postgresql/src/backend/access/heap/hio.c

868 lines
28 KiB
C

/*-------------------------------------------------------------------------
*
* hio.c
* POSTGRES heap access method input/output code.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/heap/hio.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/hio.h"
#include "access/htup_details.h"
#include "access/visibilitymap.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/lmgr.h"
#include "storage/smgr.h"
/*
* RelationPutHeapTuple - place tuple at specified page
*
* !!! EREPORT(ERROR) IS DISALLOWED HERE !!! Must PANIC on failure!!!
*
* Note - caller must hold BUFFER_LOCK_EXCLUSIVE on the buffer.
*/
void
RelationPutHeapTuple(Relation relation,
Buffer buffer,
HeapTuple tuple,
bool token)
{
Page pageHeader;
OffsetNumber offnum;
/*
* A tuple that's being inserted speculatively should already have its
* token set.
*/
Assert(!token || HeapTupleHeaderIsSpeculative(tuple->t_data));
/*
* Do not allow tuples with invalid combinations of hint bits to be placed
* on a page. This combination is detected as corruption by the
* contrib/amcheck logic, so if you disable this assertion, make
* corresponding changes there.
*/
Assert(!((tuple->t_data->t_infomask & HEAP_XMAX_COMMITTED) &&
(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI)));
/* Add the tuple to the page */
pageHeader = BufferGetPage(buffer);
offnum = PageAddItem(pageHeader, (Item) tuple->t_data,
tuple->t_len, InvalidOffsetNumber, false, true);
if (offnum == InvalidOffsetNumber)
elog(PANIC, "failed to add tuple to page");
/* Update tuple->t_self to the actual position where it was stored */
ItemPointerSet(&(tuple->t_self), BufferGetBlockNumber(buffer), offnum);
/*
* Insert the correct position into CTID of the stored tuple, too (unless
* this is a speculative insertion, in which case the token is held in
* CTID field instead)
*/
if (!token)
{
ItemId itemId = PageGetItemId(pageHeader, offnum);
HeapTupleHeader item = (HeapTupleHeader) PageGetItem(pageHeader, itemId);
item->t_ctid = tuple->t_self;
}
}
/*
* Read in a buffer in mode, using bulk-insert strategy if bistate isn't NULL.
*/
static Buffer
ReadBufferBI(Relation relation, BlockNumber targetBlock,
ReadBufferMode mode, BulkInsertState bistate)
{
Buffer buffer;
/* If not bulk-insert, exactly like ReadBuffer */
if (!bistate)
return ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
mode, NULL);
/* If we have the desired block already pinned, re-pin and return it */
if (bistate->current_buf != InvalidBuffer)
{
if (BufferGetBlockNumber(bistate->current_buf) == targetBlock)
{
/*
* Currently the LOCK variants are only used for extending
* relation, which should never reach this branch.
*/
Assert(mode != RBM_ZERO_AND_LOCK &&
mode != RBM_ZERO_AND_CLEANUP_LOCK);
IncrBufferRefCount(bistate->current_buf);
return bistate->current_buf;
}
/* ... else drop the old buffer */
ReleaseBuffer(bistate->current_buf);
bistate->current_buf = InvalidBuffer;
}
/* Perform a read using the buffer strategy */
buffer = ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
mode, bistate->strategy);
/* Save the selected block as target for future inserts */
IncrBufferRefCount(buffer);
bistate->current_buf = buffer;
return buffer;
}
/*
* For each heap page which is all-visible, acquire a pin on the appropriate
* visibility map page, if we haven't already got one.
*
* To avoid complexity in the callers, either buffer1 or buffer2 may be
* InvalidBuffer if only one buffer is involved. For the same reason, block2
* may be smaller than block1.
*
* Returns whether buffer locks were temporarily released.
