postgresql/src/test/regress/regress.c

1224 lines
32 KiB
C

/*------------------------------------------------------------------------
*
* regress.c
* Code for various C-language functions defined as part of the
* regression tests.
*
* This code is released under the terms of the PostgreSQL License.
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/test/regress/regress.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include <signal.h>
#include "access/detoast.h"
#include "access/htup_details.h"
#include "access/transam.h"
#include "access/xact.h"
#include "catalog/namespace.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "commands/sequence.h"
#include "commands/trigger.h"
#include "executor/executor.h"
#include "executor/spi.h"
#include "funcapi.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/supportnodes.h"
#include "optimizer/optimizer.h"
#include "optimizer/plancat.h"
#include "parser/parse_coerce.h"
#include "port/atomics.h"
#include "storage/spin.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/geo_decls.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/typcache.h"
#define EXPECT_TRUE(expr) \
do { \
if (!(expr)) \
elog(ERROR, \
"%s was unexpectedly false in file \"%s\" line %u", \
#expr, __FILE__, __LINE__); \
} while (0)
#define EXPECT_EQ_U32(result_expr, expected_expr) \
do { \
uint32 actual_result = (result_expr); \
uint32 expected_result = (expected_expr); \
if (actual_result != expected_result) \
elog(ERROR, \
"%s yielded %u, expected %s in file \"%s\" line %u", \
#result_expr, actual_result, #expected_expr, __FILE__, __LINE__); \
} while (0)
#define EXPECT_EQ_U64(result_expr, expected_expr) \
do { \
uint64 actual_result = (result_expr); \
uint64 expected_result = (expected_expr); \
if (actual_result != expected_result) \
elog(ERROR, \
"%s yielded " UINT64_FORMAT ", expected %s in file \"%s\" line %u", \
#result_expr, actual_result, #expected_expr, __FILE__, __LINE__); \
} while (0)
#define LDELIM '('
#define RDELIM ')'
#define DELIM ','
static void regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2);
PG_MODULE_MAGIC;
/* return the point where two paths intersect, or NULL if no intersection. */
PG_FUNCTION_INFO_V1(interpt_pp);
Datum
interpt_pp(PG_FUNCTION_ARGS)
{
PATH *p1 = PG_GETARG_PATH_P(0);
PATH *p2 = PG_GETARG_PATH_P(1);
int i,
j;
LSEG seg1,
seg2;
bool found; /* We've found the intersection */
found = false; /* Haven't found it yet */
for (i = 0; i < p1->npts - 1 && !found; i++)
{
regress_lseg_construct(&seg1, &p1->p[i], &p1->p[i + 1]);
for (j = 0; j < p2->npts - 1 && !found; j++)
{
regress_lseg_construct(&seg2, &p2->p[j], &p2->p[j + 1]);
if (DatumGetBool(DirectFunctionCall2(lseg_intersect,
LsegPGetDatum(&seg1),
LsegPGetDatum(&seg2))))
found = true;
}
}
if (!found)
PG_RETURN_NULL();
/*
* Note: DirectFunctionCall2 will kick out an error if lseg_interpt()
* returns NULL, but that should be impossible since we know the two
* segments intersect.
*/
PG_RETURN_DATUM(DirectFunctionCall2(lseg_interpt,
LsegPGetDatum(&seg1),
LsegPGetDatum(&seg2)));
}
/* like lseg_construct, but assume space already allocated */
static void
regress_lseg_construct(LSEG *lseg, Point *pt1, Point *pt2)
{
lseg->p[0].x = pt1->x;
lseg->p[0].y = pt1->y;
lseg->p[1].x = pt2->x;
lseg->p[1].y = pt2->y;
}
PG_FUNCTION_INFO_V1(overpaid);
Datum
overpaid(PG_FUNCTION_ARGS)
{
HeapTupleHeader tuple = PG_GETARG_HEAPTUPLEHEADER(0);
bool isnull;
int32 salary;
salary = DatumGetInt32(GetAttributeByName(tuple, "salary", &isnull));
if (isnull)
PG_RETURN_NULL();
PG_RETURN_BOOL(salary > 699);
}
/* New type "widget"
* This used to be "circle", but I added circle to builtins,
* so needed to make sure the names do not collide. - tgl 97/04/21
*/
typedef struct
{
Point center;
double radius;
} WIDGET;
PG_FUNCTION_INFO_V1(widget_in);
PG_FUNCTION_INFO_V1(widget_out);
#define NARGS 3
Datum
widget_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
char *p,
*coord[NARGS];
int i;
WIDGET *result;
for (i = 0, p = str; *p && i < NARGS && *p != RDELIM; p++)
{
if (*p == DELIM || (*p == LDELIM && i == 0))
coord[i++] = p + 1;
}
/*
* Note: DON'T convert this error to "soft" style (errsave/ereturn). We
* want this data type to stay permanently in the hard-error world so that
* it can be used for testing that such cases still work reasonably.
