncOrColumn(pstate, strVal(lfirst(mutator_iter)), lcons(retval, NIL), curr_resno, precedence); } return retval; } static int agg_get_candidates(char *aggname, Oid typeId, CandidateList *candidates) { CandidateList current_candidate; Relation pg_aggregate_desc; HeapScanDesc pg_aggregate_scan; HeapTuple tup; Form_pg_aggregate agg; int ncandidates = 0; static ScanKeyData aggKey[1] = { {0, Anum_pg_aggregate_aggname, F_NAMEEQ}}; *candidates = NULL; fmgr_info(F_NAMEEQ, (FmgrInfo *) &aggKey[0].sk_func); aggKey[0].sk_argument = NameGetDatum(aggname); pg_aggregate_desc = heap_openr(AggregateRelationName); pg_aggregate_scan = heap_beginscan(pg_aggregate_desc, 0, SnapshotSelf, /* ??? */ 1, aggKey); while (HeapTupleIsValid(tup = heap_getnext(pg_aggregate_scan, 0))) { current_candidate = (CandidateList) palloc(sizeof(struct _CandidateList)); current_candidate->args = (Oid *) palloc(sizeof(Oid)); agg = (Form_pg_aggregate) GETSTRUCT(tup); current_candidate->args[0] = agg->aggbasetype; current_candidate->next = *candidates; *candidates = current_candidate; ncandidates++; } heap_endscan(pg_aggregate_scan); heap_close(pg_aggregate_desc); return ncandidates; } /* agg_get_candidates() */ /* agg_select_candidate() * Try to choose only one candidate aggregate function from a list of possibles. */ static Oid agg_select_candidate(Oid typeid, CandidateList candidates) { CandidateList current_candidate; CandidateList last_candidate; Oid current_typeid; int ncandidates; CATEGORY category, current_category; /* * Look for candidates which allow coersion and have a preferred type. * Keep all candidates if none match. */ category = TypeCategory(typeid); ncandidates = 0; last_candidate = NULL; for (current_candidate = candidates; current_candidate != NULL; current_candidate = current_candidate->next) { current_typeid = current_candidate->args[0]; current_category = TypeCategory(current_typeid); if ((current_category == category) && IsPreferredType(current_category, current_typeid) && can_coerce_type(1, &typeid, ¤t_typeid)) { /* only one so far? then keep it... */ if (last_candidate == NULL) { candidates = current_candidate; last_candidate = current_candidate; ncandidates = 1; } /* otherwise, keep this one too... */ else { last_candidate->next = current_candidate; last_candidate = current_candidate; ncandidates++; } } /* otherwise, don't bother keeping this one around... */ else if (last_candidate != NULL) { last_candidate->next = NULL; } } return ((ncandidates == 1) ? candidates->args[0] : 0); } /* agg_select_candidate() */ /* * parse function */ Node * ParseFuncOrColumn(ParseState *pstate, char *funcname, List *fargs, int *curr_resno, int precedence) { Oid rettype = (Oid) 0; Oid argrelid = (Oid) 0; Oid funcid = (Oid) 0; List *i = NIL; Node *first_arg = NULL; char *relname = NULL; char *refname = NULL; Relation rd; Oid relid; int nargs; Func *funcnode; Oid oid_array[8]; Oid *true_oid_array; Node *retval; bool retset; bool attisset = false; Oid toid = (Oid) 0; Expr *expr; if (fargs) { first_arg = lfirst(fargs); if (first_arg == NULL) elog(ERROR, "Function '%s' does not allow NULL input", funcname); } /* * check for projection methods: if function takes one argument, and * that argument is a relation, param, or PQ function returning a * complex * type, then the function could be a projection. */ /* We only have one parameter */ if (length(fargs) == 1) { /* Is is a plain Relation name from the parser? */ if (nodeTag(first_arg) == T_Ident && ((Ident *) first_arg)->isRel) { RangeTblEntry *rte; Ident *ident = (Ident *) first_arg; /* * first arg is a relation. This could be a projection. */ refname = ident->name; rte = refnameRangeTableEntry(pstate, refname); if (rte == NULL) rte = addRangeTableEntry(pstate, refname, refname, FALSE, FALSE); relname = rte->relname; relid = rte->relid; /* * If the attr isn't a set, just make a var for it. If it is * a set, treat it like a function and drop through. */ if (get_attnum(relid, funcname) != InvalidAttrNumber) { return (Node *) make_var(pstate, relid, refname, funcname); } else { /* drop through - attr is a set */ ; } } else if (ISCOMPLEX(exprType(first_arg))) { /* * Attempt to handle projection of a complex argument. If * ParseComplexProjection can't handle the projection, we have * to keep going. */ retval = ParseComplexProjection(pstate, funcname, first_arg, &attisset); if (attisset) { toid = exprType(first_arg); rd = heap_openr(typeidTypeName(toid)); if (RelationIsValid(rd)) { relname = RelationGetRelationName(rd)->data; heap_close(rd); } else elog(ERROR, "Type '%s' is not a relation type", typeidTypeName(toid)); argrelid = typeidTypeRelid(toid); /* * A projection contains either an attribute name or the * "*". */ if ((get_attnum(argrelid, funcname) == InvalidAttrNumber) && strcmp(funcname, "*")) elog(ERROR, "Functions on sets are not yet supported"); } if (retval) return retval; } else { /* * Parsing aggregates. */ Type tp; Oid basetype; int ncandidates; CandidateList candidates; /* * the aggregate COUNT is a special case, ignore its base * type. Treat it as zero */ if (strcmp(funcname, "count") == 0) basetype = 0; else basetype = exprType(lfirst(fargs)); /* try for exact match first... */ if (SearchSysCacheTuple(AGGNAME, PointerGetDatum(funcname), ObjectIdGetDatum(basetype), 0, 0)) return (Node *) ParseAgg(pstate, funcname, basetype, fargs, precedence); /* * No exact match yet, so see if there is another entry * in the aggregate table which is compatible. * - thomas 1998-12-05 */ ncandidates = agg_get_candidates(funcname, basetype, &candidates); if (ncandidates > 0) { Oid type; type = agg_select_candidate(basetype, candidates); if (OidIsValid(type)) { lfirst(fargs) = coerce_type(pstate, lfirst(fargs), basetype, type); basetype = type; return (Node *) ParseAgg(pstate, funcname, basetype, fargs, precedence); } else { elog(ERROR,"Unable to select an aggregate function %s(%s)", funcname, typeidTypeName(basetype)); } } /* * See if this is a single argument function with the function * name also a type name and the input argument and type name * binary compatible... * This means that you are trying for a type conversion which does not * need to take place, so we'll just pass through the argument itself. * (make this clearer with some extra brackets - thomas 1998-12-05) */ if ((HeapTupleIsValid(tp = SearchSysCacheTuple(TYPNAME, PointerGetDatum(funcname), 0, 0, 0))) && IS_BINARY_COMPATIBLE(typeTypeId(tp), basetype)) { return ((Node *) lfirst(fargs)); } } } /* * If we dropped through to here it's really a function (or a set, * which is implemented as a function). Extract arg type info and * transform relation name arguments into varnodes of the appropriate * form. */ MemSet(&oid_array[0], 0, 8 * sizeof(Oid)); nargs = 0; foreach(i, fargs) { int vnum; RangeTblEntry *rte; Node *pair = lfirst(i); if (nodeTag(pair) == T_Ident && ((Ident *) pair)->isRel) { /* * a relation */ refname = ((Ident *) pair)->name; rte = refnameRangeTableEntry(pstate, refname); if (rte == NULL) rte = addRangeTableEntry(pstate, refname, refname, FALSE, FALSE); relname = rte->relname; vnum = refnameRangeTablePosn(pstate, rte->refname, NULL); /* * for func(relname), the param to the function is the tuple * under consideration. we build a special VarNode to reflect * this -- it has varno set to the correct range table entry, * but has varattno == 0 to signal that the whole tuple is the * argument. */ toid = typeTypeId(typenameType(relname)); /* replace it in the arg list */ lfirst(fargs) = makeVar(vnum, 0, toid, -1, 0, vnum, 0); } else if (!attisset) { /* set functions don't have parameters */ /* * any functiona args which are typed "unknown", but aren't * constants, we don't know what to do with, because we can't * cast them - jolly */ if (exprType(pair) == UNKNOWNOID && !IsA(pair, Const)) elog(ERROR, "There is no function '%s'" " with argument #%d of type UNKNOWN", funcname, nargs); else toid = exprType(pair); } oid_array[nargs++] = toid; } /* * func_get_detail looks up the function in the