*/
static bool
GetVisibilityMapPins(Relation relation, Buffer buffer1, Buffer buffer2,
BlockNumber block1, BlockNumber block2,
Buffer *vmbuffer1, Buffer *vmbuffer2)
{
bool need_to_pin_buffer1;
bool need_to_pin_buffer2;
bool released_locks = false;
/*
* Swap buffers around to handle case of a single block/buffer, and to
* handle if lock ordering rules require to lock block2 first.
*/
if (!BufferIsValid(buffer1) ||
(BufferIsValid(buffer2) && block1 > block2))
{
Buffer tmpbuf = buffer1;
Buffer *tmpvmbuf = vmbuffer1;
BlockNumber tmpblock = block1;
buffer1 = buffer2;
vmbuffer1 = vmbuffer2;
block1 = block2;
buffer2 = tmpbuf;
vmbuffer2 = tmpvmbuf;
block2 = tmpblock;
}
Assert(BufferIsValid(buffer1));
Assert(buffer2 == InvalidBuffer || block1 <= block2);
while (1)
{
/* Figure out which pins we need but don't have. */
need_to_pin_buffer1 = PageIsAllVisible(BufferGetPage(buffer1))
&& !visibilitymap_pin_ok(block1, *vmbuffer1);
need_to_pin_buffer2 = buffer2 != InvalidBuffer
&& PageIsAllVisible(BufferGetPage(buffer2))
&& !visibilitymap_pin_ok(block2, *vmbuffer2);
if (!need_to_pin_buffer1 && !need_to_pin_buffer2)
break;
/* We must unlock both buffers before doing any I/O. */
released_locks = true;
LockBuffer(buffer1, BUFFER_LOCK_UNLOCK);
if (buffer2 != InvalidBuffer && buffer2 != buffer1)
LockBuffer(buffer2, BUFFER_LOCK_UNLOCK);
/* Get pins. */
if (need_to_pin_buffer1)
visibilitymap_pin(relation, block1, vmbuffer1);
if (need_to_pin_buffer2)
visibilitymap_pin(relation, block2, vmbuffer2);
/* Relock buffers. */
LockBuffer(buffer1, BUFFER_LOCK_EXCLUSIVE);
if (buffer2 != InvalidBuffer && buffer2 != buffer1)
LockBuffer(buffer2, BUFFER_LOCK_EXCLUSIVE);
/*
* If there are two buffers involved and we pinned just one of them,
* it's possible that the second one became all-visible while we were
* busy pinning the first one. If it looks like that's a possible
* scenario, we'll need to make a second pass through this loop.
*/
if (buffer2 == InvalidBuffer || buffer1 == buffer2
|| (need_to_pin_buffer1 && need_to_pin_buffer2))
break;
}
return released_locks;
}
/*
* Extend the relation. By multiple pages, if beneficial.
*
* If the caller needs multiple pages (num_pages > 1), we always try to extend
* by at least that much.
*
* If there is contention on the extension lock, we don't just extend "for
* ourselves", but we try to help others. We can do so by adding empty pages
* into the FSM. Typically there is no contention when we can't use the FSM.
*
* We do have to limit the number of pages to extend by to some value, as the
* buffers for all the extended pages need to, temporarily, be pinned. For now
* we define MAX_BUFFERS_TO_EXTEND_BY to be 64 buffers, it's hard to see
* benefits with higher numbers. This partially is because copyfrom.c's
* MAX_BUFFERED_TUPLES / MAX_BUFFERED_BYTES prevents larger multi_inserts.
*
* Returns a buffer for a newly extended block. If possible, the buffer is
* returned exclusively locked. *did_unlock is set to true if the lock had to
* be released, false otherwise.
*
*
* XXX: It would likely be beneficial for some workloads to extend more
* aggressively, e.g. using a heuristic based on the relation size.
*/
static Buffer
RelationAddBlocks(Relation relation, BulkInsertState bistate,
int num_pages, bool use_fsm, bool *did_unlock)
{
#define MAX_BUFFERS_TO_EXTEND_BY 64
Buffer victim_buffers[MAX_BUFFERS_TO_EXTEND_BY];
BlockNumber first_block = InvalidBlockNumber;
BlockNumber last_block = InvalidBlockNumber;
uint32 extend_by_pages;
uint32 not_in_fsm_pages;
Buffer buffer;
Page page;
/*
* Determine by how many pages to try to extend by.
