postgresql/src/backend/regex/regexec.c

1515 lines
39 KiB
C

/*
* re_*exec and friends - match REs
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* src/backend/regex/regexec.c
*
*/
#include "regex/regguts.h"
/* lazy-DFA representation */
struct arcp
{ /* "pointer" to an outarc */
struct sset *ss;
color co;
};
struct sset
{ /* state set */
unsigned *states; /* pointer to bitvector */
unsigned hash; /* hash of bitvector */
#define HASH(bv, nw) (((nw) == 1) ? *(bv) : hash(bv, nw))
#define HIT(h,bv,ss,nw) ((ss)->hash == (h) && ((nw) == 1 || \
memcmp(VS(bv), VS((ss)->states), (nw)*sizeof(unsigned)) == 0))
int flags;
#define STARTER 01 /* the initial state set */
#define POSTSTATE 02 /* includes the goal state */
#define LOCKED 04 /* locked in cache */
#define NOPROGRESS 010 /* zero-progress state set */
struct arcp ins; /* chain of inarcs pointing here */
chr *lastseen; /* last entered on arrival here */
struct sset **outs; /* outarc vector indexed by color */
struct arcp *inchain; /* chain-pointer vector for outarcs */
};
struct dfa
{
int nssets; /* size of cache */
int nssused; /* how many entries occupied yet */
int nstates; /* number of states */
int ncolors; /* length of outarc and inchain vectors */
int wordsper; /* length of state-set bitvectors */
struct sset *ssets; /* state-set cache */
unsigned *statesarea; /* bitvector storage */
unsigned *work; /* pointer to work area within statesarea */
struct sset **outsarea; /* outarc-vector storage */
struct arcp *incarea; /* inchain storage */
struct cnfa *cnfa;
struct colormap *cm;
chr *lastpost; /* location of last cache-flushed success */
chr *lastnopr; /* location of last cache-flushed NOPROGRESS */
struct sset *search; /* replacement-search-pointer memory */
int backno; /* if DFA for a backref, subno it refers to */
short backmin; /* min repetitions for backref */
short backmax; /* max repetitions for backref */
bool ismalloced; /* should this struct dfa be freed? */
bool arraysmalloced; /* should its subsidiary arrays be freed? */
};
#define WORK 1 /* number of work bitvectors needed */
/* setup for non-malloc allocation for small cases */
#define FEWSTATES 20 /* must be less than UBITS */
#define FEWCOLORS 15
struct smalldfa
{
struct dfa dfa; /* must be first */
struct sset ssets[FEWSTATES * 2];
unsigned statesarea[FEWSTATES * 2 + WORK];
struct sset *outsarea[FEWSTATES * 2 * FEWCOLORS];
struct arcp incarea[FEWSTATES * 2 * FEWCOLORS];
};
#define DOMALLOC ((struct smalldfa *)NULL) /* force malloc */
/* internal variables, bundled for easy passing around */
struct vars
{
regex_t *re;
struct guts *g;
int eflags; /* copies of arguments */
size_t nmatch;
regmatch_t *pmatch;
rm_detail_t *details;
chr *start; /* start of string */
chr *search_start; /* search start of string */
chr *stop; /* just past end of string */
int err; /* error code if any (0 none) */
struct dfa **subdfas; /* per-tree-subre DFAs */
struct dfa **ladfas; /* per-lacon-subre DFAs */
struct sset **lblastcss; /* per-lacon-subre lookbehind restart data */
chr **lblastcp; /* per-lacon-subre lookbehind restart data */
struct smalldfa dfa1;
struct smalldfa dfa2;
};
#define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */
#define ISERR() VISERR(v)
#define VERR(vv,e) ((vv)->err = ((vv)->err ? (vv)->err : (e)))
#define ERR(e) VERR(v, e) /* record an error */
#define NOERR() {if (ISERR()) return v->err;} /* if error seen, return it */
#define OFF(p) ((p) - v->start)
#define LOFF(p) ((long)OFF(p))
/*
* forward declarations
*/
/* === regexec.c === */
static struct dfa *getsubdfa(struct vars *v, struct subre *t);
static struct dfa *getladfa(struct vars *v, int n);
static int find(struct vars *v, struct cnfa *cnfa, struct colormap *cm);
static int cfind(struct vars *v, struct cnfa *cnfa, struct colormap *cm);
static int cfindloop(struct vars *v, struct cnfa *cnfa, struct colormap *cm,
struct dfa *d, struct dfa *s, chr **coldp);
static void zapallsubs(regmatch_t *p, size_t n);
static void zaptreesubs(struct vars *v, struct subre *t);
static void subset(struct vars *v, struct subre *sub, chr *begin, chr *end);
static int cdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
static int ccondissect(struct vars *v, struct subre *t, chr *begin, chr *end);
static int crevcondissect(struct vars *v, struct subre *t, chr *begin, chr *end);
static int cbrdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
static int caltdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
static int citerdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
static int creviterdissect(struct vars *v, struct subre *t, chr *begin, chr *end);
/* === rege_dfa.c === */
static chr *longest(struct vars *v, struct dfa *d,
chr *start, chr *stop, int *hitstopp);
static chr *shortest(struct vars *v, struct dfa *d, chr *start, chr *min,
