postgresql/src/backend/optimizer/path/joinrels.c

1911 lines
62 KiB
C

/*-------------------------------------------------------------------------
*
* joinrels.c
* Routines to determine which relations should be joined
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/path/joinrels.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "miscadmin.h"
#include "optimizer/appendinfo.h"
#include "optimizer/joininfo.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "partitioning/partbounds.h"
#include "utils/memutils.h"
static void make_rels_by_clause_joins(PlannerInfo *root,
RelOptInfo *old_rel,
List *other_rels_list,
ListCell *other_rels);
static void make_rels_by_clauseless_joins(PlannerInfo *root,
RelOptInfo *old_rel,
List *other_rels);
static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel);
static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel);
static bool restriction_is_constant_false(List *restrictlist,
RelOptInfo *joinrel,
bool only_pushed_down);
static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
RelOptInfo *rel2, RelOptInfo *joinrel,
SpecialJoinInfo *sjinfo, List *restrictlist);
static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1,
RelOptInfo *rel2, RelOptInfo *joinrel,
SpecialJoinInfo *parent_sjinfo,
List *parent_restrictlist);
static SpecialJoinInfo *build_child_join_sjinfo(PlannerInfo *root,
SpecialJoinInfo *parent_sjinfo,
Relids left_relids, Relids right_relids);
static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
RelOptInfo *rel2, RelOptInfo *joinrel,
SpecialJoinInfo *parent_sjinfo,
List **parts1, List **parts2);
static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *rel1, RelOptInfo *rel2,
List **parts1, List **parts2);
/*
* join_search_one_level
* Consider ways to produce join relations containing exactly 'level'
* jointree items. (This is one step of the dynamic-programming method
* embodied in standard_join_search.) Join rel nodes for each feasible
* combination of lower-level rels are created and returned in a list.
* Implementation paths are created for each such joinrel, too.
*
* level: level of rels we want to make this time
* root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
*
* The result is returned in root->join_rel_level[level].
*/
void
join_search_one_level(PlannerInfo *root, int level)
{
List **joinrels = root->join_rel_level;
ListCell *r;
int k;
Assert(joinrels[level] == NIL);
/* Set join_cur_level so that new joinrels are added to proper list */
root->join_cur_level = level;
/*
* First, consider left-sided and right-sided plans, in which rels of
* exactly level-1 member relations are joined against initial relations.
* We prefer to join using join clauses, but if we find a rel of level-1
* members that has no join clauses, we will generate Cartesian-product
* joins against all initial rels not already contained in it.
*/
foreach(r, joinrels[level - 1])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
has_join_restriction(root, old_rel))
{
/*
* There are join clauses or join order restrictions relevant to
* this rel, so consider joins between this rel and (only) those
* initial rels it is linked to by a clause or restriction.
*
* At level 2 this condition is symmetric, so there is no need to
* look at initial rels before this one in the list; we already
* considered such joins when we were at the earlier rel. (The
* mirror-image joins are handled automatically by make_join_rel.)
* In later passes (level > 2), we join rels of the previous level
* to each initial rel they don't already include but have a join
* clause or restriction with.
*/
List *other_rels_list;
ListCell *other_rels;
if (level == 2) /* consider remaining initial rels */
{
other_rels_list = joinrels[level - 1];
other_rels = lnext(other_rels_list, r);
}
else /* consider all initial rels */
{
other_rels_list = joinrels[1];
other_rels = list_head(other_rels_list);
}
make_rels_by_clause_joins(root,
old_rel,
other_rels_list,
other_rels);
}
else
{
/*
* Oops, we have a relation that is not joined to any other
* relation, either directly or by join-order restrictions.
* Cartesian product time.
*
* We consider a cartesian product with each not-already-included
* initial rel, whether it has other join clauses or not. At
* level 2, if there are two or more clauseless initial rels, we
* will redundantly consider joining them in both directions; but
* such cases aren't common enough to justify adding complexity to
* avoid the duplicated effort.
*/
make_rels_by_clauseless_joins(root,
old_rel,
joinrels[1]);
}
}
/*
* Now, consider "bushy plans" in which relations of k initial rels are
* joined to relations of level-k initial rels, for 2 <= k <= level-2.
*
* We only consider bushy-plan joins for pairs of rels where there is a
* suitable join clause (or join order restriction), in order to avoid
* unreasonable growth of planning time.
*/
for (k = 2;; k++)
{
int other_level = level - k;
/*
* Since make_join_rel(x, y) handles both x,y and y,x cases, we only
* need to go as far as the halfway point.
*/
if (k > other_level)
break;
foreach(r, joinrels[k])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
List *other_rels_list;
ListCell *other_rels;
ListCell *r2;
/*
* We can ignore relations without join clauses here, unless they
* participate in join-order restrictions --- then we might have
* to force a bushy join plan.
*/
if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
!has_join_restriction(root, old_rel))
continue;
if (k == other_level)
{
/* only consider remaining rels */
other_rels_list = joinrels[k];
other_rels = lnext(other_rels_list, r);
}
else
{
other_rels_list = joinrels[other_level];
other_rels = list_head(other_rels_list);
}
for_each_cell(r2, other_rels_list, other_rels)
{
RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
if (!bms_overlap(old_rel->relids, new_rel->relids))
{
/*
* OK, we can build a rel of the right level from this
* pair of rels. Do so if there is at least one relevant
* join clause or join order restriction.
*/
if (have_relevant_joinclause(root, old_rel, new_rel) ||
have_join_order_restriction(root, old_rel, new_rel))
{
(void) make_join_rel(root, old_rel, new_rel);
}
}
}
}
}
/*----------
* Last-ditch effort: if we failed to find any usable joins so far, force
* a set of cartesian-product joins to be generated. This handles the
* special case where all the available rels have join clauses but we
* cannot use any of those clauses yet. This can only happen when we are
* considering a join sub-problem (a sub-joinlist) and all the rels in the
* sub-problem have only join clauses with rels outside the sub-problem.
* An example is
*
* SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
* WHERE a.w = c.x and b.y = d.z;
*
* If the "a INNER JOIN b" sub-problem does not get flattened into the
* upper level, we must be willing to make a cartesian join of a and b;
* but the code above will not have done so, because it thought that both
* a and b have joinclauses. We consider only left-sided and right-sided
* cartesian joins in this case (no bushy).
*----------
*/
if (joinrels[level] == NIL)
{
/*
* This loop is just like the first one, except we always call
* make_rels_by_clauseless_joins().
*/
foreach(r, joinrels[level - 1])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
make_rels_by_clauseless_joins(root,
old_rel,
joinrels[1]);
}
/*----------
* When special joins are involved, there may be no legal way
* to make an N-way join for some values of N. For example consider
*
* SELECT ... FROM t1 WHERE
* x IN (SELECT ... FROM t2,t3 WHERE ...) AND
* y IN (SELECT ... FROM t4,t5 WHERE ...)
