postgresql/contrib/cube/cubeparse.y

292 lines
5.9 KiB
Plaintext

%{
/* contrib/cube/cubeparse.y */
/* NdBox = [(lowerleft),(upperright)] */
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
#include "postgres.h"
#include "cubedata.h"
#include "nodes/miscnodes.h"
#include "utils/float.h"
#include "varatt.h"
/* All grammar constructs return strings */
#define YYSTYPE char *
/*
* Bison doesn't allocate anything that needs to live across parser calls,
* so we can easily have it use palloc instead of malloc. This prevents
* memory leaks if we error out during parsing.
*/
#define YYMALLOC palloc
#define YYFREE pfree
static int item_count(const char *s, char delim);
static bool write_box(int dim, char *str1, char *str2,
NDBOX **result, struct Node *escontext);
static bool write_point_as_box(int dim, char *str,
NDBOX **result, struct Node *escontext);
%}
/* BISON Declarations */
%parse-param {NDBOX **result}
%parse-param {Size scanbuflen}
%parse-param {struct Node *escontext}
%expect 0
%name-prefix="cube_yy"
%token CUBEFLOAT O_PAREN C_PAREN O_BRACKET C_BRACKET COMMA
%start box
/* Grammar follows */
%%
box: O_BRACKET paren_list COMMA paren_list C_BRACKET
{
int dim;
dim = item_count($2, ',');
if (item_count($4, ',') != dim)
{
errsave(escontext,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for cube"),
errdetail("Different point dimensions in (%s) and (%s).",
$2, $4)));
YYABORT;
}
if (dim > CUBE_MAX_DIM)
{
errsave(escontext,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for cube"),
errdetail("A cube cannot have more than %d dimensions.",
CUBE_MAX_DIM)));
YYABORT;
}
if (!write_box(dim, $2, $4, result, escontext))
YYABORT;
}
| paren_list COMMA paren_list
{
int dim;
dim = item_count($1, ',');
if (item_count($3, ',') != dim)
{
errsave(escontext,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for cube"),
errdetail("Different point dimensions in (%s) and (%s).",
$1, $3)));
YYABORT;
}
if (dim > CUBE_MAX_DIM)
{
errsave(escontext,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for cube"),
errdetail("A cube cannot have more than %d dimensions.",
CUBE_MAX_DIM)));
YYABORT;
}
if (!write_box(dim, $1, $3, result, escontext))
YYABORT;
}
| paren_list
{
int dim;
dim = item_count($1, ',');
if (dim > CUBE_MAX_DIM)
{
errsave(escontext,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for cube"),
errdetail("A cube cannot have more than %d dimensions.",
CUBE_MAX_DIM)));
YYABORT;
}
if (!write_point_as_box(dim, $1, result, escontext))
YYABORT;
}
| list
{
int dim;
dim = item_count($1, ',');
if (dim > CUBE_MAX_DIM)
{
errsave(escontext,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for cube"),
errdetail("A cube cannot have more than %d dimensions.",
CUBE_MAX_DIM)));
YYABORT;
}
if (!write_point_as_box(dim, $1, result, escontext))
YYABORT;
}
;
paren_list: O_PAREN list C_PAREN
{
$$ = $2;
}
| O_PAREN C_PAREN
{
$$ = pstrdup("");
}
;
list: CUBEFLOAT
{
/* alloc enough space to be sure whole list will fit */
$$ = palloc(scanbuflen + 1);
strcpy($$, $1);
}
| list COMMA CUBEFLOAT
{
$$ = $1;
strcat($$, ",");
strcat($$, $3);
}
;
%%
/* This assumes the string has been normalized by productions above */
static int
item_count(const char *s, char delim)
{
int nitems = 0;
if (s[0] != '\0')
{
nitems++;
while ((s = strchr(s, delim)) != NULL)
{
nitems++;
s++;
}
}
return nitems;
}
static bool
write_box(int dim, char *str1, char *str2,
NDBOX **result, struct Node *escontext)
{
NDBOX *bp;
char *s;
char *endptr;
int i;
int size = CUBE_SIZE(dim);
bool point = true;
bp = palloc0(size);
SET_VARSIZE(bp, size);
SET_DIM(bp, dim);
s = str1;
i = 0;
if (dim > 0)
{
bp->x[i++] = float8in_internal(s, &endptr, "cube", str1, escontext);
if (SOFT_ERROR_OCCURRED(escontext))
return false;
}
while ((s = strchr(s, ',')) != NULL)
{
s++;
bp->x[i++] = float8in_internal(s, &endptr, "cube", str1, escontext);
if (SOFT_ERROR_OCCURRED(escontext))
return false;
}
Assert(i == dim);
s = str2;
if (dim > 0)
{
bp->x[i] = float8in_internal(s, &endptr, "cube", str2, escontext);
if (SOFT_ERROR_OCCURRED(escontext))
return false;
/* code this way to do right thing with NaN */
point &= (bp->x[i] == bp->x[0]);
i++;
}
while ((s = strchr(s, ',')) != NULL)
{
s++;
bp->x[i] = float8in_internal(s, &endptr, "cube", str2, escontext);
if (SOFT_ERROR_OCCURRED(escontext))
return false;
point &= (bp->x[i] == bp->x[i - dim]);
i++;
}
Assert(i == dim * 2);
if (point)
{
/*
* The value turned out to be a point, ie. all the upper-right
* coordinates were equal to the lower-left coordinates. Resize the
* cube we constructed. Note: we don't bother to repalloc() it
* smaller, as it's unlikely that the tiny amount of memory freed
* that way would be useful, and the output is always short-lived.
*/
size = POINT_SIZE(dim);
SET_VARSIZE(bp, size);
SET_POINT_BIT(bp);
}
*result = bp;
return true;
}
static bool
write_point_as_box(int dim, char *str,
NDBOX **result, struct Node *escontext)
{
NDBOX *bp;
int i,
size;
char *s;
char *endptr;
size = POINT_SIZE(dim);
bp = palloc0(size);
SET_VARSIZE(bp, size);
SET_DIM(bp, dim);
SET_POINT_BIT(bp);
s = str;
i = 0;
if (dim > 0)
{
bp->x[i++] = float8in_internal(s, &endptr, "cube", str, escontext);
if (SOFT_ERROR_OCCURRED(escontext))
return false;
}
while ((s = strchr(s, ',')) != NULL)
{
s++;
bp->x[i++] = float8in_internal(s, &endptr, "cube", str, escontext);
if (SOFT_ERROR_OCCURRED(escontext))
return false;
}
Assert(i == dim);
*result = bp;
return true;
}