chr *max, chr **coldp, int *hitstopp);
static int matchuntil(struct vars *v, struct dfa *d, chr *probe,
struct sset **lastcss, chr **lastcp);
static chr *dfa_backref(struct vars *v, struct dfa *d, chr *start,
chr *min, chr *max, bool shortest);
static chr *lastcold(struct vars *v, struct dfa *d);
static struct dfa *newdfa(struct vars *v, struct cnfa *cnfa,
struct colormap *cm, struct smalldfa *sml);
static void freedfa(struct dfa *d);
static unsigned hash(unsigned *uv, int n);
static struct sset *initialize(struct vars *v, struct dfa *d, chr *start);
static struct sset *miss(struct vars *v, struct dfa *d, struct sset *css,
color co, chr *cp, chr *start);
static int lacon(struct vars *v, struct cnfa *pcnfa, chr *cp, color co);
static struct sset *getvacant(struct vars *v, struct dfa *d, chr *cp,
chr *start);
static struct sset *pickss(struct vars *v, struct dfa *d, chr *cp,
chr *start);
/*
* pg_regexec - match regular expression
*/
int
pg_regexec(regex_t *re,
const chr *string,
size_t len,
size_t search_start,
rm_detail_t *details,
size_t nmatch,
regmatch_t pmatch[],
int flags)
{
struct vars var;
struct vars *v = &var;
int st;
size_t n;
size_t i;
int backref;
#define LOCALMAT 20
regmatch_t mat[LOCALMAT];
#define LOCALDFAS 40
struct dfa *subdfas[LOCALDFAS];
/* sanity checks */
if (re == NULL || string == NULL || re->re_magic != REMAGIC)
return REG_INVARG;
if (re->re_csize != sizeof(chr))
return REG_MIXED;
if (search_start > len)
return REG_NOMATCH;
/* Initialize locale-dependent support */
pg_set_regex_collation(re->re_collation);
/* setup */
v->re = re;
v->g = (struct guts *) re->re_guts;
if ((v->g->cflags & REG_EXPECT) && details == NULL)
return REG_INVARG;
if (v->g->info & REG_UIMPOSSIBLE)
return REG_NOMATCH;
backref = (v->g->info & REG_UBACKREF) ? 1 : 0;
v->eflags = flags;
if (backref && nmatch <= v->g->nsub)
{
/* need larger work area */
v->nmatch = v->g->nsub + 1;
if (v->nmatch <= LOCALMAT)
v->pmatch = mat;
else
v->pmatch = (regmatch_t *) MALLOC(v->nmatch * sizeof(regmatch_t));
if (v->pmatch == NULL)
return REG_ESPACE;
zapallsubs(v->pmatch, v->nmatch);
}
else
{
/* we can store results directly in caller's array */
v->pmatch = pmatch;
/* ensure any extra entries in caller's array are filled with -1 */
if (nmatch > 0)
zapallsubs(pmatch, nmatch);
/* then forget about extra entries, to avoid useless work in find() */
if (nmatch > v->g->nsub + 1)
nmatch = v->g->nsub + 1;
v->nmatch = nmatch;
}
v->details = details;
v->start = (chr *) string;
v->search_start = (chr *) string + search_start;
v->stop = (chr *) string + len;
v->err = 0;
v->subdfas = NULL;
v->ladfas = NULL;
v->lblastcss = NULL;
v->lblastcp = NULL;
/* below this point, "goto cleanup" will behave sanely */
assert(v->g->ntree >= 0);
n = (size_t) v->g->ntree;
if (n <= LOCALDFAS)
v->subdfas = subdfas;
else
{
v->subdfas = (struct dfa **) MALLOC(n * sizeof(struct dfa *));
if (v->subdfas == NULL)
{
st = REG_ESPACE;
goto cleanup;
}
}
for (i = 0; i < n; i++)
v->subdfas[i] = NULL;
assert(v->g->nlacons >= 0);
n = (size_t) v->g->nlacons;
if (n > 0)
{
v->ladfas = (struct dfa **) MALLOC(n * sizeof(struct dfa *));
if (v->ladfas == NULL)
{
st = REG_ESPACE;
goto cleanup;
}
for (i = 0; i < n; i++)
v->ladfas[i] = NULL;
v->lblastcss = (struct sset **) MALLOC(n * sizeof(struct sset *));
v->lblastcp = (chr **) MALLOC(n * sizeof(chr *));
if (v->lblastcss == NULL || v->lblastcp == NULL)
{
st = REG_ESPACE;
goto cleanup;
}
for (i = 0; i < n; i++)
{
v->lblastcss[i] = NULL;
v->lblastcp[i] = NULL;
}
}
/* do it */
assert(v->g->tree != NULL);
if (backref)
st = cfind(v, &v->g->tree->cnfa, &v->g->cmap);
else
st = find(v, &v->g->tree->cnfa, &v->g->cmap);
/* on success, ensure caller's match vector is filled correctly */
if (st == REG_OKAY && nmatch > 0)
{
if (v->pmatch != pmatch)
{
/* copy portion of match vector over from (larger) work area */
assert(nmatch <= v->nmatch);
memcpy(VS(pmatch), VS(v->pmatch), nmatch * sizeof(regmatch_t));
}
if (v->g->cflags & REG_NOSUB)
{
/* don't expose possibly-partial sub-match results to caller */
zapallsubs(pmatch, nmatch);
}
}
/* clean up */
cleanup:
if (v->pmatch != pmatch && v->pmatch != mat)
FREE(v->pmatch);
if (v->subdfas != NULL)
{
n = (size_t) v->g->ntree;
for (i = 0; i < n; i++)
{
if (v->subdfas[i] != NULL)
freedfa(v->subdfas[i]);
}
if (v->subdfas != subdfas)
FREE(v->subdfas);
}
if (v->ladfas != NULL)
{
n = (size_t) v->g->nlacons;
for (i = 0; i < n; i++)
{
if (v->ladfas[i] != NULL)
freedfa(v->ladfas[i]);
}
FREE(v->ladfas);
}
if (v->lblastcss != NULL)
FREE(v->lblastcss);
if (v->lblastcp != NULL)
FREE(v->lblastcp);
#ifdef REG_DEBUG
if (v->eflags & (REG_FTRACE | REG_MTRACE))
fflush(stdout);
#endif
return st;
}
/*
* getsubdfa - create or re-fetch the DFA for a tree subre node
*
* We only need to create the DFA once per overall regex execution.