*
* We will flatten this query to a 5-way join problem, but there are
* no 4-way joins that join_is_legal() will consider legal. We have
* to accept failure at level 4 and go on to discover a workable
* bushy plan at level 5.
*
* However, if there are no special joins and no lateral references
* then join_is_legal() should never fail, and so the following sanity
* check is useful.
*----------
*/
if (joinrels[level] == NIL &&
root->join_info_list == NIL &&
!root->hasLateralRTEs)
elog(ERROR, "failed to build any %d-way joins", level);
}
}
/*
* make_rels_by_clause_joins
* Build joins between the given relation 'old_rel' and other relations
* that participate in join clauses that 'old_rel' also participates in
* (or participate in join-order restrictions with it).
* The join rels are returned in root->join_rel_level[join_cur_level].
*
* Note: at levels above 2 we will generate the same joined relation in
* multiple ways --- for example (a join b) join c is the same RelOptInfo as
* (b join c) join a, though the second case will add a different set of Paths
* to it. This is the reason for using the join_rel_level mechanism, which
* automatically ensures that each new joinrel is only added to the list once.
*
* 'old_rel' is the relation entry for the relation to be joined
* 'other_rels_list': a list containing the other
* rels to be considered for joining
* 'other_rels': the first cell to be considered
*
* Currently, this is only used with initial rels in other_rels, but it
* will work for joining to joinrels too.
*/
static void
make_rels_by_clause_joins(PlannerInfo *root,
RelOptInfo *old_rel,
List *other_rels_list,
ListCell *other_rels)
{
ListCell *l;
for_each_cell(l, other_rels_list, other_rels)
{
RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
if (!bms_overlap(old_rel->relids, other_rel->relids) &&
(have_relevant_joinclause(root, old_rel, other_rel) ||
have_join_order_restriction(root, old_rel, other_rel)))
{
(void) make_join_rel(root, old_rel, other_rel);
}
}
}
/*
* make_rels_by_clauseless_joins
* Given a relation 'old_rel' and a list of other relations
* 'other_rels', create a join relation between 'old_rel' and each
* member of 'other_rels' that isn't already included in 'old_rel'.
* The join rels are returned in root->join_rel_level[join_cur_level].
*
* 'old_rel' is the relation entry for the relation to be joined
* 'other_rels': a list containing the other rels to be considered for joining
*
* Currently, this is only used with initial rels in other_rels, but it would
* work for joining to joinrels too.
*/
static void
make_rels_by_clauseless_joins(PlannerInfo *root,
RelOptInfo *old_rel,
List *other_rels)
{
ListCell *l;
foreach(l, other_rels)
{
RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
if (!bms_overlap(other_rel->relids, old_rel->relids))
{
(void) make_join_rel(root, old_rel, other_rel);
}
}
}
/*
* join_is_legal
* Determine whether a proposed join is legal given the query's
* join order constraints; and if it is, determine the join type.
*
* Caller must supply not only the two rels, but the union of their relids.
* (We could simplify the API by computing joinrelids locally, but this
* would be redundant work in the normal path through make_join_rel.
* Note that this value does NOT include the RT index of any outer join that
* might need to be performed here, so it's not the canonical identifier
* of the join relation.)
*
* On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
* else it's set to point to the associated SpecialJoinInfo node. Also,
* *reversed_p is set true if the given relations need to be swapped to
* match the SpecialJoinInfo node.
*/
static bool
join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
Relids joinrelids,
SpecialJoinInfo **sjinfo_p, bool *reversed_p)
{
SpecialJoinInfo *match_sjinfo;
bool reversed;
bool unique_ified;
bool must_be_leftjoin;
ListCell *l;
/*
* Ensure output params are set on failure return. This is just to
* suppress uninitialized-variable warnings from overly anal compilers.
*/
*sjinfo_p = NULL;
*reversed_p = false;
/*
* If we have any special joins, the proposed join might be illegal; and
* in any case we have to determine its join type. Scan the join info
* list for matches and conflicts.
*/
match_sjinfo = NULL;
reversed = false;
unique_ified = false;
must_be_leftjoin = false;
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/*
* This special join is not relevant unless its RHS overlaps the
* proposed join. (Check this first as a fast path for dismissing
* most irrelevant SJs quickly.)
*/
if (!bms_overlap(sjinfo->min_righthand, joinrelids))
continue;
/*
* Also, not relevant if proposed join is fully contained within RHS
* (ie, we're still building up the RHS).
*/
if (bms_is_subset(joinrelids, sjinfo->min_righthand))
continue;
/*
* Also, not relevant if SJ is already done within either input.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
continue;
if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
continue;
/*
* If it's a semijoin and we already joined the RHS to any other rels
* within either input, then we must have unique-ified the RHS at that
* point (see below). Therefore the semijoin is no longer relevant in
* this join path.
*/
if (sjinfo->jointype == JOIN_SEMI)
{
if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
!bms_equal(sjinfo->syn_righthand, rel1->relids))
continue;
if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
!bms_equal(sjinfo->syn_righthand, rel2->relids))
continue;
}
/*
* If one input contains min_lefthand and the other contains
* min_righthand, then we can perform the SJ at this join.
*
* Reject if we get matches to more than one SJ; that implies we're
* considering something that's not really valid.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = false;
}
else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
{
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = true;
}
else if (sjinfo->jointype == JOIN_SEMI &&
bms_equal(sjinfo->syn_righthand, rel2->relids) &&
create_unique_path(root, rel2, rel2->cheapest_total_path,
sjinfo) != NULL)
{
/*----------
* For a semijoin, we can join the RHS to anything else by
* unique-ifying the RHS (if the RHS can be unique-ified).
* We will only get here if we have the full RHS but less
* than min_lefthand on the LHS.
*
* The reason to consider such a join path is exemplified by
* SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
* If we insist on doing this as a semijoin we will first have
* to form the cartesian product of A*B. But if we unique-ify
* C then the semijoin becomes a plain innerjoin and we can join
* in any order, eg C to A and then to B. When C is much smaller
* than A and B this can be a huge win. So we allow C to be
* joined to just A or just B here, and then make_join_rel has
* to handle the case properly.
*
* Note that actually we'll allow unique-ified C to be joined to
* some other relation D here, too. That is legal, if usually not
* very sane, and this routine is only concerned with legality not
* with whether the join is good strategy.
