postgresql/contrib/pg_buffercache/pg_buffercache_pages.c

370 lines
10 KiB
C

/*-------------------------------------------------------------------------
*
* pg_buffercache_pages.c
* display some contents of the buffer cache
*
* contrib/pg_buffercache/pg_buffercache_pages.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "storage/buf_internals.h"
#include "storage/bufmgr.h"
#define NUM_BUFFERCACHE_PAGES_MIN_ELEM 8
#define NUM_BUFFERCACHE_PAGES_ELEM 9
#define NUM_BUFFERCACHE_SUMMARY_ELEM 5
#define NUM_BUFFERCACHE_USAGE_COUNTS_ELEM 4
PG_MODULE_MAGIC;
/*
* Record structure holding the to be exposed cache data.
*/
typedef struct
{
uint32 bufferid;
RelFileNumber relfilenumber;
Oid reltablespace;
Oid reldatabase;
ForkNumber forknum;
BlockNumber blocknum;
bool isvalid;
bool isdirty;
uint16 usagecount;
/*
* An int32 is sufficiently large, as MAX_BACKENDS prevents a buffer from
* being pinned by too many backends and each backend will only pin once
* because of bufmgr.c's PrivateRefCount infrastructure.
*/
int32 pinning_backends;
} BufferCachePagesRec;
/*
* Function context for data persisting over repeated calls.
*/
typedef struct
{
TupleDesc tupdesc;
BufferCachePagesRec *record;
} BufferCachePagesContext;
/*
* Function returning data from the shared buffer cache - buffer number,
* relation node/tablespace/database/blocknum and dirty indicator.
*/
PG_FUNCTION_INFO_V1(pg_buffercache_pages);
PG_FUNCTION_INFO_V1(pg_buffercache_summary);
PG_FUNCTION_INFO_V1(pg_buffercache_usage_counts);
PG_FUNCTION_INFO_V1(pg_buffercache_evict);
Datum
pg_buffercache_pages(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
Datum result;
MemoryContext oldcontext;
BufferCachePagesContext *fctx; /* User function context. */
TupleDesc tupledesc;
TupleDesc expected_tupledesc;
HeapTuple tuple;
if (SRF_IS_FIRSTCALL())
{
int i;
funcctx = SRF_FIRSTCALL_INIT();
/* Switch context when allocating stuff to be used in later calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* Create a user function context for cross-call persistence */
fctx = (BufferCachePagesContext *) palloc(sizeof(BufferCachePagesContext));
/*
* To smoothly support upgrades from version 1.0 of this extension
* transparently handle the (non-)existence of the pinning_backends
* column. We unfortunately have to get the result type for that... -
* we can't use the result type determined by the function definition
* without potentially crashing when somebody uses the old (or even
* wrong) function definition though.
*/
if (get_call_result_type(fcinfo, NULL, &expected_tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
if (expected_tupledesc->natts < NUM_BUFFERCACHE_PAGES_MIN_ELEM ||
expected_tupledesc->natts > NUM_BUFFERCACHE_PAGES_ELEM)
elog(ERROR, "incorrect number of output arguments");
/* Construct a tuple descriptor for the result rows. */
tupledesc = CreateTemplateTupleDesc(expected_tupledesc->natts);
TupleDescInitEntry(tupledesc, (AttrNumber) 1, "bufferid",
INT4OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 2, "relfilenode",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 3, "reltablespace",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 4, "reldatabase",
OIDOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 5, "relforknumber",
INT2OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 6, "relblocknumber",
INT8OID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 7, "isdirty",
BOOLOID, -1, 0);
TupleDescInitEntry(tupledesc, (AttrNumber) 8, "usage_count",
INT2OID, -1, 0);
if (expected_tupledesc->natts == NUM_BUFFERCACHE_PAGES_ELEM)
TupleDescInitEntry(tupledesc, (AttrNumber) 9, "pinning_backends",
INT4OID, -1, 0);
fctx->tupdesc = BlessTupleDesc(tupledesc);
/* Allocate NBuffers worth of BufferCachePagesRec records. */
fctx->record = (BufferCachePagesRec *)
MemoryContextAllocHuge(CurrentMemoryContext,
sizeof(BufferCachePagesRec) * NBuffers);
/* Set max calls and remember the user function context. */
funcctx->max_calls = NBuffers;
funcctx->user_fctx = fctx;
/* Return to original context when allocating transient memory */
MemoryContextSwitchTo(oldcontext);
/*
* Scan through all the buffers, saving the relevant fields in the
* fctx->record structure.