* The DFA will be freed by the cleanup step in pg_regexec().
*/
static struct dfa *
getsubdfa(struct vars *v,
struct subre *t)
{
struct dfa *d = v->subdfas[t->id];
if (d == NULL)
{
d = newdfa(v, &t->cnfa, &v->g->cmap, DOMALLOC);
if (d == NULL)
return NULL;
/* set up additional info if this is a backref node */
if (t->op == 'b')
{
d->backno = t->backno;
d->backmin = t->min;
d->backmax = t->max;
}
v->subdfas[t->id] = d;
}
return d;
}
/*
* getladfa - create or re-fetch the DFA for a LACON subre node
*
* Same as above, but for LACONs.
*/
static struct dfa *
getladfa(struct vars *v,
int n)
{
assert(n > 0 && n < v->g->nlacons && v->g->lacons != NULL);
if (v->ladfas[n] == NULL)
{
struct subre *sub = &v->g->lacons[n];
v->ladfas[n] = newdfa(v, &sub->cnfa, &v->g->cmap, DOMALLOC);
/* a LACON can't contain a backref, so nothing else to do */
}
return v->ladfas[n];
}
/*
* find - find a match for the main NFA (no-complications case)
*/
static int
find(struct vars *v,
struct cnfa *cnfa,
struct colormap *cm)
{
struct dfa *s;
struct dfa *d;
chr *begin;
chr *end = NULL;
chr *cold;
chr *open; /* open and close of range of possible starts */
chr *close;
int hitend;
int shorter = (v->g->tree->flags & SHORTER) ? 1 : 0;
/* first, a shot with the search RE */
s = newdfa(v, &v->g->search, cm, &v->dfa1);
if (s == NULL)
return v->err;
MDEBUG(("\nsearch at %ld\n", LOFF(v->start)));
cold = NULL;
close = shortest(v, s, v->search_start, v->search_start, v->stop,
&cold, (int *) NULL);
freedfa(s);
NOERR();
if (v->g->cflags & REG_EXPECT)
{
assert(v->details != NULL);
if (cold != NULL)
v->details->rm_extend.rm_so = OFF(cold);
else
v->details->rm_extend.rm_so = OFF(v->stop);
v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */
}
if (close == NULL) /* not found */
return REG_NOMATCH;
if (v->nmatch == 0) /* found, don't need exact location */
return REG_OKAY;
/* find starting point and match */
assert(cold != NULL);
open = cold;
cold = NULL;
MDEBUG(("between %ld and %ld\n", LOFF(open), LOFF(close)));
d = newdfa(v, cnfa, cm, &v->dfa1);
if (d == NULL)
return v->err;
for (begin = open; begin <= close; begin++)
{
MDEBUG(("\nfind trying at %ld\n", LOFF(begin)));
if (shorter)
end = shortest(v, d, begin, begin, v->stop,
(chr **) NULL, &hitend);
else
end = longest(v, d, begin, v->stop, &hitend);
if (ISERR())
{
freedfa(d);
return v->err;
}
if (hitend && cold == NULL)
cold = begin;
if (end != NULL)
break; /* NOTE BREAK OUT */
}
assert(end != NULL); /* search RE succeeded so loop should */
freedfa(d);
/* and pin down details */
assert(v->nmatch > 0);
v->pmatch[0].rm_so = OFF(begin);
v->pmatch[0].rm_eo = OFF(end);
if (v->g->cflags & REG_EXPECT)
{
if (cold != NULL)
v->details->rm_extend.rm_so = OFF(cold);
else
v->details->rm_extend.rm_so = OFF(v->stop);
v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */
}
if (v->nmatch == 1) /* no need for submatches */
return REG_OKAY;
/* find submatches */
return cdissect(v, v->g->tree, begin, end);
}
/*
* cfind - find a match for the main NFA (with complications)
*/
static int
cfind(struct vars *v,
struct cnfa *cnfa,
struct colormap *cm)
{
struct dfa *s;
struct dfa *d;
chr *cold;
int ret;
s = newdfa(v, &v->g->search, cm, &v->dfa1);
if (s == NULL)
return v->err;
d = newdfa(v, cnfa, cm, &v->dfa2);
if (d == NULL)
{
freedfa(s);
return v->err;
}
ret = cfindloop(v, cnfa, cm, d, s, &cold);
freedfa(d);
freedfa(s);
NOERR();
if (v->g->cflags & REG_EXPECT)
{
assert(v->details != NULL);
if (cold != NULL)
v->details->rm_extend.rm_so = OFF(cold);
else
v->details->rm_extend.rm_so = OFF(v->stop);
v->details->rm_extend.rm_eo = OFF(v->stop); /* unknown */
}
return ret;
}
/*
* cfindloop - the heart of cfind