*----------
*/
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = false;
unique_ified = true;
}
else if (sjinfo->jointype == JOIN_SEMI &&
bms_equal(sjinfo->syn_righthand, rel1->relids) &&
create_unique_path(root, rel1, rel1->cheapest_total_path,
sjinfo) != NULL)
{
/* Reversed semijoin case */
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = true;
unique_ified = true;
}
else
{
/*
* Otherwise, the proposed join overlaps the RHS but isn't a valid
* implementation of this SJ. But don't panic quite yet: the RHS
* violation might have occurred previously, in one or both input
* relations, in which case we must have previously decided that
* it was OK to commute some other SJ with this one. If we need
* to perform this join to finish building up the RHS, rejecting
* it could lead to not finding any plan at all. (This can occur
* because of the heuristics elsewhere in this file that postpone
* clauseless joins: we might not consider doing a clauseless join
* within the RHS until after we've performed other, validly
* commutable SJs with one or both sides of the clauseless join.)
* This consideration boils down to the rule that if both inputs
* overlap the RHS, we can allow the join --- they are either
* fully within the RHS, or represent previously-allowed joins to
* rels outside it.
*/
if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
bms_overlap(rel2->relids, sjinfo->min_righthand))
continue; /* assume valid previous violation of RHS */
/*
* The proposed join could still be legal, but only if we're
* allowed to associate it into the RHS of this SJ. That means
* this SJ must be a LEFT join (not SEMI or ANTI, and certainly
* not FULL) and the proposed join must not overlap the LHS.
*/
if (sjinfo->jointype != JOIN_LEFT ||
bms_overlap(joinrelids, sjinfo->min_lefthand))
return false; /* invalid join path */
/*
* To be valid, the proposed join must be a LEFT join; otherwise
* it can't associate into this SJ's RHS. But we may not yet have
* found the SpecialJoinInfo matching the proposed join, so we
* can't test that yet. Remember the requirement for later.
*/
must_be_leftjoin = true;
}
}
/*
* Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
* proposed join can't associate into an SJ's RHS.
*
* Also, fail if the proposed join's predicate isn't strict; we're
* essentially checking to see if we can apply outer-join identity 3, and
* that's a requirement. (This check may be redundant with checks in
* make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
*/
if (must_be_leftjoin &&
(match_sjinfo == NULL ||
match_sjinfo->jointype != JOIN_LEFT ||
!match_sjinfo->lhs_strict))
return false; /* invalid join path */
/*
* We also have to check for constraints imposed by LATERAL references.
*/
if (root->hasLateralRTEs)
{
bool lateral_fwd;
bool lateral_rev;
Relids join_lateral_rels;
/*
* The proposed rels could each contain lateral references to the
* other, in which case the join is impossible. If there are lateral
* references in just one direction, then the join has to be done with
* a nestloop with the lateral referencer on the inside. If the join
* matches an SJ that cannot be implemented by such a nestloop, the
* join is impossible.
*
* Also, if the lateral reference is only indirect, we should reject
* the join; whatever rel(s) the reference chain goes through must be
* joined to first.
*
* Another case that might keep us from building a valid plan is the
* implementation restriction described by have_dangerous_phv().
*/
lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
if (lateral_fwd && lateral_rev)
return false; /* have lateral refs in both directions */
if (lateral_fwd)
{
/* has to be implemented as nestloop with rel1 on left */
if (match_sjinfo &&
(reversed ||
unique_ified ||
match_sjinfo->jointype == JOIN_FULL))
return false; /* not implementable as nestloop */
/* check there is a direct reference from rel2 to rel1 */
if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
return false; /* only indirect refs, so reject */
/* check we won't have a dangerous PHV */
if (have_dangerous_phv(root, rel1->relids, rel2->lateral_relids))
return false; /* might be unable to handle required PHV */
}
else if (lateral_rev)
{
/* has to be implemented as nestloop with rel2 on left */
if (match_sjinfo &&
(!reversed ||
unique_ified ||
match_sjinfo->jointype == JOIN_FULL))
return false; /* not implementable as nestloop */
/* check there is a direct reference from rel1 to rel2 */
if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
return false; /* only indirect refs, so reject */
/* check we won't have a dangerous PHV */
if (have_dangerous_phv(root, rel2->relids, rel1->lateral_relids))
return false; /* might be unable to handle required PHV */
}
/*
* LATERAL references could also cause problems later on if we accept
* this join: if the join's minimum parameterization includes any rels
* that would have to be on the inside of an outer join with this join
* rel, then it's never going to be possible to build the complete
* query using this join. We should reject this join not only because
* it'll save work, but because if we don't, the clauseless-join
* heuristics might think that legality of this join means that some
* other join rel need not be formed, and that could lead to failure
* to find any plan at all. We have to consider not only rels that
* are directly on the inner side of an OJ with the joinrel, but also
* ones that are indirectly so, so search to find all such rels.
*/
join_lateral_rels = min_join_parameterization(root, joinrelids,
rel1, rel2);
if (join_lateral_rels)
{
Relids join_plus_rhs = bms_copy(joinrelids);
bool more;
do
{
more = false;
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/* ignore full joins --- their ordering is predetermined */
if (sjinfo->jointype == JOIN_FULL)
continue;
if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
!bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
{
join_plus_rhs = bms_add_members(join_plus_rhs,
sjinfo->min_righthand);
more = true;
}
}
} while (more);
if (bms_overlap(join_plus_rhs, join_lateral_rels))
return false; /* will not be able to join to some RHS rel */
}
}
/* Otherwise, it's a valid join */
*sjinfo_p = match_sjinfo;
*reversed_p = reversed;
return true;
}
/*
* make_join_rel
* Find or create a join RelOptInfo that represents the join of
* the two given rels, and add to it path information for paths
* created with the two rels as outer and inner rel.
* (The join rel may already contain paths generated from other
* pairs of rels that add up to the same set of base rels.)
*
* NB: will return NULL if attempted join is not valid. This can happen
* when working with outer joins, or with IN or EXISTS clauses that have been
* turned into joins.
*/
RelOptInfo *
make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
{
Relids joinrelids;
SpecialJoinInfo *sjinfo;
bool reversed;
List *pushed_down_joins = NIL;
SpecialJoinInfo sjinfo_data;
RelOptInfo *joinrel;
List *restrictlist;
/* We should never try to join two overlapping sets of rels. */
Assert(!bms_overlap(rel1->relids, rel2->relids));
/* Construct Relids set that identifies the joinrel (without OJ as yet). */
joinrelids = bms_union(rel1->relids, rel2->relids);
/* Check validity and determine join type. */
if (!join_is_legal(root, rel1, rel2, joinrelids,
&sjinfo, &reversed))
{
/* invalid join path */
bms_free(joinrelids);
return NULL;
}
/*
* Add outer join relid(s) to form the canonical relids. Any added outer
* joins besides sjinfo itself are appended to pushed_down_joins.