*/
if (i < NARGS)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type %s: \"%s\"",
"widget", str)));
result = (WIDGET *) palloc(sizeof(WIDGET));
result->center.x = atof(coord[0]);
result->center.y = atof(coord[1]);
result->radius = atof(coord[2]);
PG_RETURN_POINTER(result);
}
Datum
widget_out(PG_FUNCTION_ARGS)
{
WIDGET *widget = (WIDGET *) PG_GETARG_POINTER(0);
char *str = psprintf("(%g,%g,%g)",
widget->center.x, widget->center.y, widget->radius);
PG_RETURN_CSTRING(str);
}
PG_FUNCTION_INFO_V1(pt_in_widget);
Datum
pt_in_widget(PG_FUNCTION_ARGS)
{
Point *point = PG_GETARG_POINT_P(0);
WIDGET *widget = (WIDGET *) PG_GETARG_POINTER(1);
float8 distance;
distance = DatumGetFloat8(DirectFunctionCall2(point_distance,
PointPGetDatum(point),
PointPGetDatum(&widget->center)));
PG_RETURN_BOOL(distance < widget->radius);
}
PG_FUNCTION_INFO_V1(reverse_name);
Datum
reverse_name(PG_FUNCTION_ARGS)
{
char *string = PG_GETARG_CSTRING(0);
int i;
int len;
char *new_string;
new_string = palloc0(NAMEDATALEN);
for (i = 0; i < NAMEDATALEN && string[i]; ++i)
;
if (i == NAMEDATALEN || !string[i])
--i;
len = i;
for (; i >= 0; --i)
new_string[len - i] = string[i];
PG_RETURN_CSTRING(new_string);
}
PG_FUNCTION_INFO_V1(trigger_return_old);
Datum
trigger_return_old(PG_FUNCTION_ARGS)
{
TriggerData *trigdata = (TriggerData *) fcinfo->context;
HeapTuple tuple;
if (!CALLED_AS_TRIGGER(fcinfo))
elog(ERROR, "trigger_return_old: not fired by trigger manager");
tuple = trigdata->tg_trigtuple;
return PointerGetDatum(tuple);
}
#define TTDUMMY_INFINITY 999999
static SPIPlanPtr splan = NULL;
static bool ttoff = false;
PG_FUNCTION_INFO_V1(ttdummy);
Datum
ttdummy(PG_FUNCTION_ARGS)
{
TriggerData *trigdata = (TriggerData *) fcinfo->context;
Trigger *trigger; /* to get trigger name */
char **args; /* arguments */
int attnum[2]; /* fnumbers of start/stop columns */
Datum oldon,
oldoff;
Datum newon,
newoff;
Datum *cvals; /* column values */
char *cnulls; /* column nulls */
char *relname; /* triggered relation name */
Relation rel; /* triggered relation */
HeapTuple trigtuple;
HeapTuple newtuple = NULL;
HeapTuple rettuple;
TupleDesc tupdesc; /* tuple description */
int natts; /* # of attributes */
bool isnull; /* to know is some column NULL or not */
int ret;
int i;
if (!CALLED_AS_TRIGGER(fcinfo))
elog(ERROR, "ttdummy: not fired by trigger manager");
if (!TRIGGER_FIRED_FOR_ROW(trigdata->tg_event))
elog(ERROR, "ttdummy: must be fired for row");
if (!TRIGGER_FIRED_BEFORE(trigdata->tg_event))
elog(ERROR, "ttdummy: must be fired before event");
if (TRIGGER_FIRED_BY_INSERT(trigdata->tg_event))
elog(ERROR, "ttdummy: cannot process INSERT event");
if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
newtuple = trigdata->tg_newtuple;
trigtuple = trigdata->tg_trigtuple;
rel = trigdata->tg_relation;
relname = SPI_getrelname(rel);
/* check if TT is OFF for this relation */
if (ttoff) /* OFF - nothing to do */
{
pfree(relname);
return PointerGetDatum((newtuple != NULL) ? newtuple : trigtuple);
}
trigger = trigdata->tg_trigger;
if (trigger->tgnargs != 2)
elog(ERROR, "ttdummy (%s): invalid (!= 2) number of arguments %d",
relname, trigger->tgnargs);
args = trigger->tgargs;
tupdesc = rel->rd_att;
natts = tupdesc->natts;
for (i = 0; i < 2; i++)
{
attnum[i] = SPI_fnumber(tupdesc, args[i]);
if (attnum[i] <= 0)
elog(ERROR, "ttdummy (%s): there is no attribute %s",
relname, args[i]);
if (SPI_gettypeid(tupdesc, attnum[i]) != INT4OID)
elog(ERROR, "ttdummy (%s): attribute %s must be of integer type",
relname, args[i]);
}
oldon = SPI_getbinval(trigtuple, tupdesc, attnum[0], &isnull);