*/
if (bistate == NULL && !use_fsm)
{
/*
* If we have neither bistate, nor can use the FSM, we can't bulk
* extend - there'd be no way to find the additional pages.
*/
extend_by_pages = 1;
}
else
{
uint32 waitcount;
/*
* Try to extend at least by the number of pages the caller needs. We
* can remember the additional pages (either via FSM or bistate).
*/
extend_by_pages = num_pages;
if (!RELATION_IS_LOCAL(relation))
waitcount = RelationExtensionLockWaiterCount(relation);
else
waitcount = 0;
/*
* Multiply the number of pages to extend by the number of waiters. Do
* this even if we're not using the FSM, as it still relieves
* contention, by deferring the next time this backend needs to
* extend. In that case the extended pages will be found via
* bistate->next_free.
*/
extend_by_pages += extend_by_pages * waitcount;
/*
* Can't extend by more than MAX_BUFFERS_TO_EXTEND_BY, we need to pin
* them all concurrently.
*/
extend_by_pages = Min(extend_by_pages, MAX_BUFFERS_TO_EXTEND_BY);
}
/*
* How many of the extended pages should be entered into the FSM?
*
* If we have a bistate, only enter pages that we don't need ourselves
* into the FSM. Otherwise every other backend will immediately try to
* use the pages this backend needs for itself, causing unnecessary
* contention. If we don't have a bistate, we can't avoid the FSM.
*
* Never enter the page returned into the FSM, we'll immediately use it.
*/
if (num_pages > 1 && bistate == NULL)
not_in_fsm_pages = 1;
else
not_in_fsm_pages = num_pages;
/* prepare to put another buffer into the bistate */
if (bistate && bistate->current_buf != InvalidBuffer)
{
ReleaseBuffer(bistate->current_buf);
bistate->current_buf = InvalidBuffer;
}
/*
* Extend the relation. We ask for the first returned page to be locked,
* so that we are sure that nobody has inserted into the page
* concurrently.
*
* With the current MAX_BUFFERS_TO_EXTEND_BY there's no danger of
* [auto]vacuum trying to truncate later pages as REL_TRUNCATE_MINIMUM is
* way larger.
*/
first_block = ExtendBufferedRelBy(EB_REL(relation), MAIN_FORKNUM,
bistate ? bistate->strategy : NULL,
EB_LOCK_FIRST,
extend_by_pages,
victim_buffers,
&extend_by_pages);
buffer = victim_buffers[0]; /* the buffer the function will return */
last_block = first_block + (extend_by_pages - 1);
Assert(first_block == BufferGetBlockNumber(buffer));
/*
* Relation is now extended. Initialize the page. We do this here, before
* potentially releasing the lock on the page, because it allows us to
* double check that the page contents are empty (this should never
* happen, but if it does we don't want to risk wiping out valid data).
*/
page = BufferGetPage(buffer);
if (!PageIsNew(page))
elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
first_block,
RelationGetRelationName(relation));
PageInit(page, BufferGetPageSize(buffer), 0);
MarkBufferDirty(buffer);
/*
* If we decided to put pages into the FSM, release the buffer lock (but
* not pin), we don't want to do IO while holding a buffer lock. This will
* necessitate a bit more extensive checking in our caller.
*/
if (use_fsm && not_in_fsm_pages < extend_by_pages)
{
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
*did_unlock = true;
}
else
*did_unlock = false;
/*
* Relation is now extended. Release pins on all buffers, except for the
* first (which we'll return). If we decided to put pages into the FSM,
* we can do that as part of the same loop.