*/
joinrelids = add_outer_joins_to_relids(root, joinrelids, sjinfo,
&pushed_down_joins);
/* Swap rels if needed to match the join info. */
if (reversed)
{
RelOptInfo *trel = rel1;
rel1 = rel2;
rel2 = trel;
}
/*
* If it's a plain inner join, then we won't have found anything in
* join_info_list. Make up a SpecialJoinInfo so that selectivity
* estimation functions will know what's being joined.
*/
if (sjinfo == NULL)
{
sjinfo = &sjinfo_data;
sjinfo->type = T_SpecialJoinInfo;
sjinfo->min_lefthand = rel1->relids;
sjinfo->min_righthand = rel2->relids;
sjinfo->syn_lefthand = rel1->relids;
sjinfo->syn_righthand = rel2->relids;
sjinfo->jointype = JOIN_INNER;
sjinfo->ojrelid = 0;
sjinfo->commute_above_l = NULL;
sjinfo->commute_above_r = NULL;
sjinfo->commute_below_l = NULL;
sjinfo->commute_below_r = NULL;
/* we don't bother trying to make the remaining fields valid */
sjinfo->lhs_strict = false;
sjinfo->semi_can_btree = false;
sjinfo->semi_can_hash = false;
sjinfo->semi_operators = NIL;
sjinfo->semi_rhs_exprs = NIL;
}
/*
* Find or build the join RelOptInfo, and compute the restrictlist that
* goes with this particular joining.
*/
joinrel = build_join_rel(root, joinrelids, rel1, rel2,
sjinfo, pushed_down_joins,
&restrictlist);
/*
* If we've already proven this join is empty, we needn't consider any
* more paths for it.
*/
if (is_dummy_rel(joinrel))
{
bms_free(joinrelids);
return joinrel;
}
/* Add paths to the join relation. */
populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
restrictlist);
bms_free(joinrelids);
return joinrel;
}
/*
* add_outer_joins_to_relids
* Add relids to input_relids to represent any outer joins that will be
* calculated at this join.
*
* input_relids is the union of the relid sets of the two input relations.
* Note that we modify this in-place and return it; caller must bms_copy()
* it first, if a separate value is desired.
*
* sjinfo represents the join being performed.
*
* If the current join completes the calculation of any outer joins that
* have been pushed down per outer-join identity 3, those relids will be
* added to the result along with sjinfo's own relid. If pushed_down_joins
* is not NULL, then also the SpecialJoinInfos for such added outer joins will
* be appended to *pushed_down_joins (so caller must initialize it to NIL).
*/
Relids
add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids,
SpecialJoinInfo *sjinfo,
List **pushed_down_joins)
{
/* Nothing to do if this isn't an outer join with an assigned relid. */
if (sjinfo == NULL || sjinfo->ojrelid == 0)
return input_relids;
/*
* If it's not a left join, we have no rules that would permit executing
* it in non-syntactic order, so just form the syntactic relid set. (This
* is just a quick-exit test; we'd come to the same conclusion anyway,
* since its commute_below_l and commute_above_l sets must be empty.)
*/
if (sjinfo->jointype != JOIN_LEFT)
return bms_add_member(input_relids, sjinfo->ojrelid);
/*
* We cannot add the OJ relid if this join has been pushed into the RHS of
* a syntactically-lower left join per OJ identity 3. (If it has, then we
* cannot claim that its outputs represent the final state of its RHS.)
* There will not be any other OJs that can be added either, so we're
* done.
*/
if (!bms_is_subset(sjinfo->commute_below_l, input_relids))
return input_relids;
/* OK to add OJ's own relid */
input_relids = bms_add_member(input_relids, sjinfo->ojrelid);
/*
* Contrariwise, if we are now forming the final result of such a commuted
* pair of OJs, it's time to add the relid(s) of the pushed-down join(s).
* We can skip this if this join was never a candidate to be pushed up.
*/
if (sjinfo->commute_above_l)
{
Relids commute_above_rels = bms_copy(sjinfo->commute_above_l);
ListCell *lc;
/*
* The current join could complete the nulling of more than one
* pushed-down join, so we have to examine all the SpecialJoinInfos.
* Because join_info_list was built in bottom-up order, it's
* sufficient to traverse it once: an ojrelid we add in one loop
* iteration would not have affected decisions of earlier iterations.
*/
foreach(lc, root->join_info_list)
{
SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
if (othersj == sjinfo ||
othersj->ojrelid == 0 || othersj->jointype != JOIN_LEFT)
continue; /* definitely not interesting */
if (!bms_is_member(othersj->ojrelid, commute_above_rels))
continue;
/* Add it if not already present but conditions now satisfied */
if (!bms_is_member(othersj->ojrelid, input_relids) &&
bms_is_subset(othersj->min_lefthand, input_relids) &&
bms_is_subset(othersj->min_righthand, input_relids) &&
bms_is_subset(othersj->commute_below_l, input_relids))
{
input_relids = bms_add_member(input_relids, othersj->ojrelid);
/* report such pushed down outer joins, if asked */
if (pushed_down_joins != NULL)
*pushed_down_joins = lappend(*pushed_down_joins, othersj);
/*
* We must also check any joins that othersj potentially
* commutes with. They likewise must appear later in
* join_info_list than othersj itself, so we can visit them
* later in this loop.
*/
commute_above_rels = bms_add_members(commute_above_rels,
othersj->commute_above_l);
}
}
}
return input_relids;
}
/*
* populate_joinrel_with_paths
* Add paths to the given joinrel for given pair of joining relations. The
* SpecialJoinInfo provides details about the join and the restrictlist
* contains the join clauses and the other clauses applicable for given pair
* of the joining relations.
*/
static void
populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
RelOptInfo *rel2, RelOptInfo *joinrel,
SpecialJoinInfo *sjinfo, List *restrictlist)
{
/*
* Consider paths using each rel as both outer and inner. Depending on
* the join type, a provably empty outer or inner rel might mean the join
* is provably empty too; in which case throw away any previously computed
* paths and mark the join as dummy. (We do it this way since it's
* conceivable that dummy-ness of a multi-element join might only be
* noticeable for certain construction paths.)
*
* Also, a provably constant-false join restriction typically means that
* we can skip evaluating one or both sides of the join. We do this by
* marking the appropriate rel as dummy. For outer joins, a
* constant-false restriction that is pushed down still means the whole
* join is dummy, while a non-pushed-down one means that no inner rows
* will join so we can treat the inner rel as dummy.
*
* We need only consider the jointypes that appear in join_info_list, plus
* JOIN_INNER.