if (isnull)
elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]);
oldoff = SPI_getbinval(trigtuple, tupdesc, attnum[1], &isnull);
if (isnull)
elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]);
if (newtuple != NULL) /* UPDATE */
{
newon = SPI_getbinval(newtuple, tupdesc, attnum[0], &isnull);
if (isnull)
elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[0]);
newoff = SPI_getbinval(newtuple, tupdesc, attnum[1], &isnull);
if (isnull)
elog(ERROR, "ttdummy (%s): %s must be NOT NULL", relname, args[1]);
if (oldon != newon || oldoff != newoff)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("ttdummy (%s): you cannot change %s and/or %s columns (use set_ttdummy)",
relname, args[0], args[1])));
if (newoff != TTDUMMY_INFINITY)
{
pfree(relname); /* allocated in upper executor context */
return PointerGetDatum(NULL);
}
}
else if (oldoff != TTDUMMY_INFINITY) /* DELETE */
{
pfree(relname);
return PointerGetDatum(NULL);
}
newoff = DirectFunctionCall1(nextval, CStringGetTextDatum("ttdummy_seq"));
/* nextval now returns int64; coerce down to int32 */
newoff = Int32GetDatum((int32) DatumGetInt64(newoff));
/* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
elog(ERROR, "ttdummy (%s): SPI_connect returned %d", relname, ret);
/* Fetch tuple values and nulls */
cvals = (Datum *) palloc(natts * sizeof(Datum));
cnulls = (char *) palloc(natts * sizeof(char));
for (i = 0; i < natts; i++)
{
cvals[i] = SPI_getbinval((newtuple != NULL) ? newtuple : trigtuple,
tupdesc, i + 1, &isnull);
cnulls[i] = (isnull) ? 'n' : ' ';
}
/* change date column(s) */
if (newtuple) /* UPDATE */
{
cvals[attnum[0] - 1] = newoff; /* start_date eq current date */
cnulls[attnum[0] - 1] = ' ';
cvals[attnum[1] - 1] = TTDUMMY_INFINITY; /* stop_date eq INFINITY */
cnulls[attnum[1] - 1] = ' ';
}
else
/* DELETE */
{
cvals[attnum[1] - 1] = newoff; /* stop_date eq current date */
cnulls[attnum[1] - 1] = ' ';
}
/* if there is no plan ... */
if (splan == NULL)
{
SPIPlanPtr pplan;
Oid *ctypes;
char *query;
/* allocate space in preparation */
ctypes = (Oid *) palloc(natts * sizeof(Oid));
query = (char *) palloc(100 + 16 * natts);
/*
* Construct query: INSERT INTO _relation_ VALUES ($1, ...)
*/
sprintf(query, "INSERT INTO %s VALUES (", relname);
for (i = 1; i <= natts; i++)
{
sprintf(query + strlen(query), "$%d%s",
i, (i < natts) ? ", " : ")");
ctypes[i - 1] = SPI_gettypeid(tupdesc, i);
}
/* Prepare plan for query */
pplan = SPI_prepare(query, natts, ctypes);
if (pplan == NULL)
elog(ERROR, "ttdummy (%s): SPI_prepare returned %s", relname, SPI_result_code_string(SPI_result));
if (SPI_keepplan(pplan))
elog(ERROR, "ttdummy (%s): SPI_keepplan failed", relname);
splan = pplan;
}
ret = SPI_execp(splan, cvals, cnulls, 0);
if (ret < 0)
elog(ERROR, "ttdummy (%s): SPI_execp returned %d", relname, ret);
/* Tuple to return to upper Executor ... */
if (newtuple) /* UPDATE */
rettuple = SPI_modifytuple(rel, trigtuple, 1, &(attnum[1]), &newoff, NULL);
else /* DELETE */
rettuple = trigtuple;
SPI_finish(); /* don't forget say Bye to SPI mgr */
pfree(relname);
return PointerGetDatum(rettuple);
}
PG_FUNCTION_INFO_V1(set_ttdummy);
Datum
set_ttdummy(PG_FUNCTION_ARGS)
{
int32 on = PG_GETARG_INT32(0);
if (ttoff) /* OFF currently */
{
if (on == 0)
PG_RETURN_INT32(0);
/* turn ON */
ttoff = false;
PG_RETURN_INT32(0);
}
/* ON currently */
if (on != 0)
PG_RETURN_INT32(1);
/* turn OFF */
ttoff = true;
PG_RETURN_INT32(1);
}
/*
* Type int44 has no real-world use, but the regression tests use it
* (under the alias "city_budget"). It's a four-element vector of int4's.