*/
static int
cfindloop(struct vars *v,
struct cnfa *cnfa,
struct colormap *cm,
struct dfa *d,
struct dfa *s,
chr **coldp) /* where to put coldstart pointer */
{
chr *begin;
chr *end;
chr *cold;
chr *open; /* open and close of range of possible starts */
chr *close;
chr *estart;
chr *estop;
int er;
int shorter = v->g->tree->flags & SHORTER;
int hitend;
assert(d != NULL && s != NULL);
cold = NULL;
close = v->search_start;
do
{
/* Search with the search RE for match range at/beyond "close" */
MDEBUG(("\ncsearch at %ld\n", LOFF(close)));
close = shortest(v, s, close, close, v->stop, &cold, (int *) NULL);
if (ISERR())
{
*coldp = cold;
return v->err;
}
if (close == NULL)
break; /* no more possible match anywhere */
assert(cold != NULL);
open = cold;
cold = NULL;
/* Search for matches starting between "open" and "close" inclusive */
MDEBUG(("cbetween %ld and %ld\n", LOFF(open), LOFF(close)));
for (begin = open; begin <= close; begin++)
{
MDEBUG(("\ncfind trying at %ld\n", LOFF(begin)));
estart = begin;
estop = v->stop;
for (;;)
{
/* Here we use the top node's detailed RE */
if (shorter)
end = shortest(v, d, begin, estart,
estop, (chr **) NULL, &hitend);
else
end = longest(v, d, begin, estop,
&hitend);
if (ISERR())
{
*coldp = cold;
return v->err;
}
if (hitend && cold == NULL)
cold = begin;
if (end == NULL)
break; /* no match with this begin point, try next */
MDEBUG(("tentative end %ld\n", LOFF(end)));
/* Dissect the potential match to see if it really matches */
er = cdissect(v, v->g->tree, begin, end);
if (er == REG_OKAY)
{
if (v->nmatch > 0)
{
v->pmatch[0].rm_so = OFF(begin);
v->pmatch[0].rm_eo = OFF(end);
}
*coldp = cold;
return REG_OKAY;
}
if (er != REG_NOMATCH)
{
ERR(er);
*coldp = cold;
return er;
}
/* Try next longer/shorter match with same begin point */
if (shorter)
{
if (end == estop)
break; /* no more, so try next begin point */
estart = end + 1;
}
else
{
if (end == begin)
break; /* no more, so try next begin point */
estop = end - 1;
}
} /* end loop over endpoint positions */
} /* end loop over beginning positions */
/*
* If we get here, there is no possible match starting at or before
* "close", so consider matches beyond that. We'll do a fresh search
* with the search RE to find a new promising match range.
*/
close++;
} while (close < v->stop);
*coldp = cold;
return REG_NOMATCH;
}
/*
* zapallsubs - initialize all subexpression matches to "no match"
*
* Note that p[0], the overall-match location, is not touched.
*/
static void
zapallsubs(regmatch_t *p,
size_t n)
{
size_t i;
for (i = n - 1; i > 0; i--)
{
p[i].rm_so = -1;
p[i].rm_eo = -1;
}
}
/*
* zaptreesubs - initialize subexpressions within subtree to "no match"
*/
static void
zaptreesubs(struct vars *v,
struct subre *t)
{
int n = t->capno;
struct subre *t2;
if (n > 0)
{
if ((size_t) n < v->nmatch)
{
v->pmatch[n].rm_so = -1;
v->pmatch[n].rm_eo = -1;
}
}
for (t2 = t->child; t2 != NULL; t2 = t2->sibling)
zaptreesubs(v, t2);
}
/*
* subset - set subexpression match data for a successful subre
*/
static void
subset(struct vars *v,
struct subre *sub,
chr *begin,
chr *end)
{
int n = sub->capno;
assert(n > 0);
if ((size_t) n >= v->nmatch)
return;
MDEBUG(("%d: setting %d = %ld-%ld\n", sub->id, n, LOFF(begin), LOFF(end)));
v->pmatch[n].rm_so = OFF(begin);
v->pmatch[n].rm_eo = OFF(end);
}
/*
* cdissect - check backrefs and determine subexpression matches
*
* cdissect recursively processes a subre tree to check matching of backrefs
* and/or identify submatch boundaries for capture nodes. The proposed match
* runs from "begin" to "end" (not including "end"), and we are basically
* "dissecting" it to see where the submatches are.