*
* We don't hold the partition locks, so we don't get a consistent
* snapshot across all buffers, but we do grab the buffer header
* locks, so the information of each buffer is self-consistent.
*/
for (i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr;
uint32 buf_state;
bufHdr = GetBufferDescriptor(i);
/* Lock each buffer header before inspecting. */
buf_state = LockBufHdr(bufHdr);
fctx->record[i].bufferid = BufferDescriptorGetBuffer(bufHdr);
fctx->record[i].relfilenumber = BufTagGetRelNumber(&bufHdr->tag);
fctx->record[i].reltablespace = bufHdr->tag.spcOid;
fctx->record[i].reldatabase = bufHdr->tag.dbOid;
fctx->record[i].forknum = BufTagGetForkNum(&bufHdr->tag);
fctx->record[i].blocknum = bufHdr->tag.blockNum;
fctx->record[i].usagecount = BUF_STATE_GET_USAGECOUNT(buf_state);
fctx->record[i].pinning_backends = BUF_STATE_GET_REFCOUNT(buf_state);
if (buf_state & BM_DIRTY)
fctx->record[i].isdirty = true;
else
fctx->record[i].isdirty = false;
/* Note if the buffer is valid, and has storage created */
if ((buf_state & BM_VALID) && (buf_state & BM_TAG_VALID))
fctx->record[i].isvalid = true;
else
fctx->record[i].isvalid = false;
UnlockBufHdr(bufHdr, buf_state);
}
}
funcctx = SRF_PERCALL_SETUP();
/* Get the saved state */
fctx = funcctx->user_fctx;
if (funcctx->call_cntr < funcctx->max_calls)
{
uint32 i = funcctx->call_cntr;
Datum values[NUM_BUFFERCACHE_PAGES_ELEM];
bool nulls[NUM_BUFFERCACHE_PAGES_ELEM];
values[0] = Int32GetDatum(fctx->record[i].bufferid);
nulls[0] = false;
/*
* Set all fields except the bufferid to null if the buffer is unused
* or not valid.
*/
if (fctx->record[i].blocknum == InvalidBlockNumber ||
fctx->record[i].isvalid == false)
{
nulls[1] = true;
nulls[2] = true;
nulls[3] = true;
nulls[4] = true;
nulls[5] = true;
nulls[6] = true;
nulls[7] = true;
/* unused for v1.0 callers, but the array is always long enough */
nulls[8] = true;
}
else
{
values[1] = ObjectIdGetDatum(fctx->record[i].relfilenumber);
nulls[1] = false;
values[2] = ObjectIdGetDatum(fctx->record[i].reltablespace);
nulls[2] = false;
values[3] = ObjectIdGetDatum(fctx->record[i].reldatabase);
nulls[3] = false;
values[4] = ObjectIdGetDatum(fctx->record[i].forknum);
nulls[4] = false;
values[5] = Int64GetDatum((int64) fctx->record[i].blocknum);
nulls[5] = false;
values[6] = BoolGetDatum(fctx->record[i].isdirty);
nulls[6] = false;
values[7] = Int16GetDatum(fctx->record[i].usagecount);
nulls[7] = false;
/* unused for v1.0 callers, but the array is always long enough */
values[8] = Int32GetDatum(fctx->record[i].pinning_backends);
nulls[8] = false;
}
/* Build and return the tuple. */
tuple = heap_form_tuple(fctx->tupdesc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
else
SRF_RETURN_DONE(funcctx);
}
Datum
pg_buffercache_summary(PG_FUNCTION_ARGS)
{
Datum result;
TupleDesc tupledesc;
HeapTuple tuple;
Datum values[NUM_BUFFERCACHE_SUMMARY_ELEM];
bool nulls[NUM_BUFFERCACHE_SUMMARY_ELEM];
int32 buffers_used = 0;
int32 buffers_unused = 0;
int32 buffers_dirty = 0;
int32 buffers_pinned = 0;
int64 usagecount_total = 0;
if (get_call_result_type(fcinfo, NULL, &tupledesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
for (int i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr;
uint32 buf_state;
/*
* This function summarizes the state of all headers. Locking the
* buffer headers wouldn't provide an improved result as the state of
* the buffer can still change after we release the lock and it'd
* noticeably increase the cost of the function.