catalogs, does * disambiguation for polymorphic functions, handles inheritance, and * returns the funcid and type and set or singleton status of the * function's return value. it also returns the true argument types * to the function. if func_get_detail returns true, the function * exists. otherwise, there was an error. */ if (attisset) { /* we know all of these fields already */ /* * We create a funcnode with a placeholder function SetEval. * SetEval() never actually gets executed. When the function * evaluation routines see it, they use the funcid projected out * from the relation as the actual function to call. Example: * retrieve (emp.mgr.name) The plan for this will scan the emp * relation, projecting out the mgr attribute, which is a funcid. * This function is then called (instead of SetEval) and "name" is * projected from its result. */ funcid = F_SETEVAL; rettype = toid; retset = true; true_oid_array = oid_array; } else { bool exists; exists = func_get_detail(funcname, nargs, oid_array, &funcid, &rettype, &retset, &true_oid_array); if (!exists) elog(ERROR, "No such function '%s' with the specified attributes", funcname); } /* got it */ funcnode = makeNode(Func); funcnode->funcid = funcid; funcnode->functype = rettype; funcnode->funcisindex = false; funcnode->funcsize = 0; funcnode->func_fcache = NULL; funcnode->func_tlist = NIL; funcnode->func_planlist = NIL; /* perform the necessary typecasting */ make_arguments(pstate, nargs, fargs, oid_array, true_oid_array); /* * for functions returning base types, we want to project out the * return value. set up a target list to do that. the executor will * ignore these for c functions, and do the right thing for postquel * functions. */ if (typeidTypeRelid(rettype) == InvalidOid) funcnode->func_tlist = setup_base_tlist(rettype); /* * For sets, we want to make a targetlist to project out this * attribute of the set tuples. */ if (attisset) { if (!strcmp(funcname, "*")) { funcnode->func_tlist = expandAll(pstate, relname, refname, curr_resno); } else { funcnode->func_tlist = setup_tlist(funcname, argrelid); rettype = get_atttype(argrelid, get_attnum(argrelid, funcname)); } } /* * Sequence handling. */ if (funcid == F_NEXTVAL || funcid == F_CURRVAL || funcid == F_SETVAL) { Const *seq; char *seqrel; text *seqname; int32 aclcheck_result = -1; Assert(length(fargs) == ((funcid == F_SETVAL) ? 2 : 1)); seq = (Const *) lfirst(fargs); if (!IsA((Node *) seq, Const)) elog(ERROR, "Only constant sequence names are acceptable for function '%s'", funcname); seqrel = textout((text *) DatumGetPointer(seq->constvalue)); /* Do we have nextval('"Aa"')? */ if (strlen(seqrel) >= 2 && seqrel[0] == '\"' && seqrel[strlen(seqrel)-1] == '\"') { /* strip off quotes, keep case */ seqrel = pstrdup(seqrel+1); seqrel[strlen(seqrel)-1] = '\0'; pfree(DatumGetPointer(seq->constvalue)); seq->constvalue = (Datum)textin(seqrel); } else { pfree(seqrel); seqname = lower((text *) DatumGetPointer(seq->constvalue)); pfree(DatumGetPointer(seq->constvalue)); seq->constvalue = PointerGetDatum(seqname); seqrel = textout(seqname); } if ((aclcheck_result = pg_aclcheck(seqrel, GetPgUserName(), (((funcid == F_NEXTVAL) || (funcid == F_SETVAL)) ? ACL_WR : ACL_RD))) != ACLCHECK_OK) elog(ERROR, "%s.%s: %s", seqrel, funcname, aclcheck_error_strings[aclcheck_result]); pfree(seqrel); if (funcid == F_NEXTVAL && pstate->p_in_where_clause) elog(ERROR, "Sequence function nextval is not allowed in WHERE clauses"); if (funcid == F_SETVAL && pstate->p_in_where_clause) elog(ERROR, "Sequence function setval is not allowed in WHERE clauses"); } expr = makeNode(Expr); expr->typeOid = rettype; expr->opType = FUNC_EXPR; expr->oper = (Node *) funcnode; expr->args = fargs; retval = (Node *) expr; /* * if the function returns a set of values, then we need to iterate * over all the returned values in the executor, so we stick an iter * node here. if it returns a singleton, then we don't need the iter * node. */ if (retset) { Iter *iter = makeNode(Iter); iter->itertype = rettype; iter->iterexpr = retval; retval = (Node *) iter; } return retval; } static Oid funcid_get_rettype(Oid funcid) { HeapTuple func_tuple = NULL; Oid funcrettype = (Oid) 0; func_tuple = SearchSysCacheTuple(PROOID, ObjectIdGetDatum(funcid), 0, 0, 0); if (!HeapTupleIsValid(func_tuple)) elog(ERROR, "Function OID %u does not exist", funcid); funcrettype = (Oid) ((Form_pg_proc) GETSTRUCT(func_tuple))->prorettype; return funcrettype; } /* func_get_candidates() * get a list of all argument type vectors for which a function named * funcname taking nargs arguments exists */ static CandidateList func_get_candidates(char *funcname, int nargs) { Relation heapRelation; Relation idesc; ScanKeyData skey; HeapTupleData tuple; IndexScanDesc sd; RetrieveIndexResult indexRes; Form_pg_proc pgProcP; CandidateList candidates = NULL; CandidateList current_candidate; int i; heapRelation = heap_openr(ProcedureRelationName); ScanKeyEntryInitialize(&skey, (bits16) 0x0, (AttrNumber) 1, (RegProcedure) F_NAMEEQ, (Datum) funcname); idesc = index_openr(ProcedureNameIndex); sd = index_beginscan(idesc, false, 1, &skey); do { indexRes = index_getnext(sd, ForwardScanDirection); if (indexRes) { Buffer buffer; tuple.t_self = indexRes->heap_iptr; heap_fetch(heapRelation, SnapshotNow, &tuple, &buffer); pfree(indexRes); if (tuple.t_data != NULL) { pgProcP = (Form_pg_proc) GETSTRUCT(&tuple); if (pgProcP->pronargs == nargs) { current_candidate = (CandidateList) palloc(sizeof(struct _CandidateList)); current_candidate->args = (Oid *) palloc(8 * sizeof(Oid)); MemSet(current_candidate->args, 0, 8 * sizeof(Oid)); for (i = 0; i < nargs; i++) current_candidate->args[i] = pgProcP->proargtypes[i]; current_candidate->next = candidates; candidates = current_candidate; } ReleaseBuffer(buffer); } } } while (indexRes); index_endscan(sd); index_close(idesc); heap_close(heapRelation); return candidates; } /* match_argtypes() * Given a list of possible typeid arrays to a function and an array of * input typeids, produce a shortlist of those function typeid arrays * that match the input typeids (either exactly or by coercion), and * return the number of such arrays */ static int match_argtypes(int nargs, Oid *input_typeids, CandidateList function_typeids, CandidateList *candidates) /* return value */ { CandidateList current_candidate; CandidateList matching_candidate; Oid *current_typeids; int ncandidates = 0; *candidates = NULL; for (current_candidate = function_typeids; current_candidate != NULL; current_candidate = current_candidate->next) { current_typeids = current_candidate->args; if (can_coerce_type(nargs, input_typeids, current_typeids)) { matching_candidate = (CandidateList) palloc(sizeof(struct _CandidateList)); matching_candidate->args = current_typeids; matching_candidate->next = *candidates; *candidates = matching_candidate; ncandidates++; } } return ncandidates; } /* match_argtypes() */ /* func_select_candidate() * Given the input argtype array and more than one candidate * for the function argtype array, attempt to resolve the conflict. * returns the selected argtype array if the conflict can be resolved, * otherwise returns NULL. * * If all input Oids are UNKNOWNOID, then try matching with TEXTOID. * Otherwise, could return first function arguments on list of candidates. * But for now, return NULL and make the user give a better hint. * - thomas 1998-03-17 */ static Oid * func_select_candidate(int nargs, Oid *input_typeids, CandidateList candidates) { CandidateList current_candidate; CandidateList last_candidate; Oid *current_typeids; int i; int ncandidates; int nbestMatch, nmatch, nident; CATEGORY slot_category, current_category; Oid slot_type, current_type; /* * Run through all candidates and keep those with the most matches * on explicit types. Keep all candidates if none match. */ ncandidates = 0; nbestMatch = 0; last_candidate = NULL; for (current_candidate = candidates; current_candidate != NULL; current_candidate = current_candidate->next) { current_typeids = current_candidate->args; nmatch = 0; nident = 0; for (i = 0; i < nargs; i++) { if ((input_typeids[i] != UNKNOWNOID) && (current_typeids[i] == input_typeids[i])) nmatch++; else if (IS_BINARY_COMPATIBLE(current_typeids[i], input_typeids[i])) nident++; } if ((nmatch + nident) == nargs) return current_candidate->args; if ((nmatch > nbestMatch) || (last_candidate == NULL)) { nbestMatch = nmatch; candidates = current_candidate; last_candidate = current_candidate; ncandidates = 1; } else if (nmatch == nbestMatch) { last_candidate->next = current_candidate; last_candidate = current_candidate; ncandidates++; } else { last_candidate->next = NULL; } } if (ncandidates == 1) return candidates->args; /* * Still too many candidates? * Try assigning types for the unknown columns. */ for (i = 0; i < nargs; i++) { if (input_typeids[i] == UNKNOWNOID) { slot_category = INVALID_TYPE; slot_type = InvalidOid; for (current_candidate = candidates; current_candidate != NULL; current_candidate = current_candidate->next) { current_typeids = current_candidate->args; current_type = current_typeids[i]; current_category = TypeCategory(current_typeids[i]); if (slot_category == InvalidOid) { slot_category = current_category; slot_type = current_type; } else if ((current_category != slot_category) && IS_BUILTIN_TYPE(current_type)) { return NULL; } else if (current_type != slot_type) { if (IsPreferredType(slot_category, current_type)) { slot_type = current_type; candidates = current_candidate; } else if (IsPreferredType(slot_category, slot_type)) { candidates->next = current_candidate->next; } } } if (slot_type != InvalidOid) { input_typeids[i] = slot_type; } } else { } } ncandidates = 0; for (current_candidate = candidates; current_candidate != NULL; current_candidate = current_candidate->next) ncandidates++; if (ncandidates == 1) return candidates->args; return NULL; } /* func_select_candidate() */ /* func_get_detail() * Find the named function in the system catalogs. * * Attempt to find the named function in the system catalogs with * arguments exactly as specified, so that the normal case * (exact match) is as quick as possible. * * If an exact match isn't found: * 1) get a vector of all possible input arg type arrays constructed * from the superclasses of the original input arg types * 2) get a list of all possible argument type arrays to the function * with given name and number of arguments * 3) for each input arg type array from vector #1: * a) find how many of the function arg type arrays from list #2 * it can be coerced to * b) if the answer is one, we have our function * c) if the answer is more than one, attempt to resolve the conflict * d) if the answer is zero, try the next array from vector #1 */ static bool func_get_detail(char *funcname, int nargs, Oid *oid_array, Oid *funcid, /* return value */ Oid *rettype, /* return value */ bool *retset, /* return value */ Oid **true_typeids) /* return value */ { Oid **input_typeid_vector; Oid *current_input_typeids; CandidateList function_typeids; CandidateList current_function_typeids; HeapTuple ftup; Form_pg_proc pform; /* attempt to find with arguments exactly as specified... */ ftup = SearchSysCacheTuple(PRONAME, PointerGetDatum(funcname), Int32GetDatum(nargs), PointerGetDatum(oid_array), 0); *true_typeids = oid_array; /* didn't find an exact match, so now try to match up candidates... */ if (!HeapTupleIsValid(ftup)) { function_typeids = func_get_candidates(funcname, nargs); /* found something, so let's look through them... */ if (function_typeids != NULL) { int ncandidates; input_typeid_vector = argtype_inherit(nargs, oid_array); current_input_typeids = oid_array; do { ncandidates = match_argtypes(nargs, current_input_typeids, function_typeids, ¤t_function_typeids); /* one match only? then run with it... */ if (ncandidates == 1) { *true_typeids = current_function_typeids->args; ftup = SearchSysCacheTuple(PRONAME, PointerGetDatum(funcname), Int32GetDatum(nargs), PointerGetDatum(*true_typeids), 