*/
/*
* int44in - converts "num, num, ..." to internal form
*
* Note: Fills any missing positions with zeroes.
*/
PG_FUNCTION_INFO_V1(int44in);
Datum
int44in(PG_FUNCTION_ARGS)
{
char *input_string = PG_GETARG_CSTRING(0);
int32 *result = (int32 *) palloc(4 * sizeof(int32));
int i;
i = sscanf(input_string,
"%d, %d, %d, %d",
&result[0],
&result[1],
&result[2],
&result[3]);
while (i < 4)
result[i++] = 0;
PG_RETURN_POINTER(result);
}
/*
* int44out - converts internal form to "num, num, ..."
*/
PG_FUNCTION_INFO_V1(int44out);
Datum
int44out(PG_FUNCTION_ARGS)
{
int32 *an_array = (int32 *) PG_GETARG_POINTER(0);
char *result = (char *) palloc(16 * 4);
snprintf(result, 16 * 4, "%d,%d,%d,%d",
an_array[0],
an_array[1],
an_array[2],
an_array[3]);
PG_RETURN_CSTRING(result);
}
PG_FUNCTION_INFO_V1(test_canonicalize_path);
Datum
test_canonicalize_path(PG_FUNCTION_ARGS)
{
char *path = text_to_cstring(PG_GETARG_TEXT_PP(0));
canonicalize_path(path);
PG_RETURN_TEXT_P(cstring_to_text(path));
}
PG_FUNCTION_INFO_V1(make_tuple_indirect);
Datum
make_tuple_indirect(PG_FUNCTION_ARGS)
{
HeapTupleHeader rec = PG_GETARG_HEAPTUPLEHEADER(0);
HeapTupleData tuple;
int ncolumns;
Datum *values;
bool *nulls;
Oid tupType;
int32 tupTypmod;
TupleDesc tupdesc;
HeapTuple newtup;
int i;
MemoryContext old_context;
/* Extract type info from the tuple itself */
tupType = HeapTupleHeaderGetTypeId(rec);
tupTypmod = HeapTupleHeaderGetTypMod(rec);
tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
ncolumns = tupdesc->natts;
/* Build a temporary HeapTuple control structure */
tuple.t_len = HeapTupleHeaderGetDatumLength(rec);
ItemPointerSetInvalid(&(tuple.t_self));
tuple.t_tableOid = InvalidOid;
tuple.t_data = rec;
values = (Datum *) palloc(ncolumns * sizeof(Datum));
nulls = (bool *) palloc(ncolumns * sizeof(bool));
heap_deform_tuple(&tuple, tupdesc, values, nulls);
old_context = MemoryContextSwitchTo(TopTransactionContext);
for (i = 0; i < ncolumns; i++)
{
struct varlena *attr;
struct varlena *new_attr;
struct varatt_indirect redirect_pointer;
/* only work on existing, not-null varlenas */
if (TupleDescAttr(tupdesc, i)->attisdropped ||
nulls[i] ||
TupleDescAttr(tupdesc, i)->attlen != -1)
continue;
attr = (struct varlena *) DatumGetPointer(values[i]);
/* don't recursively indirect */
if (VARATT_IS_EXTERNAL_INDIRECT(attr))
continue;
/* copy datum, so it still lives later */
if (VARATT_IS_EXTERNAL_ONDISK(attr))
attr = detoast_external_attr(attr);
else
{
struct varlena *oldattr = attr;
attr = palloc0(VARSIZE_ANY(oldattr));
memcpy(attr, oldattr, VARSIZE_ANY(oldattr));
}
/* build indirection Datum */
new_attr = (struct varlena *) palloc0(INDIRECT_POINTER_SIZE);
redirect_pointer.pointer = attr;
SET_VARTAG_EXTERNAL(new_attr, VARTAG_INDIRECT);
memcpy(VARDATA_EXTERNAL(new_attr), &redirect_pointer,
sizeof(redirect_pointer));
values[i] = PointerGetDatum(new_attr);
}
newtup = heap_form_tuple(tupdesc, values, nulls);
pfree(values);
pfree(nulls);
ReleaseTupleDesc(tupdesc);
MemoryContextSwitchTo(old_context);
/*
* We intentionally don't use PG_RETURN_HEAPTUPLEHEADER here, because that
* would cause the indirect toast pointers to be flattened out of the
* tuple immediately, rendering subsequent testing irrelevant. So just
* return the HeapTupleHeader pointer as-is. This violates the general
* rule that composite Datums shouldn't contain toast pointers, but so
* long as the regression test scripts don't insert the result of this
* function into a container type (record, array, etc) it should be OK.