*/
for (uint32 i = 1; i < extend_by_pages; i++)
{
BlockNumber curBlock = first_block + i;
Assert(curBlock == BufferGetBlockNumber(victim_buffers[i]));
Assert(BlockNumberIsValid(curBlock));
ReleaseBuffer(victim_buffers[i]);
if (use_fsm && i >= not_in_fsm_pages)
{
Size freespace = BufferGetPageSize(victim_buffers[i]) -
SizeOfPageHeaderData;
RecordPageWithFreeSpace(relation, curBlock, freespace);
}
}
if (use_fsm && not_in_fsm_pages < extend_by_pages)
{
BlockNumber first_fsm_block = first_block + not_in_fsm_pages;
FreeSpaceMapVacuumRange(relation, first_fsm_block, last_block);
}
if (bistate)
{
/*
* Remember the additional pages we extended by, so we later can use
* them without looking into the FSM.
*/
if (extend_by_pages > 1)
{
bistate->next_free = first_block + 1;
bistate->last_free = last_block;
}
else
{
bistate->next_free = InvalidBlockNumber;
bistate->last_free = InvalidBlockNumber;
}
/* maintain bistate->current_buf */
IncrBufferRefCount(buffer);
bistate->current_buf = buffer;
}
return buffer;
#undef MAX_BUFFERS_TO_EXTEND_BY
}
/*
* RelationGetBufferForTuple
*
* Returns pinned and exclusive-locked buffer of a page in given relation
* with free space >= given len.
*
* If num_pages is > 1, we will try to extend the relation by at least that
* many pages when we decide to extend the relation. This is more efficient
* for callers that know they will need multiple pages
* (e.g. heap_multi_insert()).
*
* If otherBuffer is not InvalidBuffer, then it references a previously
* pinned buffer of another page in the same relation; on return, this
* buffer will also be exclusive-locked. (This case is used by heap_update;
* the otherBuffer contains the tuple being updated.)
*
* The reason for passing otherBuffer is that if two backends are doing
* concurrent heap_update operations, a deadlock could occur if they try
* to lock the same two buffers in opposite orders. To ensure that this
* can't happen, we impose the rule that buffers of a relation must be
* locked in increasing page number order. This is most conveniently done
* by having RelationGetBufferForTuple lock them both, with suitable care
* for ordering.
*
* NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
* same buffer we select for insertion of the new tuple (this could only
* happen if space is freed in that page after heap_update finds there's not
* enough there). In that case, the page will be pinned and locked only once.
*
* We also handle the possibility that the all-visible flag will need to be
* cleared on one or both pages. If so, pin on the associated visibility map
* page must be acquired before acquiring buffer lock(s), to avoid possibly
* doing I/O while holding buffer locks. The pins are passed back to the
* caller using the input-output arguments vmbuffer and vmbuffer_other.
* Note that in some cases the caller might have already acquired such pins,
* which is indicated by these arguments not being InvalidBuffer on entry.
*
* We normally use FSM to help us find free space. However,
* if HEAP_INSERT_SKIP_FSM is specified, we just append a new empty page to
* the end of the relation if the tuple won't fit on the current target page.
* This can save some cycles when we know the relation is new and doesn't
* contain useful amounts of free space.
*
* HEAP_INSERT_SKIP_FSM is also useful for non-WAL-logged additions to a
* relation, if the caller holds exclusive lock and is careful to invalidate
* relation's smgr_targblock before the first insertion --- that ensures that
* all insertions will occur into newly added pages and not be intermixed
* with tuples from other transactions. That way, a crash can't risk losing
* any committed data of other transactions. (See heap_insert's comments
* for additional constraints needed for safe usage of this behavior.)
*
* The caller can also provide a BulkInsertState object to optimize many
* insertions into the same relation. This keeps a pin on the current
* insertion target page (to save pin/unpin cycles) and also passes a
* BULKWRITE buffer selection strategy object to the buffer manager.
* Passing NULL for bistate selects the default behavior.
*
* We don't fill existing pages further than the fillfactor, except for large
* tuples in nearly-empty pages. This is OK since this routine is not
* consulted when updating a tuple and keeping it on the same page, which is
* the scenario fillfactor is meant to reserve space for.
