postgresql/src/include/storage/lwlock.h

221 lines
7.6 KiB
C

/*-------------------------------------------------------------------------
*
* lwlock.h
* Lightweight lock manager
*
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/storage/lwlock.h
*
*-------------------------------------------------------------------------
*/
#ifndef LWLOCK_H
#define LWLOCK_H
#ifdef FRONTEND
#error "lwlock.h may not be included from frontend code"
#endif
#include "port/atomics.h"
#include "storage/proclist_types.h"
struct PGPROC;
/* what state of the wait process is a backend in */
typedef enum LWLockWaitState
{
LW_WS_NOT_WAITING, /* not currently waiting / woken up */
LW_WS_WAITING, /* currently waiting */
LW_WS_PENDING_WAKEUP, /* removed from waitlist, but not yet
* signalled */
} LWLockWaitState;
/*
* Code outside of lwlock.c should not manipulate the contents of this
* structure directly, but we have to declare it here to allow LWLocks to be
* incorporated into other data structures.
*/
typedef struct LWLock
{
uint16 tranche; /* tranche ID */
pg_atomic_uint32 state; /* state of exclusive/nonexclusive lockers */
proclist_head waiters; /* list of waiting PGPROCs */
#ifdef LOCK_DEBUG
pg_atomic_uint32 nwaiters; /* number of waiters */
struct PGPROC *owner; /* last exclusive owner of the lock */
#endif
} LWLock;
/*
* In most cases, it's desirable to force each tranche of LWLocks to be aligned
* on a cache line boundary and make the array stride a power of 2. This saves
* a few cycles in indexing, but more importantly ensures that individual
* LWLocks don't cross cache line boundaries. This reduces cache contention
* problems, especially on AMD Opterons. In some cases, it's useful to add
* even more padding so that each LWLock takes up an entire cache line; this is
* useful, for example, in the main LWLock array, where the overall number of
* locks is small but some are heavily contended.
*/
#define LWLOCK_PADDED_SIZE PG_CACHE_LINE_SIZE
StaticAssertDecl(sizeof(LWLock) <= LWLOCK_PADDED_SIZE,
"Miscalculated LWLock padding");
/* LWLock, padded to a full cache line size */
typedef union LWLockPadded
{
LWLock lock;
char pad[LWLOCK_PADDED_SIZE];
} LWLockPadded;
extern PGDLLIMPORT LWLockPadded *MainLWLockArray;
/* struct for storing named tranche information */
typedef struct NamedLWLockTranche
{
int trancheId;
char *trancheName;
} NamedLWLockTranche;
extern PGDLLIMPORT NamedLWLockTranche *NamedLWLockTrancheArray;
extern PGDLLIMPORT int NamedLWLockTrancheRequests;
/* Names for fixed lwlocks */
#include "storage/lwlocknames.h"
/*
* It's a bit odd to declare NUM_BUFFER_PARTITIONS and NUM_LOCK_PARTITIONS
* here, but we need them to figure out offsets within MainLWLockArray, and
* having this file include lock.h or bufmgr.h would be backwards.
*/
/* Number of partitions of the shared buffer mapping hashtable */
#define NUM_BUFFER_PARTITIONS 128
/* Number of partitions the shared lock tables are divided into */
#define LOG2_NUM_LOCK_PARTITIONS 4
#define NUM_LOCK_PARTITIONS (1 << LOG2_NUM_LOCK_PARTITIONS)
/* Number of partitions the shared predicate lock tables are divided into */
#define LOG2_NUM_PREDICATELOCK_PARTITIONS 4
#define NUM_PREDICATELOCK_PARTITIONS (1 << LOG2_NUM_PREDICATELOCK_PARTITIONS)
/* Offsets for various chunks of preallocated lwlocks. */
#define BUFFER_MAPPING_LWLOCK_OFFSET NUM_INDIVIDUAL_LWLOCKS
#define LOCK_MANAGER_LWLOCK_OFFSET \
(BUFFER_MAPPING_LWLOCK_OFFSET + NUM_BUFFER_PARTITIONS)
#define PREDICATELOCK_MANAGER_LWLOCK_OFFSET \
(LOCK_MANAGER_LWLOCK_OFFSET + NUM_LOCK_PARTITIONS)
#define NUM_FIXED_LWLOCKS \
(PREDICATELOCK_MANAGER_LWLOCK_OFFSET + NUM_PREDICATELOCK_PARTITIONS)
typedef enum LWLockMode
{
LW_EXCLUSIVE,
LW_SHARED,
LW_WAIT_UNTIL_FREE /* A special mode used in PGPROC->lwWaitMode,
* when waiting for lock to become free. Not
* to be used as LWLockAcquire argument */
} LWLockMode;
#ifdef LOCK_DEBUG
extern PGDLLIMPORT bool Trace_lwlocks;
#endif
extern bool LWLockAcquire(LWLock *lock, LWLockMode mode);
extern bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode);
extern bool LWLockAcquireOrWait(LWLock *lock, LWLockMode mode);
extern void LWLockRelease(LWLock *lock);
extern void LWLockReleaseClearVar(LWLock *lock, uint64 *valptr, uint64 val);
extern void LWLockReleaseAll(void);
extern bool LWLockHeldByMe(LWLock *lock);
extern bool LWLockAnyHeldByMe(LWLock *lock, int nlocks, size_t stride);
extern bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode);
extern bool LWLockWaitForVar(LWLock *lock, uint64 *valptr, uint64 oldval, uint64 *newval);
extern void LWLockUpdateVar(LWLock *lock, uint64 *valptr, uint64 val);
extern Size LWLockShmemSize(void);
extern void CreateLWLocks(void);
extern void InitLWLockAccess(void);
extern const char *GetLWLockIdentifier(uint32 classId, uint16 eventId);
/*
* Extensions (or core code) can obtain an LWLocks by calling
* RequestNamedLWLockTranche() during postmaster startup. Subsequently,
* call GetNamedLWLockTranche() to obtain a pointer to an array containing
* the number of LWLocks requested.