*/
PG_RETURN_POINTER(newtup->t_data);
}
PG_FUNCTION_INFO_V1(regress_setenv);
Datum
regress_setenv(PG_FUNCTION_ARGS)
{
char *envvar = text_to_cstring(PG_GETARG_TEXT_PP(0));
char *envval = text_to_cstring(PG_GETARG_TEXT_PP(1));
if (!superuser())
elog(ERROR, "must be superuser to change environment variables");
if (setenv(envvar, envval, 1) != 0)
elog(ERROR, "could not set environment variable: %m");
PG_RETURN_VOID();
}
/* Sleep until no process has a given PID. */
PG_FUNCTION_INFO_V1(wait_pid);
Datum
wait_pid(PG_FUNCTION_ARGS)
{
int pid = PG_GETARG_INT32(0);
if (!superuser())
elog(ERROR, "must be superuser to check PID liveness");
while (kill(pid, 0) == 0)
{
CHECK_FOR_INTERRUPTS();
pg_usleep(50000);
}
if (errno != ESRCH)
elog(ERROR, "could not check PID %d liveness: %m", pid);
PG_RETURN_VOID();
}
static void
test_atomic_flag(void)
{
pg_atomic_flag flag;
pg_atomic_init_flag(&flag);
EXPECT_TRUE(pg_atomic_unlocked_test_flag(&flag));
EXPECT_TRUE(pg_atomic_test_set_flag(&flag));
EXPECT_TRUE(!pg_atomic_unlocked_test_flag(&flag));
EXPECT_TRUE(!pg_atomic_test_set_flag(&flag));
pg_atomic_clear_flag(&flag);
EXPECT_TRUE(pg_atomic_unlocked_test_flag(&flag));
EXPECT_TRUE(pg_atomic_test_set_flag(&flag));
pg_atomic_clear_flag(&flag);
}
static void
test_atomic_uint32(void)
{
pg_atomic_uint32 var;
uint32 expected;
int i;
pg_atomic_init_u32(&var, 0);
EXPECT_EQ_U32(pg_atomic_read_u32(&var), 0);
pg_atomic_write_u32(&var, 3);
EXPECT_EQ_U32(pg_atomic_read_u32(&var), 3);
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, pg_atomic_read_u32(&var) - 2),
3);
EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&var, 1), 4);
EXPECT_EQ_U32(pg_atomic_sub_fetch_u32(&var, 3), 0);
EXPECT_EQ_U32(pg_atomic_add_fetch_u32(&var, 10), 10);
EXPECT_EQ_U32(pg_atomic_exchange_u32(&var, 5), 10);
EXPECT_EQ_U32(pg_atomic_exchange_u32(&var, 0), 5);
/* test around numerical limits */
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, INT_MAX), 0);
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, INT_MAX), INT_MAX);
pg_atomic_fetch_add_u32(&var, 2); /* wrap to 0 */
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MAX), 0);
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MAX + 1),
PG_INT16_MAX);
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MIN),
2 * PG_INT16_MAX + 1);
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&var, PG_INT16_MIN - 1),
PG_INT16_MAX);
pg_atomic_fetch_add_u32(&var, 1); /* top up to UINT_MAX */
EXPECT_EQ_U32(pg_atomic_read_u32(&var), UINT_MAX);
EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&var, INT_MAX), UINT_MAX);
EXPECT_EQ_U32(pg_atomic_read_u32(&var), (uint32) INT_MAX + 1);
EXPECT_EQ_U32(pg_atomic_sub_fetch_u32(&var, INT_MAX), 1);
pg_atomic_sub_fetch_u32(&var, 1);
expected = PG_INT16_MAX;
EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
expected = PG_INT16_MAX + 1;
EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
expected = PG_INT16_MIN;
EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
expected = PG_INT16_MIN - 1;
EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
/* fail exchange because of old expected */
expected = 10;
EXPECT_TRUE(!pg_atomic_compare_exchange_u32(&var, &expected, 1));
/* CAS is allowed to fail due to interrupts, try a couple of times */
for (i = 0; i < 1000; i++)
{
expected = 0;
if (!pg_atomic_compare_exchange_u32(&var, &expected, 1))
break;
}
if (i == 1000)
elog(ERROR, "atomic_compare_exchange_u32() never succeeded");
EXPECT_EQ_U32(pg_atomic_read_u32(&var), 1);
pg_atomic_write_u32(&var, 0);
/* try setting flagbits */
EXPECT_TRUE(!(pg_atomic_fetch_or_u32(&var, 1) & 1));
EXPECT_TRUE(pg_atomic_fetch_or_u32(&var, 2) & 1);
EXPECT_EQ_U32(pg_atomic_read_u32(&var), 3);
/* try clearing flagbits */
EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~2) & 3, 3);
EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~1), 1);
/* no bits set anymore */
EXPECT_EQ_U32(pg_atomic_fetch_and_u32(&var, ~0), 0);
}
static void
test_atomic_uint64(void)
{
pg_atomic_uint64 var;
uint64 expected;
int i;
pg_atomic_init_u64(&var, 0);
EXPECT_EQ_U64(pg_atomic_read_u64(&var), 0);
pg_atomic_write_u64(&var, 3);
EXPECT_EQ_U64(pg_atomic_read_u64(&var), 3);
EXPECT_EQ_U64(pg_atomic_fetch_add_u64(&var, pg_atomic_read_u64(&var) - 2),
3);
EXPECT_EQ_U64(pg_atomic_fetch_sub_u64(&var, 1), 4);
EXPECT_EQ_U64(pg_atomic_sub_fetch_u64(&var, 3), 0);
EXPECT_EQ_U64(pg_atomic_add_fetch_u64(&var, 10), 10);
EXPECT_EQ_U64(pg_atomic_exchange_u64(&var, 5), 10);
EXPECT_EQ_U64(pg_atomic_exchange_u64(&var, 0), 5);
/* fail exchange because of old expected */
expected = 10;
EXPECT_TRUE(!pg_atomic_compare_exchange_u64(&var, &expected, 1));
/* CAS is allowed to fail due to interrupts, try a couple of times */
for (i = 0; i < 100; i++)
{
expected = 0;
if (!pg_atomic_compare_exchange_u64(&var, &expected, 1))
break;
}
if (i == 100)
elog(ERROR, "atomic_compare_exchange_u64() never succeeded");
EXPECT_EQ_U64(pg_atomic_read_u64(&var), 1);
pg_atomic_write_u64(&var, 0);
/* try setting flagbits */
EXPECT_TRUE(!(pg_atomic_fetch_or_u64(&var, 1) & 1));
EXPECT_TRUE(pg_atomic_fetch_or_u64(&var, 2) & 1);
EXPECT_EQ_U64(pg_atomic_read_u64(&var), 3);
/* try clearing flagbits */
EXPECT_EQ_U64((pg_atomic_fetch_and_u64(&var, ~2) & 3), 3);
EXPECT_EQ_U64(pg_atomic_fetch_and_u64(&var, ~1), 1);
/* no bits set anymore */
EXPECT_EQ_U64(pg_atomic_fetch_and_u64(&var, ~0), 0);
}
/*
* Perform, fairly minimal, testing of the spinlock implementation.
*
* It's likely worth expanding these to actually test concurrency etc, but
* having some regularly run tests is better than none.
*/
static void
test_spinlock(void)
{
/*
* Basic tests for spinlocks, as well as the underlying operations.
*
* We embed the spinlock in a struct with other members to test that the
* spinlock operations don't perform too wide writes.
*/
{
struct test_lock_struct
{
char data_before[4];
slock_t lock;
char data_after[4];
} struct_w_lock;
memcpy(struct_w_lock.data_before, "abcd", 4);
memcpy(struct_w_lock.data_after, "ef12", 4);
/* test basic operations via the SpinLock* API */
SpinLockInit(&struct_w_lock.lock);
SpinLockAcquire(&struct_w_lock.lock);
SpinLockRelease(&struct_w_lock.lock);
/* test basic operations via underlying S_* API */
S_INIT_LOCK(&struct_w_lock.lock);
S_LOCK(&struct_w_lock.lock);
S_UNLOCK(&struct_w_lock.lock);
/* and that "contended" acquisition works */
s_lock(&struct_w_lock.lock, "testfile", 17, "testfunc");
S_UNLOCK(&struct_w_lock.lock);
/*
* Check, using TAS directly, that a single spin cycle doesn't block
* when acquiring an already acquired lock.
*/
#ifdef TAS
S_LOCK(&struct_w_lock.lock);
if (!TAS(&struct_w_lock.lock))
elog(ERROR, "acquired already held spinlock");
#ifdef TAS_SPIN
if (!TAS_SPIN(&struct_w_lock.lock))
elog(ERROR, "acquired already held spinlock");
#endif /* defined(TAS_SPIN) */
S_UNLOCK(&struct_w_lock.lock);
#endif /* defined(TAS) */
/*
* Verify that after all of this the non-lock contents are still
* correct.
*/
if (memcmp(struct_w_lock.data_before, "abcd", 4) != 0)
elog(ERROR, "padding before spinlock modified");
if (memcmp(struct_w_lock.data_after, "ef12", 4) != 0)
elog(ERROR, "padding after spinlock modified");
}
/*
* Ensure that allocating more than INT32_MAX emulated spinlocks works.
* That's interesting because the spinlock emulation uses a 32bit integer
* to map spinlocks onto semaphores. There've been bugs...
*/
#ifndef HAVE_SPINLOCKS
{
/*
* Initialize enough spinlocks to advance counter close to wraparound.