*
* ereport(ERROR) is allowed here, so this routine *must* be called
* before any (unlogged) changes are made in buffer pool.
*/
Buffer
RelationGetBufferForTuple(Relation relation, Size len,
Buffer otherBuffer, int options,
BulkInsertState bistate,
Buffer *vmbuffer, Buffer *vmbuffer_other,
int num_pages)
{
bool use_fsm = !(options & HEAP_INSERT_SKIP_FSM);
Buffer buffer = InvalidBuffer;
Page page;
Size nearlyEmptyFreeSpace,
pageFreeSpace = 0,
saveFreeSpace = 0,
targetFreeSpace = 0;
BlockNumber targetBlock,
otherBlock;
bool unlockedTargetBuffer;
bool recheckVmPins;
len = MAXALIGN(len); /* be conservative */
/* if the caller doesn't know by how many pages to extend, extend by 1 */
if (num_pages <= 0)
num_pages = 1;
/* Bulk insert is not supported for updates, only inserts. */
Assert(otherBuffer == InvalidBuffer || !bistate);
/*
* If we're gonna fail for oversize tuple, do it right away
*/
if (len > MaxHeapTupleSize)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("row is too big: size %zu, maximum size %zu",
len, MaxHeapTupleSize)));
/* Compute desired extra freespace due to fillfactor option */
saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
HEAP_DEFAULT_FILLFACTOR);
/*
* Since pages without tuples can still have line pointers, we consider
* pages "empty" when the unavailable space is slight. This threshold is
* somewhat arbitrary, but it should prevent most unnecessary relation
* extensions while inserting large tuples into low-fillfactor tables.
*/
nearlyEmptyFreeSpace = MaxHeapTupleSize -
(MaxHeapTuplesPerPage / 8 * sizeof(ItemIdData));
if (len + saveFreeSpace > nearlyEmptyFreeSpace)
targetFreeSpace = Max(len, nearlyEmptyFreeSpace);
else
targetFreeSpace = len + saveFreeSpace;
if (otherBuffer != InvalidBuffer)
otherBlock = BufferGetBlockNumber(otherBuffer);
else
otherBlock = InvalidBlockNumber; /* just to keep compiler quiet */
/*
* We first try to put the tuple on the same page we last inserted a tuple
* on, as cached in the BulkInsertState or relcache entry. If that
* doesn't work, we ask the Free Space Map to locate a suitable page.
* Since the FSM's info might be out of date, we have to be prepared to
* loop around and retry multiple times. (To insure this isn't an infinite
* loop, we must update the FSM with the correct amount of free space on
* each page that proves not to be suitable.) If the FSM has no record of
* a page with enough free space, we give up and extend the relation.
*
* When use_fsm is false, we either put the tuple onto the existing target
* page or extend the relation.
*/
if (bistate && bistate->current_buf != InvalidBuffer)
targetBlock = BufferGetBlockNumber(bistate->current_buf);
else
targetBlock = RelationGetTargetBlock(relation);
if (targetBlock == InvalidBlockNumber && use_fsm)
{
/*
* We have no cached target page, so ask the FSM for an initial
* target.
*/
targetBlock = GetPageWithFreeSpace(relation, targetFreeSpace);
}
/*
* If the FSM knows nothing of the rel, try the last page before we give
* up and extend. This avoids one-tuple-per-page syndrome during
* bootstrapping or in a recently-started system.
*/
if (targetBlock == InvalidBlockNumber)
{
BlockNumber nblocks = RelationGetNumberOfBlocks(relation);
if (nblocks > 0)
targetBlock = nblocks - 1;
}
loop:
while (targetBlock != InvalidBlockNumber)
{
/*
* Read and exclusive-lock the target block, as well as the other
* block if one was given, taking suitable care with lock ordering and
* the possibility they are the same block.