*/
switch (sjinfo->jointype)
{
case JOIN_INNER:
if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
restriction_is_constant_false(restrictlist, joinrel, false))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_INNER, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_INNER, sjinfo,
restrictlist);
break;
case JOIN_LEFT:
if (is_dummy_rel(rel1) ||
restriction_is_constant_false(restrictlist, joinrel, true))
{
mark_dummy_rel(joinrel);
break;
}
if (restriction_is_constant_false(restrictlist, joinrel, false) &&
bms_is_subset(rel2->relids, sjinfo->syn_righthand))
mark_dummy_rel(rel2);
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_LEFT, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_RIGHT, sjinfo,
restrictlist);
break;
case JOIN_FULL:
if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
restriction_is_constant_false(restrictlist, joinrel, true))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_FULL, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_FULL, sjinfo,
restrictlist);
/*
* If there are join quals that aren't mergeable or hashable, we
* may not be able to build any valid plan. Complain here so that
* we can give a somewhat-useful error message. (Since we have no
* flexibility of planning for a full join, there's no chance of
* succeeding later with another pair of input rels.)
*/
if (joinrel->pathlist == NIL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
break;
case JOIN_SEMI:
/*
* We might have a normal semijoin, or a case where we don't have
* enough rels to do the semijoin but can unique-ify the RHS and
* then do an innerjoin (see comments in join_is_legal). In the
* latter case we can't apply JOIN_SEMI joining.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
restriction_is_constant_false(restrictlist, joinrel, false))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_SEMI, sjinfo,
restrictlist);
}
/*
* If we know how to unique-ify the RHS and one input rel is
* exactly the RHS (not a superset) we can consider unique-ifying
* it and then doing a regular join. (The create_unique_path
* check here is probably redundant with what join_is_legal did,
* but if so the check is cheap because it's cached. So test
* anyway to be sure.)
*/
if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
create_unique_path(root, rel2, rel2->cheapest_total_path,
sjinfo) != NULL)
{
if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
restriction_is_constant_false(restrictlist, joinrel, false))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_UNIQUE_INNER, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_UNIQUE_OUTER, sjinfo,
restrictlist);
}
break;
case JOIN_ANTI:
if (is_dummy_rel(rel1) ||
restriction_is_constant_false(restrictlist, joinrel, true))
{
mark_dummy_rel(joinrel);
break;
}
if (restriction_is_constant_false(restrictlist, joinrel, false) &&
bms_is_subset(rel2->relids, sjinfo->syn_righthand))
mark_dummy_rel(rel2);
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_ANTI, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_RIGHT_ANTI, sjinfo,
restrictlist);
break;
default:
/* other values not expected here */
elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
break;
}
/* Apply partitionwise join technique, if possible. */
try_partitionwise_join(root, rel1, rel2, joinrel, sjinfo, restrictlist);
}
/*
* have_join_order_restriction
* Detect whether the two relations should be joined to satisfy
* a join-order restriction arising from special or lateral joins.
*
* In practice this is always used with have_relevant_joinclause(), and so
* could be merged with that function, but it seems clearer to separate the
* two concerns. We need this test because there are degenerate cases where
* a clauseless join must be performed to satisfy join-order restrictions.
* Also, if one rel has a lateral reference to the other, or both are needed
* to compute some PHV, we should consider joining them even if the join would
* be clauseless.
*
* Note: this is only a problem if one side of a degenerate outer join
* contains multiple rels, or a clauseless join is required within an
* IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
* join_search_one_level(). We could dispense with this test if we were
* willing to try bushy plans in the "last ditch" case, but that seems much
* less efficient.
*/
bool
have_join_order_restriction(PlannerInfo *root,
RelOptInfo *rel1, RelOptInfo *rel2)
{
bool result = false;
ListCell *l;
/*
* If either side has a direct lateral reference to the other, attempt the
* join regardless of outer-join considerations.
*/
if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
bms_overlap(rel2->relids, rel1->direct_lateral_relids))
return true;
/*
* Likewise, if both rels are needed to compute some PlaceHolderVar,
* attempt the join regardless of outer-join considerations. (This is not
* very desirable, because a PHV with a large eval_at set will cause a lot
* of probably-useless joins to be considered, but failing to do this can
* cause us to fail to construct a plan at all.)
*/
foreach(l, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
bms_is_subset(rel2->relids, phinfo->ph_eval_at))
return true;
}
/*
* It's possible that the rels correspond to the left and right sides of a
* degenerate outer join, that is, one with no joinclause mentioning the
* non-nullable side; in which case we should force the join to occur.
*
* Also, the two rels could represent a clauseless join that has to be
* completed to build up the LHS or RHS of an outer join.
*/
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/* ignore full joins --- other mechanisms handle them */
if (sjinfo->jointype == JOIN_FULL)
continue;
/* Can we perform the SJ with these rels? */
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
result = true;
break;
}
if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
{
result = true;
break;
}
/*
* Might we need to join these rels to complete the RHS? We have to
* use "overlap" tests since either rel might include a lower SJ that
* has been proven to commute with this one.
*/
if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
bms_overlap(sjinfo->min_righthand, rel2->relids))
{
result = true;
break;
}
/* Likewise for the LHS. */
if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
bms_overlap(sjinfo->min_lefthand, rel2->relids))
{
result = true;
break;
}
}
/*
* We do not force the join to occur if either input rel can legally be
* joined to anything else using joinclauses. This essentially means that
* clauseless bushy joins are put off as long as possible. The reason is
* that when there is a join order restriction high up in the join tree
* (that is, with many rels inside the LHS or RHS), we would otherwise
* expend lots of effort considering very stupid join combinations within
* its LHS or RHS.
*/
if (result)
{
if (has_legal_joinclause(root, rel1) ||
has_legal_joinclause(root, rel2))
result = false;
}
return result;
}
/*
* has_join_restriction
* Detect whether the specified relation has join-order restrictions,
* due to being inside an outer join or an IN (sub-SELECT),
* or participating in any LATERAL references or multi-rel PHVs.
*
* Essentially, this tests whether have_join_order_restriction() could
* succeed with this rel and some other one. It's OK if we sometimes
* say "true" incorrectly. (Therefore, we don't bother with the relatively
* expensive has_legal_joinclause test.)
*/
static bool
has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *l;
if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
return true;
foreach(l, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
!bms_equal(rel->relids, phinfo->ph_eval_at))
return true;
}
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/* ignore full joins --- other mechanisms preserve their ordering */
if (sjinfo->jointype == JOIN_FULL)
continue;
/* ignore if SJ is already contained in rel */
if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
bms_is_subset(sjinfo->min_righthand, rel->relids))
continue;
/* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
bms_overlap(sjinfo->min_righthand, rel->relids))
return true;
}
return false;
}
/*
* has_legal_joinclause
* Detect whether the specified relation can legally be joined
* to any other rels using join clauses.
*
* We consider only joins to single other relations in the current
* initial_rels list. This is sufficient to get a "true" result in most real
* queries, and an occasional erroneous "false" will only cost a bit more
* planning time. The reason for this limitation is that considering joins to
* other joins would require proving that the other join rel can legally be
* formed, which seems like too much trouble for something that's only a
* heuristic to save planning time. (Note: we must look at initial_rels
* and not all of the query, since when we are planning a sub-joinlist we
* may be forced to make clauseless joins within initial_rels even though
* there are join clauses linking to other parts of the query.)