* It's too expensive to perform acquire/release for each, as those
* may be syscalls when the spinlock emulation is used (and even just
* atomic TAS would be expensive).
*/
for (uint32 i = 0; i < INT32_MAX - 100000; i++)
{
slock_t lock;
SpinLockInit(&lock);
}
for (uint32 i = 0; i < 200000; i++)
{
slock_t lock;
SpinLockInit(&lock);
SpinLockAcquire(&lock);
SpinLockRelease(&lock);
SpinLockAcquire(&lock);
SpinLockRelease(&lock);
}
}
#endif
}
/*
* Verify that performing atomic ops inside a spinlock isn't a
* problem. Realistically that's only going to be a problem when both
* --disable-spinlocks and --disable-atomics are used, but it's cheap enough
* to just always test.
*
* The test works by initializing enough atomics that we'd conflict if there
* were an overlap between a spinlock and an atomic by holding a spinlock
* while manipulating more than NUM_SPINLOCK_SEMAPHORES atomics.
*
* NUM_TEST_ATOMICS doesn't really need to be more than
* NUM_SPINLOCK_SEMAPHORES, but it seems better to test a bit more
* extensively.
*/
static void
test_atomic_spin_nest(void)
{
slock_t lock;
#define NUM_TEST_ATOMICS (NUM_SPINLOCK_SEMAPHORES + NUM_ATOMICS_SEMAPHORES + 27)
pg_atomic_uint32 atomics32[NUM_TEST_ATOMICS];
pg_atomic_uint64 atomics64[NUM_TEST_ATOMICS];
SpinLockInit(&lock);
for (int i = 0; i < NUM_TEST_ATOMICS; i++)
{
pg_atomic_init_u32(&atomics32[i], 0);
pg_atomic_init_u64(&atomics64[i], 0);
}
/* just so it's not all zeroes */
for (int i = 0; i < NUM_TEST_ATOMICS; i++)
{
EXPECT_EQ_U32(pg_atomic_fetch_add_u32(&atomics32[i], i), 0);
EXPECT_EQ_U64(pg_atomic_fetch_add_u64(&atomics64[i], i), 0);
}
/* test whether we can do atomic op with lock held */
SpinLockAcquire(&lock);
for (int i = 0; i < NUM_TEST_ATOMICS; i++)
{
EXPECT_EQ_U32(pg_atomic_fetch_sub_u32(&atomics32[i], i), i);
EXPECT_EQ_U32(pg_atomic_read_u32(&atomics32[i]), 0);
EXPECT_EQ_U64(pg_atomic_fetch_sub_u64(&atomics64[i], i), i);
EXPECT_EQ_U64(pg_atomic_read_u64(&atomics64[i]), 0);
}
SpinLockRelease(&lock);
}
#undef NUM_TEST_ATOMICS
PG_FUNCTION_INFO_V1(test_atomic_ops);
Datum
test_atomic_ops(PG_FUNCTION_ARGS)
{
test_atomic_flag();
test_atomic_uint32();
test_atomic_uint64();
/*
* Arguably this shouldn't be tested as part of this function, but it's
* closely enough related that that seems ok for now.
*/
test_spinlock();
test_atomic_spin_nest();
PG_RETURN_BOOL(true);
}
PG_FUNCTION_INFO_V1(test_fdw_handler);
Datum
test_fdw_handler(PG_FUNCTION_ARGS)
{
elog(ERROR, "test_fdw_handler is not implemented");
PG_RETURN_NULL();
}
PG_FUNCTION_INFO_V1(test_support_func);
Datum
test_support_func(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
Node *ret = NULL;
if (IsA(rawreq, SupportRequestSelectivity))
{
/*
* Assume that the target is int4eq; that's safe as long as we don't
* attach this to any other boolean-returning function.
*/
SupportRequestSelectivity *req = (SupportRequestSelectivity *) rawreq;
Selectivity s1;
if (req->is_join)
s1 = join_selectivity(req->root, Int4EqualOperator,
req->args,
req->inputcollid,
req->jointype,
req->sjinfo);
else
s1 = restriction_selectivity(req->root, Int4EqualOperator,
req->args,
req->inputcollid,
req->varRelid);
req->selectivity = s1;
ret = (Node *) req;
}
if (IsA(rawreq, SupportRequestCost))
{
/* Provide some generic estimate */
SupportRequestCost *req = (SupportRequestCost *) rawreq;
req->startup = 0;
req->per_tuple = 2 * cpu_operator_cost;
ret = (Node *) req;
}
if (IsA(rawreq, SupportRequestRows))
{
/*
* Assume that the target is generate_series_int4; that's safe as long
* as we don't attach this to any other set-returning function.