*
* If the page-level all-visible flag is set, caller will need to
* clear both that and the corresponding visibility map bit. However,
* by the time we return, we'll have x-locked the buffer, and we don't
* want to do any I/O while in that state. So we check the bit here
* before taking the lock, and pin the page if it appears necessary.
* Checking without the lock creates a risk of getting the wrong
* answer, so we'll have to recheck after acquiring the lock.
*/
if (otherBuffer == InvalidBuffer)
{
/* easy case */
buffer = ReadBufferBI(relation, targetBlock, RBM_NORMAL, bistate);
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
/*
* If the page is empty, pin vmbuffer to set all_frozen bit later.
*/
if ((options & HEAP_INSERT_FROZEN) &&
(PageGetMaxOffsetNumber(BufferGetPage(buffer)) == 0))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
else if (otherBlock == targetBlock)
{
/* also easy case */
buffer = otherBuffer;
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
else if (otherBlock < targetBlock)
{
/* lock other buffer first */
buffer = ReadBuffer(relation, targetBlock);
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
else
{
/* lock target buffer first */
buffer = ReadBuffer(relation, targetBlock);
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
}
/*
* We now have the target page (and the other buffer, if any) pinned
* and locked. However, since our initial PageIsAllVisible checks
* were performed before acquiring the lock, the results might now be
* out of date, either for the selected victim buffer, or for the
* other buffer passed by the caller. In that case, we'll need to
* give up our locks, go get the pin(s) we failed to get earlier, and
* re-lock. That's pretty painful, but hopefully shouldn't happen
* often.
*
* Note that there's a small possibility that we didn't pin the page
* above but still have the correct page pinned anyway, either because
* we've already made a previous pass through this loop, or because
* caller passed us the right page anyway.
*
* Note also that it's possible that by the time we get the pin and
* retake the buffer locks, the visibility map bit will have been
* cleared by some other backend anyway. In that case, we'll have
* done a bit of extra work for no gain, but there's no real harm
* done.
*/
GetVisibilityMapPins(relation, buffer, otherBuffer,
targetBlock, otherBlock, vmbuffer,
vmbuffer_other);
/*
* Now we can check to see if there's enough free space here. If so,
* we're done.
*/
page = BufferGetPage(buffer);
/*
* If necessary initialize page, it'll be used soon. We could avoid
* dirtying the buffer here, and rely on the caller to do so whenever
* it puts a tuple onto the page, but there seems not much benefit in
* doing so.
*/
if (PageIsNew(page))
{
PageInit(page, BufferGetPageSize(buffer), 0);
MarkBufferDirty(buffer);
}
pageFreeSpace = PageGetHeapFreeSpace(page);
if (targetFreeSpace <= pageFreeSpace)
{
/* use this page as future insert target, too */
RelationSetTargetBlock(relation, targetBlock);
return buffer;
}
/*
* Not enough space, so we must give up our page locks and pin (if
* any) and prepare to look elsewhere. We don't care which order we
* unlock the two buffers in, so this can be slightly simpler than the
* code above.
*/
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
if (otherBuffer == InvalidBuffer)
ReleaseBuffer(buffer);
else if (otherBlock != targetBlock)
{
LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
ReleaseBuffer(buffer);
}
/* Is there an ongoing bulk extension? */
if (bistate && bistate->next_free != InvalidBlockNumber)
{
Assert(bistate->next_free <= bistate->last_free);
/*
* We bulk extended the relation before, and there are still some
* unused pages from that extension, so we don't need to look in
* the FSM for a new page. But do record the free space from the
* last page, somebody might insert narrower tuples later.
*/
if (use_fsm)
RecordPageWithFreeSpace(relation, targetBlock, pageFreeSpace);
targetBlock = bistate->next_free;
if (bistate->next_free >= bistate->last_free)
{
bistate->next_free = InvalidBlockNumber;
bistate->last_free = InvalidBlockNumber;
}
else
bistate->next_free++;
}
else if (!use_fsm)
{
/* Without FSM, always fall out of the loop and extend */
break;
}
else
{
/*
* Update FSM as to condition of this page, and ask for another
* page to try.