0); Assert(HeapTupleIsValid(ftup)); } /* * multiple candidates? then better decide or throw an * error... */ else if (ncandidates > 1) { *true_typeids = func_select_candidate(nargs, current_input_typeids, current_function_typeids); /* couldn't decide, so quit */ if (*true_typeids == NULL) { func_error(NULL, funcname, nargs, oid_array, "Unable to identify a function which satisfies the given argument types" "\n\tYou will have to retype your query using explicit typecasts"); } /* found something, so use the first one... */ else { ftup = SearchSysCacheTuple(PRONAME, PointerGetDatum(funcname), Int32GetDatum(nargs), PointerGetDatum(*true_typeids), 0); Assert(HeapTupleIsValid(ftup)); } } current_input_typeids = *input_typeid_vector++; } while (current_input_typeids != InvalidOid && ncandidates == 0); } } if (!HeapTupleIsValid(ftup)) { Type tp; if (nargs == 1) { tp = typeidType(oid_array[0]); if (typeTypeFlag(tp) == 'c') elog(ERROR, "No such attribute or function '%s'", funcname); } } else { pform = (Form_pg_proc) GETSTRUCT(ftup); *funcid = ftup->t_data->t_oid; *rettype = pform->prorettype; *retset = pform->proretset; return true; } /* shouldn't reach here */ return false; } /* func_get_detail() */ /* * argtype_inherit() -- Construct an argtype vector reflecting the * inheritance properties of the supplied argv. * * This function is used to disambiguate among functions with the * same name but different signatures. It takes an array of eight * type ids. For each type id in the array that's a complex type * (a class), it walks up the inheritance tree, finding all * superclasses of that type. A vector of new Oid type arrays * is returned to the caller, reflecting the structure of the * inheritance tree above the supplied arguments. * * The order of this vector is as follows: all superclasses of the * rightmost complex class are explored first. The exploration * continues from right to left. This policy means that we favor * keeping the leftmost argument type as low in the inheritance tree * as possible. This is intentional; it is exactly what we need to * do for method dispatch. The last type array we return is all * zeroes. This will match any functions for which return types are * not defined. There are lots of these (mostly builtins) in the * catalogs. */ static Oid ** argtype_inherit(int nargs, Oid *oid_array) { Oid relid; int i; InhPaths arginh[MAXFARGS]; for (i = 0; i < MAXFARGS; i++) { if (i < nargs) { arginh[i].self = oid_array[i]; if ((relid = typeidTypeRelid(oid_array[i])) != InvalidOid) arginh[i].nsupers = find_inheritors(relid, &(arginh[i].supervec)); else { arginh[i].nsupers = 0; arginh[i].supervec = (Oid *) NULL; } } else { arginh[i].self = InvalidOid; arginh[i].nsupers = 0; arginh[i].supervec = (Oid *) NULL; } } /* return an ordered cross-product of the classes involved */ return gen_cross_product(arginh, nargs); } static int find_inheritors(Oid relid, Oid **supervec) { Oid *relidvec; Relation inhrel; HeapScanDesc inhscan; ScanKeyData skey; HeapTuple inhtup; TupleDesc inhtupdesc; int nvisited; SuperQE *qentry, *vnode; Dllist *visited, *queue; Dlelem *qe, *elt; Relation rd; Datum d; bool newrelid; char isNull; nvisited = 0; queue = DLNewList(); visited = DLNewList(); inhrel = heap_openr(InheritsRelationName); inhtupdesc = RelationGetDescr(inhrel); /* * Use queue to do a breadth-first traversal of the inheritance graph * from the relid supplied up to the root. */ do { ScanKeyEntryInitialize(&skey, 0x0, Anum_pg_inherits_inhrel, F_OIDEQ, ObjectIdGetDatum(relid)); inhscan = heap_beginscan(inhrel, 0, SnapshotNow, 1, &skey); while (HeapTupleIsValid(inhtup = heap_getnext(inhscan, 0))) { qentry = (SuperQE *) palloc(sizeof(SuperQE)); d = fastgetattr(inhtup, Anum_pg_inherits_inhparent, inhtupdesc, &isNull); qentry->sqe_relid = DatumGetObjectId(d); /* put this one on the queue */ DLAddTail(queue, DLNewElem(qentry)); } heap_endscan(inhscan); /* pull next unvisited relid off the queue */ do { qe = DLRemHead(queue); qentry = qe ? (SuperQE *) DLE_VAL(qe) : NULL; if (qentry == (SuperQE *) NULL) break; relid = qentry->sqe_relid; newrelid = true; for (elt = DLGetHead(visited); elt; elt = DLGetSucc(elt)) { vnode = (SuperQE *) DLE_VAL(elt); if (vnode && (qentry->sqe_relid == vnode->sqe_relid)) { newrelid = false; break; } } } while (!newrelid); if (qentry != (SuperQE *) NULL) { /* save the type id, rather than the relation id */ if ((rd = heap_open(qentry->sqe_relid)) == (Relation) NULL) elog(ERROR, "Relid %u does not exist", qentry->sqe_relid); qentry->sqe_relid = typeTypeId(typenameType(RelationGetRelationName(rd)->data)); heap_close(rd); DLAddTail(visited, qe); nvisited++; } } while (qentry != (SuperQE *) NULL); heap_close(inhrel); if (nvisited > 0) { relidvec = (Oid *) palloc(nvisited * sizeof(Oid)); *supervec = relidvec; for (elt = DLGetHead(visited); elt; elt = DLGetSucc(elt)) { vnode = (SuperQE *) DLE_VAL(elt); *relidvec++ = vnode->sqe_relid; } } else *supervec = (Oid *) NULL; return nvisited; } static Oid ** gen_cross_product(InhPaths *arginh, int nargs) { int nanswers; Oid **result, **iter; Oid *oneres; int i, j; int cur[MAXFARGS]; nanswers = 1; for (i = 0; i < nargs; i++) { nanswers *= (arginh[i].nsupers + 2); cur[i] = 0; } iter = result = (Oid **) palloc(sizeof(Oid *) * nanswers); /* compute the cross product from right to left */ for (;;) { oneres = (Oid *) palloc(MAXFARGS * sizeof(Oid)); MemSet(oneres, 0, MAXFARGS * sizeof(Oid)); for (i = nargs - 1; i >= 0 && cur[i] > arginh[i].nsupers; i--) continue; /* if we're done, terminate with NULL pointer */ if (i < 0) { *iter = NULL; return result; } /* no, increment this column and zero the ones after it */ cur[i] = cur[i] + 1; for (j = nargs - 1; j > i; j--) cur[j] = 0; for (i = 0; i < nargs; i++) { if (cur[i] == 0) oneres[i] = arginh[i].self; else if (cur[i] > arginh[i].nsupers) oneres[i] = 0; /* wild card */ else oneres[i] = arginh[i].supervec[cur[i] - 1]; } *iter++ = oneres; } } /* make_arguments() * Given the number and types of arguments to a function, and the * actual arguments and argument types, do the necessary typecasting. * * There are two ways an input typeid can differ from a function typeid: * 1) the input type inherits the function type, so no typecasting required * 2) the input type can be typecast into the function type * Right now, we only typecast unknowns, and that is all we check for. * * func_get_detail() now can find coersions for function arguments which * will make this function executable. So, we need to recover these * results here too. * - thomas 1998-03-25 */ static void make_arguments(ParseState *pstate, int nargs, List *fargs, Oid *input_typeids, Oid *function_typeids) { List *current_fargs; int i; for (i = 0, current_fargs = fargs; i < nargs; i++, current_fargs = lnext(current_fargs)) { /* * unspecified type for string constant? then use heuristics for * conversion... */ if (input_typeids[i] == UNKNOWNOID && function_typeids[i] != InvalidOid) { lfirst(current_fargs) = parser_typecast2(lfirst(current_fargs), input_typeids[i], typeidType(function_typeids[i]), -1); } /* types don't match? then force coersion using a function call... */ else if (input_typeids[i] != function_typeids[i]) { lfirst(current_fargs) = coerce_type(pstate, lfirst(current_fargs), input_typeids[i], function_typeids[i]); } } } /* ** setup_tlist ** Build a tlist that says which attribute to project to. ** This routine is called by ParseFuncOrColumn() to set up a target list ** on a tuple parameter or return value. Due to a bug in 4.0, ** it's not possible to refer to system attributes in this case. */ static List * setup_tlist(char *attname, Oid relid) { TargetEntry *tle; Resdom *resnode; Var *varnode; Oid typeid; int32 type_mod; int attno; attno = get_attnum(relid, attname); if (attno < 0) elog(ERROR, "Cannot reference attribute '%s'" " of tuple params/return values for functions", attname); typeid = get_atttype(relid, attno); type_mod = get_atttypmod(relid, attno); resnode = makeResdom(1, typeid, type_mod, get_attname(relid, attno), 