*
* Before calling any level of cdissect, the caller must have run the node's
* DFA and found that the proposed substring satisfies the DFA. (We make
* the caller do that because in concatenation and iteration nodes, it's
* much faster to check all the substrings against the child DFAs before we
* recurse.)
*
* A side-effect of a successful match is to save match locations for
* capturing subexpressions in v->pmatch[]. This is a little bit tricky,
* so we make the following rules:
* 1. Before initial entry to cdissect, all match data must have been
* cleared (this is seen to by zapallsubs).
* 2. Before any recursive entry to cdissect, the match data for that
* subexpression tree must be guaranteed clear (see zaptreesubs).
* 3. When returning REG_OKAY, each level of cdissect will have saved
* any relevant match locations.
* 4. When returning REG_NOMATCH, each level of cdissect will guarantee
* that its subexpression match locations are again clear.
* 5. No guarantees are made for error cases (i.e., other result codes).
* 6. When a level of cdissect abandons a successful sub-match, it will
* clear that subtree's match locations with zaptreesubs before trying
* any new DFA match or cdissect call for that subtree or any subtree
* to its right (that is, any subtree that could have a backref into the
* abandoned match).
* This may seem overly complicated, but it's difficult to simplify it
* because of the provision that match locations must be reset before
* any fresh DFA match (a rule that is needed to make dfa_backref safe).
* That means it won't work to just reset relevant match locations at the
* start of each cdissect level.
*/
static int /* regexec return code */
cdissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
int er;
assert(t != NULL);
MDEBUG(("%d: cdissect %c %ld-%ld\n", t->id, t->op, LOFF(begin), LOFF(end)));
/* handy place to check for operation cancel */
INTERRUPT(v->re);
/* ... and stack overrun */
if (STACK_TOO_DEEP(v->re))
return REG_ETOOBIG;
switch (t->op)
{
case '=': /* terminal node */
assert(t->child == NULL);
er = REG_OKAY; /* no action, parent did the work */
break;
case 'b': /* back reference */
assert(t->child == NULL);
er = cbrdissect(v, t, begin, end);
break;
case '.': /* concatenation */
assert(t->child != NULL);
if (t->child->flags & SHORTER) /* reverse scan */
er = crevcondissect(v, t, begin, end);
else
er = ccondissect(v, t, begin, end);
break;
case '|': /* alternation */
assert(t->child != NULL);
er = caltdissect(v, t, begin, end);
break;
case '*': /* iteration */
assert(t->child != NULL);
if (t->child->flags & SHORTER) /* reverse scan */
er = creviterdissect(v, t, begin, end);
else
er = citerdissect(v, t, begin, end);
break;
case '(': /* no-op capture node */
assert(t->child != NULL);
er = cdissect(v, t->child, begin, end);
break;
default:
er = REG_ASSERT;
break;
}
/*
* We should never have a match failure unless backrefs lurk below;
* otherwise, either caller failed to check the DFA, or there's some
* inconsistency between the DFA and the node's innards.
*/
assert(er != REG_NOMATCH || (t->flags & BACKR));
/*
* If this node is marked as capturing, save successful match's location.
*/
if (t->capno > 0 && er == REG_OKAY)
subset(v, t, begin, end);
return er;
}
/*
* ccondissect - dissect match for concatenation node
*/
static int /* regexec return code */
ccondissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
struct subre *left = t->child;
struct subre *right = left->sibling;
struct dfa *d;
struct dfa *d2;
chr *mid;
int er;
assert(t->op == '.');
assert(left != NULL && left->cnfa.nstates > 0);
assert(right != NULL && right->cnfa.nstates > 0);
assert(right->sibling == NULL);
assert(!(left->flags & SHORTER));
d = getsubdfa(v, left);
NOERR();
d2 = getsubdfa(v, right);
NOERR();
MDEBUG(("%d: ccondissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
/* pick a tentative midpoint */
mid = longest(v, d, begin, end, (int *) NULL);
NOERR();
if (mid == NULL)
return REG_NOMATCH;
MDEBUG(("%d: tentative midpoint %ld\n", t->id, LOFF(mid)));
/* iterate until satisfaction or failure */
for (;;)
{
/* try this midpoint on for size */
if (longest(v, d2, mid, end, (int *) NULL) == end)
{
er = cdissect(v, left, begin, mid);
if (er == REG_OKAY)
{
er = cdissect(v, right, mid, end);
if (er == REG_OKAY)
{
/* satisfaction */
MDEBUG(("%d: successful\n", t->id));
return REG_OKAY;
}
/* Reset left's matches (right should have done so itself) */
zaptreesubs(v, left);
}
if (er != REG_NOMATCH)
return er;
}
NOERR();
/* that midpoint didn't work, find a new one */
if (mid == begin)
{
/* all possibilities exhausted */
MDEBUG(("%d: no midpoint\n", t->id));
return REG_NOMATCH;
}
mid = longest(v, d, begin, mid - 1, (int *) NULL);
NOERR();
if (mid == NULL)
{
/* failed to find a new one */
MDEBUG(("%d: failed midpoint\n", t->id));
return REG_NOMATCH;
}
MDEBUG(("%d: new midpoint %ld\n", t->id, LOFF(mid)));
}
/* can't get here */
return REG_ASSERT;
}
/*
* crevcondissect - dissect match for concatenation node, shortest-first
*/
static int /* regexec return code */
crevcondissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
struct subre *left = t->child;
struct subre *right = left->sibling;
struct dfa *d;
struct dfa *d2;
chr *mid;
int er;
assert(t->op == '.');
assert(left != NULL && left->cnfa.nstates > 0);
assert(right != NULL && right->cnfa.nstates > 0);
assert(right->sibling == NULL);
assert(left->flags & SHORTER);
d = getsubdfa(v, left);
NOERR();
d2 = getsubdfa(v, right);
NOERR();
MDEBUG(("%d: crevcondissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
/* pick a tentative midpoint */
mid = shortest(v, d, begin, begin, end, (chr **) NULL, (int *) NULL);
NOERR();
if (mid == NULL)
return REG_NOMATCH;
MDEBUG(("%d: tentative midpoint %ld\n", t->id, LOFF(mid)));
/* iterate until satisfaction or failure */
for (;;)
{
/* try this midpoint on for size */
if (longest(v, d2, mid, end, (int *) NULL) == end)
{
er = cdissect(v, left, begin, mid);
if (er == REG_OKAY)
{
er = cdissect(v, right, mid, end);
if (er == REG_OKAY)
{
/* satisfaction */
MDEBUG(("%d: successful\n", t->id));
return REG_OKAY;
}
/* Reset left's matches (right should have done so itself) */
zaptreesubs(v, left);
}
if (er != REG_NOMATCH)
return er;
}
NOERR();
/* that midpoint didn't work, find a new one */
if (mid == end)
{
/* all possibilities exhausted */
MDEBUG(("%d: no midpoint\n", t->id));
return REG_NOMATCH;
}
mid = shortest(v, d, begin, mid + 1, end, (chr **) NULL, (int *) NULL);
NOERR();
if (mid == NULL)
{
/* failed to find a new one */
MDEBUG(("%d: failed midpoint\n", t->id));
return REG_NOMATCH;
}
MDEBUG(("%d: new midpoint %ld\n", t->id, LOFF(mid)));
}
/* can't get here */
return REG_ASSERT;
}
/*
* cbrdissect - dissect match for backref node
*
* The backref match might already have been verified by dfa_backref(),
* but we don't know that for sure so must check it here.
*/
static int /* regexec return code */
cbrdissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
int n = t->backno;
size_t numreps;
size_t tlen;
size_t brlen;
chr *brstring;
chr *p;
int min = t->min;
int max = t->max;
assert(t != NULL);
assert(t->op == 'b');
assert(n >= 0);
assert((size_t) n < v->nmatch);
MDEBUG(("%d: cbrdissect %d{%d-%d} %ld-%ld\n", t->id, n, min, max,
LOFF(begin), LOFF(end)));
/* get the backreferenced string */
if (v->pmatch[n].rm_so == -1)
return REG_NOMATCH;
brstring = v->start + v->pmatch[n].rm_so;
brlen = v->pmatch[n].rm_eo - v->pmatch[n].rm_so;
/* special cases for zero-length strings */
if (brlen == 0)
{
/*
* matches only if target is zero length, but any number of
* repetitions can be considered to be present
*/
if (begin == end && min <= max)
{
MDEBUG(("%d: backref matched trivially\n", t->id));
return REG_OKAY;
}
return REG_NOMATCH;
}
if (begin == end)
{
/* matches only if zero repetitions are okay */
if (min == 0)
{
MDEBUG(("%d: backref matched trivially\n", t->id));
return REG_OKAY;
}
return REG_NOMATCH;
}
/*
* check target length to see if it could possibly be an allowed number of
* repetitions of brstring
*/
assert(end > begin);
tlen = end - begin;
if (tlen % brlen != 0)
return REG_NOMATCH;
numreps = tlen / brlen;
if (numreps < min || (numreps > max && max != DUPINF))
return REG_NOMATCH;
/* okay, compare the actual string contents */
p = begin;
while (numreps-- > 0)
{
if ((*v->g->compare) (brstring, p, brlen) != 0)
return REG_NOMATCH;
p += brlen;
}
MDEBUG(("%d: backref matched\n", t->id));
return REG_OKAY;
}
/*
* caltdissect - dissect match for alternation node
*/
static int /* regexec return code */
caltdissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
struct dfa *d;
int er;
assert(t->op == '|');
t = t->child;
/* there should be at least 2 alternatives */
assert(t != NULL && t->sibling != NULL);
while (t != NULL)
{
assert(t->cnfa.nstates > 0);
MDEBUG(("%d: caltdissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
d = getsubdfa(v, t);
NOERR();
if (longest(v, d, begin, end, (int *) NULL) == end)
{
MDEBUG(("%d: caltdissect matched\n", t->id));
er = cdissect(v, t, begin, end);
if (er != REG_NOMATCH)
return er;
}
NOERR();
t = t->sibling;
}
return REG_NOMATCH;
}
/*
* citerdissect - dissect match for iteration node
*/
static int /* regexec return code */
citerdissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
struct dfa *d;
chr **endpts;
chr *limit;
int min_matches;
size_t max_matches;
int nverified;
int k;
int i;
int er;
assert(t->op == '*');
assert(t->child != NULL && t->child->cnfa.nstates > 0);
assert(!(t->child->flags & SHORTER));
assert(begin <= end);
MDEBUG(("%d: citerdissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
/*
* For the moment, assume the minimum number of matches is 1. If zero
* matches are allowed, and the target string is empty, we are allowed to
* match regardless of the contents of the iter node --- but we would
* prefer to match once, so that capturing parens get set. (An example of
* the concern here is a pattern like "()*\1", which historically this
* code has allowed to succeed.) Therefore, we deal with the zero-matches
* case at the bottom, after failing to find any other way to match.