*/
static bool
has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *lc;
foreach(lc, root->initial_rels)
{
RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
/* ignore rels that are already in "rel" */
if (bms_overlap(rel->relids, rel2->relids))
continue;
if (have_relevant_joinclause(root, rel, rel2))
{
Relids joinrelids;
SpecialJoinInfo *sjinfo;
bool reversed;
/* join_is_legal needs relids of the union */
joinrelids = bms_union(rel->relids, rel2->relids);
if (join_is_legal(root, rel, rel2, joinrelids,
&sjinfo, &reversed))
{
/* Yes, this will work */
bms_free(joinrelids);
return true;
}
bms_free(joinrelids);
}
}
return false;
}
/*
* There's a pitfall for creating parameterized nestloops: suppose the inner
* rel (call it A) has a parameter that is a PlaceHolderVar, and that PHV's
* minimum eval_at set includes the outer rel (B) and some third rel (C).
* We might think we could create a B/A nestloop join that's parameterized by
* C. But we would end up with a plan in which the PHV's expression has to be
* evaluated as a nestloop parameter at the B/A join; and the executor is only
* set up to handle simple Vars as NestLoopParams. Rather than add complexity
* and overhead to the executor for such corner cases, it seems better to
* forbid the join. (Note that we can still make use of A's parameterized
* path with pre-joined B+C as the outer rel. have_join_order_restriction()
* ensures that we will consider making such a join even if there are not
* other reasons to do so.)
*
* So we check whether any PHVs used in the query could pose such a hazard.
* We don't have any simple way of checking whether a risky PHV would actually
* be used in the inner plan, and the case is so unusual that it doesn't seem
* worth working very hard on it.
*
* This needs to be checked in two places. If the inner rel's minimum
* parameterization would trigger the restriction, then join_is_legal() should
* reject the join altogether, because there will be no workable paths for it.
* But joinpath.c has to check again for every proposed nestloop path, because
* the inner path might have more than the minimum parameterization, causing
* some PHV to be dangerous for it that otherwise wouldn't be.
*/
bool
have_dangerous_phv(PlannerInfo *root,
Relids outer_relids, Relids inner_params)
{
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
if (!bms_is_subset(phinfo->ph_eval_at, inner_params))
continue; /* ignore, could not be a nestloop param */
if (!bms_overlap(phinfo->ph_eval_at, outer_relids))
continue; /* ignore, not relevant to this join */
if (bms_is_subset(phinfo->ph_eval_at, outer_relids))
continue; /* safe, it can be eval'd within outerrel */
/* Otherwise, it's potentially unsafe, so reject the join */
return true;
}
/* OK to perform the join */
return false;
}
/*
* is_dummy_rel --- has relation been proven empty?
*/
bool
is_dummy_rel(RelOptInfo *rel)
{
Path *path;
/*
* A rel that is known dummy will have just one path that is a childless
* Append. (Even if somehow it has more paths, a childless Append will
* have cost zero and hence should be at the front of the pathlist.)
*/
if (rel->pathlist == NIL)
return false;
path = (Path *) linitial(rel->pathlist);
/*
* Initially, a dummy path will just be a childless Append. But in later
* planning stages we might stick a ProjectSetPath and/or ProjectionPath
* on top, since Append can't project. Rather than make assumptions about
* which combinations can occur, just descend through whatever we find.
*/
for (;;)
{
if (IsA(path, ProjectionPath))
path = ((ProjectionPath *) path)->subpath;
else if (IsA(path, ProjectSetPath))
path = ((ProjectSetPath *) path)->subpath;
else
break;
}
if (IS_DUMMY_APPEND(path))
return true;
return false;
}
/*
* Mark a relation as proven empty.
*
* During GEQO planning, this can get invoked more than once on the same
* baserel struct, so it's worth checking to see if the rel is already marked
* dummy.
*
* Also, when called during GEQO join planning, we are in a short-lived
* memory context. We must make sure that the dummy path attached to a
* baserel survives the GEQO cycle, else the baserel is trashed for future
* GEQO cycles. On the other hand, when we are marking a joinrel during GEQO,
* we don't want the dummy path to clutter the main planning context. Upshot
* is that the best solution is to explicitly make the dummy path in the same
* context the given RelOptInfo is in.
*/
void
mark_dummy_rel(RelOptInfo *rel)
{
MemoryContext oldcontext;
/* Already marked? */
if (is_dummy_rel(rel))
return;
/* No, so choose correct context to make the dummy path in */
oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
/* Set dummy size estimate */
rel->rows = 0;
/* Evict any previously chosen paths */
rel->pathlist = NIL;
rel->partial_pathlist = NIL;
/* Set up the dummy path */
add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
NIL, rel->lateral_relids,
0, false, -1));
/* Set or update cheapest_total_path and related fields */
set_cheapest(rel);
MemoryContextSwitchTo(oldcontext);
}
/*
* restriction_is_constant_false --- is a restrictlist just FALSE?
*
* In cases where a qual is provably constant FALSE, eval_const_expressions
* will generally have thrown away anything that's ANDed with it. In outer
* join situations this will leave us computing cartesian products only to
* decide there's no match for an outer row, which is pretty stupid. So,
* we need to detect the case.
*
* If only_pushed_down is true, then consider only quals that are pushed-down
* from the point of view of the joinrel.
*/
static bool
restriction_is_constant_false(List *restrictlist,
RelOptInfo *joinrel,
bool only_pushed_down)
{
ListCell *lc;
/*
* Despite the above comment, the restriction list we see here might
* possibly have other members besides the FALSE constant, since other
* quals could get "pushed down" to the outer join level. So we check
* each member of the list.
*/
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
if (only_pushed_down && !RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
continue;
if (rinfo->clause && IsA(rinfo->clause, Const))
{
Const *con = (Const *) rinfo->clause;
/* constant NULL is as good as constant FALSE for our purposes */
if (con->constisnull)
return true;
if (!DatumGetBool(con->constvalue))
return true;
}
}
return false;
}
/*
* Assess whether join between given two partitioned relations can be broken
* down into joins between matching partitions; a technique called
* "partitionwise join"
*
* Partitionwise join is possible when a. Joining relations have same
* partitioning scheme b. There exists an equi-join between the partition keys
* of the two relations.
*
* Partitionwise join is planned as follows (details: optimizer/README.)
*
* 1. Create the RelOptInfos for joins between matching partitions i.e
* child-joins and add paths to them.
*
* 2. Construct Append or MergeAppend paths across the set of child joins.
* This second phase is implemented by generate_partitionwise_join_paths().