0, (Oid) 0, 0); varnode = makeVar(-1, attno, typeid, type_mod, 0, -1, attno); tle = makeTargetEntry(resnode, (Node *) varnode); return lcons(tle, NIL); } /* ** setup_base_tlist ** Build a tlist that extracts a base type from the tuple ** returned by the executor. */ static List * setup_base_tlist(Oid typeid) { TargetEntry *tle; Resdom *resnode; Var *varnode; resnode = makeResdom(1, typeid, -1, "", 0, (Oid) 0, 0); varnode = makeVar(-1, 1, typeid, -1, 0, -1, 1); tle = makeTargetEntry(resnode, (Node *) varnode); return lcons(tle, NIL); } /* * ParseComplexProjection - * handles function calls with a single argument that is of complex type. * This routine returns NULL if it can't handle the projection (eg. sets). */ static Node * ParseComplexProjection(ParseState *pstate, char *funcname, Node *first_arg, bool *attisset) { Oid argtype; Oid argrelid; Relation rd; Oid relid; int attnum; switch (nodeTag(first_arg)) { case T_Iter: { Func *func; Iter *iter; iter = (Iter *) first_arg; func = (Func *) ((Expr *) iter->iterexpr)->oper; argtype = funcid_get_rettype(func->funcid); argrelid = typeidTypeRelid(argtype); if (argrelid && ((attnum = get_attnum(argrelid, funcname)) != InvalidAttrNumber)) { /* * the argument is a function returning a tuple, so * funcname may be a projection */ /* add a tlist to the func node and return the Iter */ rd = heap_openr(typeidTypeName(argtype)); if (RelationIsValid(rd)) { relid = RelationGetRelid(rd); heap_close(rd); } if (RelationIsValid(rd)) { func->func_tlist = setup_tlist(funcname, argrelid); iter->itertype = attnumTypeId(rd, attnum); return (Node *) iter; } else { elog(ERROR, "Function '%s' has bad return type %d", funcname, argtype); } } else { /* drop through */ ; } break; } case T_Var: { /* * The argument is a set, so this is either a projection * or a function call on this set. */ *attisset = true; break; } case T_Expr: { Expr *expr = (Expr *) first_arg; Func *funcnode; if (expr->opType != FUNC_EXPR) break; funcnode = (Func *) expr->oper; argtype = funcid_get_rettype(funcnode->funcid); argrelid = typeidTypeRelid(argtype); /* * the argument is a function returning a tuple, so * funcname may be a projection */ if (argrelid && (attnum = get_attnum(argrelid, funcname)) != InvalidAttrNumber) { /* add a tlist to the func node */ rd = heap_openr(typeidTypeName(argtype)); if (RelationIsValid(rd)) { relid = RelationGetRelid(rd); heap_close(rd); } if (RelationIsValid(rd)) { Expr *newexpr; funcnode->func_tlist = setup_tlist(funcname, argrelid); funcnode->functype = attnumTypeId(rd, attnum); newexpr = makeNode(Expr); newexpr->typeOid = funcnode->functype; newexpr->opType = FUNC_EXPR; newexpr->oper = (Node *) funcnode; newexpr->args = expr->args; return (Node *) newexpr; } } break; } case T_Param: { Param *param = (Param *) first_arg; /* * If the Param is a complex type, this could be a * projection */ rd = heap_openr(typeidTypeName(param->paramtype)); if (RelationIsValid(rd)) { relid = RelationGetRelid(rd); heap_close(rd); if ((attnum = get_attnum(relid, funcname)) != InvalidAttrNumber) { param->paramtype = attnumTypeId(rd, attnum); param->param_tlist = setup_tlist(funcname, relid); return (Node *) param; } } break; } default: break; } return NULL; } /* * Error message when function lookup fails that gives details of the * argument types */ void func_error(char *caller, char *funcname, int nargs, Oid *argtypes, char *msg) { char p[(NAMEDATALEN + 2) * MAXFMGRARGS], *ptr; int i; ptr = p; *ptr = '\0'; for (i = 0; i < nargs; i++) { if (i) { *ptr++ = ','; *ptr++ = ' '; } if (argtypes[i] != 0) { strcpy(ptr, typeidTypeName(argtypes[i])); *(ptr + NAMEDATALEN) = '\0'; } else strcpy(ptr, "opaque"); ptr += strlen(ptr); } if (caller == NULL) { elog(ERROR, "Function '%s(%s)' does not exist%s%s", funcname, p, ((msg != NULL) ? "\n\t" : ""), ((msg != NULL) ? msg : "")); } else { elog(ERROR, "%s: function '%s(%s)' does not exist%s%s", caller, funcname, p, ((msg != NULL) ? "\n\t" : ""), ((msg != NULL) ? msg : "")); } }