*/
bufHdr = GetBufferDescriptor(i);
buf_state = pg_atomic_read_u32(&bufHdr->state);
if (buf_state & BM_VALID)
{
buffers_used++;
usagecount_total += BUF_STATE_GET_USAGECOUNT(buf_state);
if (buf_state & BM_DIRTY)
buffers_dirty++;
}
else
buffers_unused++;
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
buffers_pinned++;
}
memset(nulls, 0, sizeof(nulls));
values[0] = Int32GetDatum(buffers_used);
values[1] = Int32GetDatum(buffers_unused);
values[2] = Int32GetDatum(buffers_dirty);
values[3] = Int32GetDatum(buffers_pinned);
if (buffers_used != 0)
values[4] = Float8GetDatum((double) usagecount_total / buffers_used);
else
nulls[4] = true;
/* Build and return the tuple. */
tuple = heap_form_tuple(tupledesc, values, nulls);
result = HeapTupleGetDatum(tuple);
PG_RETURN_DATUM(result);
}
Datum
pg_buffercache_usage_counts(PG_FUNCTION_ARGS)
{
ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo;
int usage_counts[BM_MAX_USAGE_COUNT + 1] = {0};
int dirty[BM_MAX_USAGE_COUNT + 1] = {0};
int pinned[BM_MAX_USAGE_COUNT + 1] = {0};
Datum values[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM];
bool nulls[NUM_BUFFERCACHE_USAGE_COUNTS_ELEM] = {0};
InitMaterializedSRF(fcinfo, 0);
for (int i = 0; i < NBuffers; i++)
{
BufferDesc *bufHdr = GetBufferDescriptor(i);
uint32 buf_state = pg_atomic_read_u32(&bufHdr->state);
int usage_count;
usage_count = BUF_STATE_GET_USAGECOUNT(buf_state);
usage_counts[usage_count]++;
if (buf_state & BM_DIRTY)
dirty[usage_count]++;
if (BUF_STATE_GET_REFCOUNT(buf_state) > 0)
pinned[usage_count]++;
}
for (int i = 0; i < BM_MAX_USAGE_COUNT + 1; i++)
{
values[0] = Int32GetDatum(i);
values[1] = Int32GetDatum(usage_counts[i]);
values[2] = Int32GetDatum(dirty[i]);
values[3] = Int32GetDatum(pinned[i]);
tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls);
}
return (Datum) 0;
}
/*
* Try to evict a shared buffer.
*/
Datum
pg_buffercache_evict(PG_FUNCTION_ARGS)
{
Buffer buf = PG_GETARG_INT32(0);
if (!superuser())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("must be superuser to use pg_buffercache_evict function")));
if (buf < 1 || buf > NBuffers)
elog(ERROR, "bad buffer ID: %d", buf);
PG_RETURN_BOOL(EvictUnpinnedBuffer(buf));
}