*/
targetBlock = RecordAndGetPageWithFreeSpace(relation,
targetBlock,
pageFreeSpace,
targetFreeSpace);
}
}
/* Have to extend the relation */
buffer = RelationAddBlocks(relation, bistate, num_pages, use_fsm,
&unlockedTargetBuffer);
targetBlock = BufferGetBlockNumber(buffer);
page = BufferGetPage(buffer);
/*
* The page is empty, pin vmbuffer to set all_frozen bit. We don't want to
* do IO while the buffer is locked, so we unlock the page first if IO is
* needed (necessitating checks below).
*/
if (options & HEAP_INSERT_FROZEN)
{
Assert(PageGetMaxOffsetNumber(page) == 0);
if (!visibilitymap_pin_ok(targetBlock, *vmbuffer))
{
if (!unlockedTargetBuffer)
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
unlockedTargetBuffer = true;
visibilitymap_pin(relation, targetBlock, vmbuffer);
}
}
/*
* Reacquire locks if necessary.
*
* If the target buffer was unlocked above, or is unlocked while
* reacquiring the lock on otherBuffer below, it's unlikely, but possible,
* that another backend used space on this page. We check for that below,
* and retry if necessary.
*/
recheckVmPins = false;
if (unlockedTargetBuffer)
{
/* released lock on target buffer above */
if (otherBuffer != InvalidBuffer)
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
recheckVmPins = true;
}
else if (otherBuffer != InvalidBuffer)
{
/*
* We did not release the target buffer, and otherBuffer is valid,
* need to lock the other buffer. It's guaranteed to be of a lower
* page number than the new page. To conform with the deadlock
* prevent rules, we ought to lock otherBuffer first, but that would
* give other backends a chance to put tuples on our page. To reduce
* the likelihood of that, attempt to lock the other buffer
* conditionally, that's very likely to work.
*
* Alternatively, we could acquire the lock on otherBuffer before
* extending the relation, but that'd require holding the lock while
* performing IO, which seems worse than an unlikely retry.
*/
Assert(otherBuffer != buffer);
Assert(targetBlock > otherBlock);
if (unlikely(!ConditionalLockBuffer(otherBuffer)))
{
unlockedTargetBuffer = true;
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
recheckVmPins = true;
}
/*
* If one of the buffers was unlocked (always the case if otherBuffer is
* valid), it's possible, although unlikely, that an all-visible flag
* became set. We can use GetVisibilityMapPins to deal with that. It's
* possible that GetVisibilityMapPins() might need to temporarily release
* buffer locks, in which case we'll need to check if there's still enough
* space on the page below.
*/
if (recheckVmPins)
{
if (GetVisibilityMapPins(relation, otherBuffer, buffer,
otherBlock, targetBlock, vmbuffer_other,
vmbuffer))
unlockedTargetBuffer = true;
}
/*
* If the target buffer was temporarily unlocked since the relation
* extension, it's possible, although unlikely, that all the space on the
* page was already used. If so, we just retry from the start. If we
* didn't unlock, something has gone wrong if there's not enough space -
* the test at the top should have prevented reaching this case.
*/
pageFreeSpace = PageGetHeapFreeSpace(page);
if (len > pageFreeSpace)
{
if (unlockedTargetBuffer)
{
if (otherBuffer != InvalidBuffer)
LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
UnlockReleaseBuffer(buffer);
goto loop;
}
elog(PANIC, "tuple is too big: size %zu", len);
}
/*
* Remember the new page as our target for future insertions.
*
* XXX should we enter the new page into the free space map immediately,
* or just keep it for this backend's exclusive use in the short run
* (until VACUUM sees it)? Seems to depend on whether you expect the
* current backend to make more insertions or not, which is probably a
* good bet most of the time. So for now, don't add it to FSM yet.
*/
RelationSetTargetBlock(relation, targetBlock);
return buffer;
}