*/
SupportRequestRows *req = (SupportRequestRows *) rawreq;
if (req->node && IsA(req->node, FuncExpr)) /* be paranoid */
{
List *args = ((FuncExpr *) req->node)->args;
Node *arg1 = linitial(args);
Node *arg2 = lsecond(args);
if (IsA(arg1, Const) &&
!((Const *) arg1)->constisnull &&
IsA(arg2, Const) &&
!((Const *) arg2)->constisnull)
{
int32 val1 = DatumGetInt32(((Const *) arg1)->constvalue);
int32 val2 = DatumGetInt32(((Const *) arg2)->constvalue);
req->rows = val2 - val1 + 1;
ret = (Node *) req;
}
}
}
PG_RETURN_POINTER(ret);
}
PG_FUNCTION_INFO_V1(test_opclass_options_func);
Datum
test_opclass_options_func(PG_FUNCTION_ARGS)
{
PG_RETURN_NULL();
}
/*
* Call an encoding conversion or verification function.
*
* Arguments:
* string bytea -- string to convert
* src_enc name -- source encoding
* dest_enc name -- destination encoding
* noError bool -- if set, don't ereport() on invalid or untranslatable
* input
*
* Result is a tuple with two attributes:
* int4 -- number of input bytes successfully converted
* bytea -- converted string
*/
PG_FUNCTION_INFO_V1(test_enc_conversion);
Datum
test_enc_conversion(PG_FUNCTION_ARGS)
{
bytea *string = PG_GETARG_BYTEA_PP(0);
char *src_encoding_name = NameStr(*PG_GETARG_NAME(1));
int src_encoding = pg_char_to_encoding(src_encoding_name);
char *dest_encoding_name = NameStr(*PG_GETARG_NAME(2));
int dest_encoding = pg_char_to_encoding(dest_encoding_name);
bool noError = PG_GETARG_BOOL(3);
TupleDesc tupdesc;
char *src;
char *dst;
bytea *retval;
Size srclen;
Size dstsize;
Oid proc;
int convertedbytes;
int dstlen;
Datum values[2];
bool nulls[2] = {0};
HeapTuple tuple;
if (src_encoding < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid source encoding name \"%s\"",
src_encoding_name)));
if (dest_encoding < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid destination encoding name \"%s\"",
dest_encoding_name)));
/* Build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
tupdesc = BlessTupleDesc(tupdesc);
srclen = VARSIZE_ANY_EXHDR(string);
src = VARDATA_ANY(string);
if (src_encoding == dest_encoding)
{
/* just check that the source string is valid */
int oklen;
oklen = pg_encoding_verifymbstr(src_encoding, src, srclen);
if (oklen == srclen)
{
convertedbytes = oklen;
retval = string;
}
else if (!noError)
{
report_invalid_encoding(src_encoding, src + oklen, srclen - oklen);
}
else
{
/*
* build bytea data type structure.
*/
Assert(oklen < srclen);
convertedbytes = oklen;
retval = (bytea *) palloc(oklen + VARHDRSZ);
SET_VARSIZE(retval, oklen + VARHDRSZ);
memcpy(VARDATA(retval), src, oklen);
}
}
else
{
proc = FindDefaultConversionProc(src_encoding, dest_encoding);
if (!OidIsValid(proc))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("default conversion function for encoding \"%s\" to \"%s\" does not exist",
pg_encoding_to_char(src_encoding),
pg_encoding_to_char(dest_encoding))));
if (srclen >= (MaxAllocSize / (Size) MAX_CONVERSION_GROWTH))
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("out of memory"),
errdetail("String of %d bytes is too long for encoding conversion.",
(int) srclen)));
dstsize = (Size) srclen * MAX_CONVERSION_GROWTH + 1;
dst = MemoryContextAlloc(CurrentMemoryContext, dstsize);
/* perform conversion */
convertedbytes = pg_do_encoding_conversion_buf(proc,
src_encoding,
dest_encoding,
(unsigned char *) src, srclen,
(unsigned char *) dst, dstsize,
noError);
dstlen = strlen(dst);
/*
* build bytea data type structure.
*/
retval = (bytea *) palloc(dstlen + VARHDRSZ);
SET_VARSIZE(retval, dstlen + VARHDRSZ);
memcpy(VARDATA(retval), dst, dstlen);
pfree(dst);
}
values[0] = Int32GetDatum(convertedbytes);
values[1] = PointerGetDatum(retval);
tuple = heap_form_tuple(tupdesc, values, nulls);
PG_RETURN_DATUM(HeapTupleGetDatum(tuple));
}
/* Provide SQL access to IsBinaryCoercible() */
PG_FUNCTION_INFO_V1(binary_coercible);
Datum
binary_coercible(PG_FUNCTION_ARGS)
{
Oid srctype = PG_GETARG_OID(0);
Oid targettype = PG_GETARG_OID(1);
PG_RETURN_BOOL(IsBinaryCoercible(srctype, targettype));
}