*
* The RelOptInfo, SpecialJoinInfo and restrictlist for each child join are
* obtained by translating the respective parent join structures.
*/
static void
try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo,
List *parent_restrictlist)
{
bool rel1_is_simple = IS_SIMPLE_REL(rel1);
bool rel2_is_simple = IS_SIMPLE_REL(rel2);
List *parts1 = NIL;
List *parts2 = NIL;
ListCell *lcr1 = NULL;
ListCell *lcr2 = NULL;
int cnt_parts;
/* Guard against stack overflow due to overly deep partition hierarchy. */
check_stack_depth();
/* Nothing to do, if the join relation is not partitioned. */
if (joinrel->part_scheme == NULL || joinrel->nparts == 0)
return;
/* The join relation should have consider_partitionwise_join set. */
Assert(joinrel->consider_partitionwise_join);
/*
* We can not perform partitionwise join if either of the joining
* relations is not partitioned.
*/
if (!IS_PARTITIONED_REL(rel1) || !IS_PARTITIONED_REL(rel2))
return;
Assert(REL_HAS_ALL_PART_PROPS(rel1) && REL_HAS_ALL_PART_PROPS(rel2));
/* The joining relations should have consider_partitionwise_join set. */
Assert(rel1->consider_partitionwise_join &&
rel2->consider_partitionwise_join);
/*
* The partition scheme of the join relation should match that of the
* joining relations.
*/
Assert(joinrel->part_scheme == rel1->part_scheme &&
joinrel->part_scheme == rel2->part_scheme);
Assert(!(joinrel->partbounds_merged && (joinrel->nparts <= 0)));
compute_partition_bounds(root, rel1, rel2, joinrel, parent_sjinfo,
&parts1, &parts2);
if (joinrel->partbounds_merged)
{
lcr1 = list_head(parts1);
lcr2 = list_head(parts2);
}
/*
* Create child-join relations for this partitioned join, if those don't
* exist. Add paths to child-joins for a pair of child relations
* corresponding to the given pair of parent relations.
*/
for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
{
RelOptInfo *child_rel1;
RelOptInfo *child_rel2;
bool rel1_empty;
bool rel2_empty;
SpecialJoinInfo *child_sjinfo;
List *child_restrictlist;
RelOptInfo *child_joinrel;
Relids child_joinrelids;
AppendRelInfo **appinfos;
int nappinfos;
if (joinrel->partbounds_merged)
{
child_rel1 = lfirst_node(RelOptInfo, lcr1);
child_rel2 = lfirst_node(RelOptInfo, lcr2);
lcr1 = lnext(parts1, lcr1);
lcr2 = lnext(parts2, lcr2);
}
else
{
child_rel1 = rel1->part_rels[cnt_parts];
child_rel2 = rel2->part_rels[cnt_parts];
}
rel1_empty = (child_rel1 == NULL || IS_DUMMY_REL(child_rel1));
rel2_empty = (child_rel2 == NULL || IS_DUMMY_REL(child_rel2));
/*
* Check for cases where we can prove that this segment of the join
* returns no rows, due to one or both inputs being empty (including
* inputs that have been pruned away entirely). If so just ignore it.
* These rules are equivalent to populate_joinrel_with_paths's rules
* for dummy input relations.
*/
switch (parent_sjinfo->jointype)
{
case JOIN_INNER:
case JOIN_SEMI:
if (rel1_empty || rel2_empty)
continue; /* ignore this join segment */
break;
case JOIN_LEFT:
case JOIN_ANTI:
if (rel1_empty)
continue; /* ignore this join segment */
break;
case JOIN_FULL:
if (rel1_empty && rel2_empty)
continue; /* ignore this join segment */
break;
default:
/* other values not expected here */
elog(ERROR, "unrecognized join type: %d",
(int) parent_sjinfo->jointype);
break;
}
/*
* If a child has been pruned entirely then we can't generate paths
* for it, so we have to reject partitionwise joining unless we were
* able to eliminate this partition above.
*/
if (child_rel1 == NULL || child_rel2 == NULL)
{
/*
* Mark the joinrel as unpartitioned so that later functions treat
* it correctly.
*/
joinrel->nparts = 0;
return;
}
/*
* If a leaf relation has consider_partitionwise_join=false, it means
* that it's a dummy relation for which we skipped setting up tlist
* expressions and adding EC members in set_append_rel_size(), so
* again we have to fail here.
*/
if (rel1_is_simple && !child_rel1->consider_partitionwise_join)
{
Assert(child_rel1->reloptkind == RELOPT_OTHER_MEMBER_REL);
Assert(IS_DUMMY_REL(child_rel1));
joinrel->nparts = 0;
return;
}
if (rel2_is_simple && !child_rel2->consider_partitionwise_join)
{
Assert(child_rel2->reloptkind == RELOPT_OTHER_MEMBER_REL);
Assert(IS_DUMMY_REL(child_rel2));
joinrel->nparts = 0;
return;
}
/* We should never try to join two overlapping sets of rels. */
Assert(!bms_overlap(child_rel1->relids, child_rel2->relids));
/*
* Construct SpecialJoinInfo from parent join relations's
* SpecialJoinInfo.
*/
child_sjinfo = build_child_join_sjinfo(root, parent_sjinfo,
child_rel1->relids,
child_rel2->relids);
/* Build correct join relids for child join */
child_joinrelids = bms_union(child_rel1->relids, child_rel2->relids);
child_joinrelids = add_outer_joins_to_relids(root, child_joinrelids,
child_sjinfo, NULL);
/* Find the AppendRelInfo structures */
appinfos = find_appinfos_by_relids(root, child_joinrelids, &nappinfos);
/*
* Construct restrictions applicable to the child join from those
* applicable to the parent join.
*/
child_restrictlist =
(List *) adjust_appendrel_attrs(root,
(Node *) parent_restrictlist,
nappinfos, appinfos);
pfree(appinfos);
child_joinrel = joinrel->part_rels[cnt_parts];
if (!child_joinrel)
{
child_joinrel = build_child_join_rel(root, child_rel1, child_rel2,
joinrel, child_restrictlist,
child_sjinfo);
joinrel->part_rels[cnt_parts] = child_joinrel;
joinrel->live_parts = bms_add_member(joinrel->live_parts, cnt_parts);
joinrel->all_partrels = bms_add_members(joinrel->all_partrels,
child_joinrel->relids);
}
Assert(bms_equal(child_joinrel->relids, child_joinrelids));
populate_joinrel_with_paths(root, child_rel1, child_rel2,
child_joinrel, child_sjinfo,
child_restrictlist);
}
}
/*
* Construct the SpecialJoinInfo for a child-join by translating
* SpecialJoinInfo for the join between parents. left_relids and right_relids
* are the relids of left and right side of the join respectively.