*/
min_matches = t->min;
if (min_matches <= 0)
min_matches = 1;
/*
* We need workspace to track the endpoints of each sub-match. Normally
* we consider only nonzero-length sub-matches, so there can be at most
* end-begin of them. However, if min is larger than that, we will also
* consider zero-length sub-matches in order to find enough matches.
*
* For convenience, endpts[0] contains the "begin" pointer and we store
* sub-match endpoints in endpts[1..max_matches].
*/
max_matches = end - begin;
if (max_matches > t->max && t->max != DUPINF)
max_matches = t->max;
if (max_matches < min_matches)
max_matches = min_matches;
endpts = (chr **) MALLOC((max_matches + 1) * sizeof(chr *));
if (endpts == NULL)
return REG_ESPACE;
endpts[0] = begin;
d = getsubdfa(v, t->child);
if (ISERR())
{
FREE(endpts);
return v->err;
}
/*
* Our strategy is to first find a set of sub-match endpoints that are
* valid according to the child node's DFA, and then recursively dissect
* each sub-match to confirm validity. If any validity check fails,
* backtrack that sub-match and try again. And, when we next try for a
* validity check, we need not recheck any successfully verified
* sub-matches that we didn't move the endpoints of. nverified remembers
* how many sub-matches are currently known okay.
*/
/* initialize to consider first sub-match */
nverified = 0;
k = 1;
limit = end;
/* iterate until satisfaction or failure */
while (k > 0)
{
/* try to find an endpoint for the k'th sub-match */
endpts[k] = longest(v, d, endpts[k - 1], limit, (int *) NULL);
if (ISERR())
{
FREE(endpts);
return v->err;
}
if (endpts[k] == NULL)
{
/* no match possible, so see if we can shorten previous one */
k--;
goto backtrack;
}
MDEBUG(("%d: working endpoint %d: %ld\n",
t->id, k, LOFF(endpts[k])));
/* k'th sub-match can no longer be considered verified */
if (nverified >= k)
nverified = k - 1;
if (endpts[k] != end)
{
/* haven't reached end yet, try another iteration if allowed */
if (k >= max_matches)
{
/* must try to shorten some previous match */
k--;
goto backtrack;
}
/* reject zero-length match unless necessary to achieve min */
if (endpts[k] == endpts[k - 1] &&
(k >= min_matches || min_matches - k < end - endpts[k]))
goto backtrack;
k++;
limit = end;
continue;
}
/*
* We've identified a way to divide the string into k sub-matches that
* works so far as the child DFA can tell. If k is an allowed number
* of matches, start the slow part: recurse to verify each sub-match.
* We always have k <= max_matches, needn't check that.
*/
if (k < min_matches)
goto backtrack;
MDEBUG(("%d: verifying %d..%d\n", t->id, nverified + 1, k));
for (i = nverified + 1; i <= k; i++)
{
/* zap any match data from a non-last iteration */
zaptreesubs(v, t->child);
er = cdissect(v, t->child, endpts[i - 1], endpts[i]);
if (er == REG_OKAY)
{
nverified = i;
continue;
}
if (er == REG_NOMATCH)
break;
/* oops, something failed */
FREE(endpts);
return er;
}
if (i > k)
{
/* satisfaction */
MDEBUG(("%d: successful\n", t->id));
FREE(endpts);
return REG_OKAY;
}
/* i'th match failed to verify, so backtrack it */
k = i;
backtrack:
/*
* Must consider shorter versions of the k'th sub-match. However,
* we'll only ask for a zero-length match if necessary.
*/
while (k > 0)
{
chr *prev_end = endpts[k - 1];
if (endpts[k] > prev_end)
{
limit = endpts[k] - 1;
if (limit > prev_end ||
(k < min_matches && min_matches - k >= end - prev_end))
{
/* break out of backtrack loop, continue the outer one */
break;
}
}
/* can't shorten k'th sub-match any more, consider previous one */
k--;
}
}
/* all possibilities exhausted */
FREE(endpts);
/*
* Now consider the possibility that we can match to a zero-length string
* by using zero repetitions.