*/
extern void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks);
extern LWLockPadded *GetNamedLWLockTranche(const char *tranche_name);
/*
* There is another, more flexible method of obtaining lwlocks. First, call
* LWLockNewTrancheId just once to obtain a tranche ID; this allocates from
* a shared counter. Next, each individual process using the tranche should
* call LWLockRegisterTranche() to associate that tranche ID with a name.
* Finally, LWLockInitialize should be called just once per lwlock, passing
* the tranche ID as an argument.
*
* It may seem strange that each process using the tranche must register it
* separately, but dynamic shared memory segments aren't guaranteed to be
* mapped at the same address in all coordinating backends, so storing the
* registration in the main shared memory segment wouldn't work for that case.
*/
extern int LWLockNewTrancheId(void);
extern void LWLockRegisterTranche(int tranche_id, const char *tranche_name);
extern void LWLockInitialize(LWLock *lock, int tranche_id);
/*
* Every tranche ID less than NUM_INDIVIDUAL_LWLOCKS is reserved; also,
* we reserve additional tranche IDs for builtin tranches not included in
* the set of individual LWLocks. A call to LWLockNewTrancheId will never
* return a value less than LWTRANCHE_FIRST_USER_DEFINED.
*/
typedef enum BuiltinTrancheIds
{
LWTRANCHE_XACT_BUFFER = NUM_INDIVIDUAL_LWLOCKS,
LWTRANCHE_COMMITTS_BUFFER,
LWTRANCHE_SUBTRANS_BUFFER,
LWTRANCHE_MULTIXACTOFFSET_BUFFER,
LWTRANCHE_MULTIXACTMEMBER_BUFFER,
LWTRANCHE_NOTIFY_BUFFER,
LWTRANCHE_SERIAL_BUFFER,
LWTRANCHE_WAL_INSERT,
LWTRANCHE_BUFFER_CONTENT,
LWTRANCHE_REPLICATION_ORIGIN_STATE,
LWTRANCHE_REPLICATION_SLOT_IO,
LWTRANCHE_LOCK_FASTPATH,
LWTRANCHE_BUFFER_MAPPING,
LWTRANCHE_LOCK_MANAGER,
LWTRANCHE_PREDICATE_LOCK_MANAGER,
LWTRANCHE_PARALLEL_HASH_JOIN,
LWTRANCHE_PARALLEL_QUERY_DSA,
LWTRANCHE_PER_SESSION_DSA,
LWTRANCHE_PER_SESSION_RECORD_TYPE,
LWTRANCHE_PER_SESSION_RECORD_TYPMOD,
LWTRANCHE_SHARED_TUPLESTORE,
LWTRANCHE_SHARED_TIDBITMAP,
LWTRANCHE_PARALLEL_APPEND,
LWTRANCHE_PER_XACT_PREDICATE_LIST,
LWTRANCHE_PGSTATS_DSA,
LWTRANCHE_PGSTATS_HASH,
LWTRANCHE_PGSTATS_DATA,
LWTRANCHE_LAUNCHER_DSA,
LWTRANCHE_LAUNCHER_HASH,
LWTRANCHE_FIRST_USER_DEFINED
} BuiltinTrancheIds;
/*
* Prior to PostgreSQL 9.4, we used an enum type called LWLockId to refer
* to LWLocks. New code should instead use LWLock *. However, for the
* convenience of third-party code, we include the following typedef.
*/
typedef LWLock *LWLockId;
#endif /* LWLOCK_H */