*/
static SpecialJoinInfo *
build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo,
Relids left_relids, Relids right_relids)
{
SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
AppendRelInfo **left_appinfos;
int left_nappinfos;
AppendRelInfo **right_appinfos;
int right_nappinfos;
memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
left_appinfos = find_appinfos_by_relids(root, left_relids,
&left_nappinfos);
right_appinfos = find_appinfos_by_relids(root, right_relids,
&right_nappinfos);
sjinfo->min_lefthand = adjust_child_relids(sjinfo->min_lefthand,
left_nappinfos, left_appinfos);
sjinfo->min_righthand = adjust_child_relids(sjinfo->min_righthand,
right_nappinfos,
right_appinfos);
sjinfo->syn_lefthand = adjust_child_relids(sjinfo->syn_lefthand,
left_nappinfos, left_appinfos);
sjinfo->syn_righthand = adjust_child_relids(sjinfo->syn_righthand,
right_nappinfos,
right_appinfos);
/* outer-join relids need no adjustment */
sjinfo->semi_rhs_exprs = (List *) adjust_appendrel_attrs(root,
(Node *) sjinfo->semi_rhs_exprs,
right_nappinfos,
right_appinfos);
pfree(left_appinfos);
pfree(right_appinfos);
return sjinfo;
}
/*
* compute_partition_bounds
* Compute the partition bounds for a join rel from those for inputs
*/
static void
compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
RelOptInfo *rel2, RelOptInfo *joinrel,
SpecialJoinInfo *parent_sjinfo,
List **parts1, List **parts2)
{
/*
* If we don't have the partition bounds for the join rel yet, try to
* compute those along with pairs of partitions to be joined.
*/
if (joinrel->nparts == -1)
{
PartitionScheme part_scheme = joinrel->part_scheme;
PartitionBoundInfo boundinfo = NULL;
int nparts = 0;
Assert(joinrel->boundinfo == NULL);
Assert(joinrel->part_rels == NULL);
/*
* See if the partition bounds for inputs are exactly the same, in
* which case we don't need to work hard: the join rel will have the
* same partition bounds as inputs, and the partitions with the same
* cardinal positions will form the pairs.
*
* Note: even in cases where one or both inputs have merged bounds, it
* would be possible for both the bounds to be exactly the same, but
* it seems unlikely to be worth the cycles to check.
*/
if (!rel1->partbounds_merged &&
!rel2->partbounds_merged &&
rel1->nparts == rel2->nparts &&
partition_bounds_equal(part_scheme->partnatts,
part_scheme->parttyplen,
part_scheme->parttypbyval,
rel1->boundinfo, rel2->boundinfo))
{
boundinfo = rel1->boundinfo;
nparts = rel1->nparts;
}
else
{
/* Try merging the partition bounds for inputs. */
boundinfo = partition_bounds_merge(part_scheme->partnatts,
part_scheme->partsupfunc,
part_scheme->partcollation,
rel1, rel2,
parent_sjinfo->jointype,
parts1, parts2);
if (boundinfo == NULL)
{
joinrel->nparts = 0;
return;
}
nparts = list_length(*parts1);
joinrel->partbounds_merged = true;
}
Assert(nparts > 0);
joinrel->boundinfo = boundinfo;
joinrel->nparts = nparts;
joinrel->part_rels =
(RelOptInfo **) palloc0(sizeof(RelOptInfo *) * nparts);
}
else
{
Assert(joinrel->nparts > 0);
Assert(joinrel->boundinfo);
Assert(joinrel->part_rels);
/*
* If the join rel's partbounds_merged flag is true, it means inputs
* are not guaranteed to have the same partition bounds, therefore we
* can't assume that the partitions at the same cardinal positions
* form the pairs; let get_matching_part_pairs() generate the pairs.
* Otherwise, nothing to do since we can assume that.
*/
if (joinrel->partbounds_merged)
{
get_matching_part_pairs(root, joinrel, rel1, rel2,
parts1, parts2);
Assert(list_length(*parts1) == joinrel->nparts);
Assert(list_length(*parts2) == joinrel->nparts);
}
}
}
/*
* get_matching_part_pairs
* Generate pairs of partitions to be joined from inputs
*/
static void
get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *rel1, RelOptInfo *rel2,
List **parts1, List **parts2)
{
bool rel1_is_simple = IS_SIMPLE_REL(rel1);
bool rel2_is_simple = IS_SIMPLE_REL(rel2);
int cnt_parts;
*parts1 = NIL;
*parts2 = NIL;
for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
{
RelOptInfo *child_joinrel = joinrel->part_rels[cnt_parts];
RelOptInfo *child_rel1;
RelOptInfo *child_rel2;
Relids child_relids1;
Relids child_relids2;
/*
* If this segment of the join is empty, it means that this segment
* was ignored when previously creating child-join paths for it in
* try_partitionwise_join() as it would not contribute to the join
* result, due to one or both inputs being empty; add NULL to each of
* the given lists so that this segment will be ignored again in that
* function.
*/
if (!child_joinrel)
{
*parts1 = lappend(*parts1, NULL);
*parts2 = lappend(*parts2, NULL);
continue;
}
/*
* Get a relids set of partition(s) involved in this join segment that
* are from the rel1 side.
*/
child_relids1 = bms_intersect(child_joinrel->relids,
rel1->all_partrels);
Assert(bms_num_members(child_relids1) == bms_num_members(rel1->relids));
/*
* Get a child rel for rel1 with the relids. Note that we should have
* the child rel even if rel1 is a join rel, because in that case the
* partitions specified in the relids would have matching/overlapping
* boundaries, so the specified partitions should be considered as
* ones to be joined when planning partitionwise joins of rel1,
* meaning that the child rel would have been built by the time we get
* here.
*/
if (rel1_is_simple)
{
int varno = bms_singleton_member(child_relids1);
child_rel1 = find_base_rel(root, varno);
}
else
child_rel1 = find_join_rel(root, child_relids1);
Assert(child_rel1);
/*
* Get a relids set of partition(s) involved in this join segment that
* are from the rel2 side.
*/
child_relids2 = bms_intersect(child_joinrel->relids,
rel2->all_partrels);
Assert(bms_num_members(child_relids2) == bms_num_members(rel2->relids));
/*
* Get a child rel for rel2 with the relids. See above comments.
*/
if (rel2_is_simple)
{
int varno = bms_singleton_member(child_relids2);
child_rel2 = find_base_rel(root, varno);
}
else
child_rel2 = find_join_rel(root, child_relids2);
Assert(child_rel2);
/*
* The join of rel1 and rel2 is legal, so is the join of the child
* rels obtained above; add them to the given lists as a join pair
* producing this join segment.
*/
*parts1 = lappend(*parts1, child_rel1);
*parts2 = lappend(*parts2, child_rel2);
}
}