*/
if (t->min == 0 && begin == end)
{
MDEBUG(("%d: allowing zero matches\n", t->id));
return REG_OKAY;
}
MDEBUG(("%d: failed\n", t->id));
return REG_NOMATCH;
}
/*
* creviterdissect - dissect match for iteration node, shortest-first
*/
static int /* regexec return code */
creviterdissect(struct vars *v,
struct subre *t,
chr *begin, /* beginning of relevant substring */
chr *end) /* end of same */
{
struct dfa *d;
chr **endpts;
chr *limit;
int min_matches;
size_t max_matches;
int nverified;
int k;
int i;
int er;
assert(t->op == '*');
assert(t->child != NULL && t->child->cnfa.nstates > 0);
assert(t->child->flags & SHORTER);
assert(begin <= end);
MDEBUG(("%d: creviterdissect %ld-%ld\n", t->id, LOFF(begin), LOFF(end)));
/*
* If zero matches are allowed, and target string is empty, just declare
* victory. OTOH, if target string isn't empty, zero matches can't work
* so we pretend the min is 1.
*/
min_matches = t->min;
if (min_matches <= 0)
{
if (begin == end)
{
MDEBUG(("%d: allowing zero matches\n", t->id));
return REG_OKAY;
}
min_matches = 1;
}
/*
* We need workspace to track the endpoints of each sub-match. Normally
* we consider only nonzero-length sub-matches, so there can be at most
* end-begin of them. However, if min is larger than that, we will also
* consider zero-length sub-matches in order to find enough matches.
*
* For convenience, endpts[0] contains the "begin" pointer and we store
* sub-match endpoints in endpts[1..max_matches].
*/
max_matches = end - begin;
if (max_matches > t->max && t->max != DUPINF)
max_matches = t->max;
if (max_matches < min_matches)
max_matches = min_matches;
endpts = (chr **) MALLOC((max_matches + 1) * sizeof(chr *));
if (endpts == NULL)
return REG_ESPACE;
endpts[0] = begin;
d = getsubdfa(v, t->child);
if (ISERR())
{
FREE(endpts);
return v->err;
}
/*
* Our strategy is to first find a set of sub-match endpoints that are
* valid according to the child node's DFA, and then recursively dissect
* each sub-match to confirm validity. If any validity check fails,
* backtrack that sub-match and try again. And, when we next try for a
* validity check, we need not recheck any successfully verified
* sub-matches that we didn't move the endpoints of. nverified remembers
* how many sub-matches are currently known okay.
*/
/* initialize to consider first sub-match */
nverified = 0;
k = 1;
limit = begin;
/* iterate until satisfaction or failure */
while (k > 0)
{
/* disallow zero-length match unless necessary to achieve min */
if (limit == endpts[k - 1] &&
limit != end &&
(k >= min_matches || min_matches - k < end - limit))
limit++;
/* if this is the last allowed sub-match, it must reach to the end */
if (k >= max_matches)
limit = end;
/* try to find an endpoint for the k'th sub-match */
endpts[k] = shortest(v, d, endpts[k - 1], limit, end,
(chr **) NULL, (int *) NULL);
if (ISERR())
{
FREE(endpts);
return v->err;
}
if (endpts[k] == NULL)
{
/* no match possible, so see if we can lengthen previous one */
k--;
goto backtrack;
}
MDEBUG(("%d: working endpoint %d: %ld\n",
t->id, k, LOFF(endpts[k])));
/* k'th sub-match can no longer be considered verified */
if (nverified >= k)
nverified = k - 1;
if (endpts[k] != end)
{
/* haven't reached end yet, try another iteration if allowed */
if (k >= max_matches)
{
/* must try to lengthen some previous match */
k--;
goto backtrack;
}
k++;
limit = endpts[k - 1];
continue;
}
/*
* We've identified a way to divide the string into k sub-matches that
* works so far as the child DFA can tell. If k is an allowed number
* of matches, start the slow part: recurse to verify each sub-match.
* We always have k <= max_matches, needn't check that.
*/
if (k < min_matches)
goto backtrack;
MDEBUG(("%d: verifying %d..%d\n", t->id, nverified + 1, k));
for (i = nverified + 1; i <= k; i++)
{
/* zap any match data from a non-last iteration */
zaptreesubs(v, t->child);
er = cdissect(v, t->child, endpts[i - 1], endpts[i]);
if (er == REG_OKAY)
{
nverified = i;
continue;
}
if (er == REG_NOMATCH)
break;
/* oops, something failed */
FREE(endpts);
return er;
}
if (i > k)
{
/* satisfaction */
MDEBUG(("%d: successful\n", t->id));
FREE(endpts);
return REG_OKAY;
}
/* i'th match failed to verify, so backtrack it */
k = i;
backtrack:
/*
* Must consider longer versions of the k'th sub-match.
*/
while (k > 0)
{
if (endpts[k] < end)
{
limit = endpts[k] + 1;
/* break out of backtrack loop, continue the outer one */
break;
}
/* can't lengthen k'th sub-match any more, consider previous one */
k--;
}
}
/* all possibilities exhausted */
MDEBUG(("%d: failed\n", t->id));
FREE(endpts);
return REG_NOMATCH;
}
#include "rege_dfa.c"