postgresql/src/backend/parser/parse_func.c
Tom Lane c94fb8e8ac Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so.  Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.

The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.

There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort.  Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure.  So I'll leave that question for another day.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-02-28 14:25:01 -05:00

2400 lines
74 KiB
C

/*-------------------------------------------------------------------------
*
* parse_func.c
* handle function calls in parser
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/parser/parse_func.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "lib/stringinfo.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_func.h"
#include "parser/parse_relation.h"
#include "parser/parse_target.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static void unify_hypothetical_args(ParseState *pstate,
List *fargs, int numAggregatedArgs,
Oid *actual_arg_types, Oid *declared_arg_types);
static Oid FuncNameAsType(List *funcname);
static Node *ParseComplexProjection(ParseState *pstate, const char *funcname,
Node *first_arg, int location);
/*
* Parse a function call
*
* For historical reasons, Postgres tries to treat the notations tab.col
* and col(tab) as equivalent: if a single-argument function call has an
* argument of complex type and the (unqualified) function name matches
* any attribute of the type, we can interpret it as a column projection.
* Conversely a function of a single complex-type argument can be written
* like a column reference, allowing functions to act like computed columns.
*
* If both interpretations are possible, we prefer the one matching the
* syntactic form, but otherwise the form does not matter.
*
* Hence, both cases come through here. If fn is null, we're dealing with
* column syntax not function syntax. In the function-syntax case,
* the FuncCall struct is needed to carry various decoration that applies
* to aggregate and window functions.
*
* Also, when fn is null, we return NULL on failure rather than
* reporting a no-such-function error.
*
* The argument expressions (in fargs) must have been transformed
* already. However, nothing in *fn has been transformed.
*
* last_srf should be a copy of pstate->p_last_srf from just before we
* started transforming fargs. If the caller knows that fargs couldn't
* contain any SRF calls, last_srf can just be pstate->p_last_srf.
*
* proc_call is true if we are considering a CALL statement, so that the
* name must resolve to a procedure name, not anything else.
*/
Node *
ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
Node *last_srf, FuncCall *fn, bool proc_call, int location)
{
bool is_column = (fn == NULL);
List *agg_order = (fn ? fn->agg_order : NIL);
Expr *agg_filter = NULL;
bool agg_within_group = (fn ? fn->agg_within_group : false);
bool agg_star = (fn ? fn->agg_star : false);
bool agg_distinct = (fn ? fn->agg_distinct : false);
bool func_variadic = (fn ? fn->func_variadic : false);
WindowDef *over = (fn ? fn->over : NULL);
bool could_be_projection;
Oid rettype;
Oid funcid;
ListCell *l;
ListCell *nextl;
Node *first_arg = NULL;
int nargs;
int nargsplusdefs;
Oid actual_arg_types[FUNC_MAX_ARGS];
Oid *declared_arg_types;
List *argnames;
List *argdefaults;
Node *retval;
bool retset;
int nvargs;
Oid vatype;
FuncDetailCode fdresult;
char aggkind = 0;
ParseCallbackState pcbstate;
/*
* If there's an aggregate filter, transform it using transformWhereClause
*/
if (fn && fn->agg_filter != NULL)
agg_filter = (Expr *) transformWhereClause(pstate, fn->agg_filter,
EXPR_KIND_FILTER,
"FILTER");
/*
* Most of the rest of the parser just assumes that functions do not have
* more than FUNC_MAX_ARGS parameters. We have to test here to protect
* against array overruns, etc. Of course, this may not be a function,
* but the test doesn't hurt.
*/
if (list_length(fargs) > FUNC_MAX_ARGS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg_plural("cannot pass more than %d argument to a function",
"cannot pass more than %d arguments to a function",
FUNC_MAX_ARGS,
FUNC_MAX_ARGS),
parser_errposition(pstate, location)));
/*
* Extract arg type info in preparation for function lookup.
*
* If any arguments are Param markers of type VOID, we discard them from
* the parameter list. This is a hack to allow the JDBC driver to not have
* to distinguish "input" and "output" parameter symbols while parsing
* function-call constructs. Don't do this if dealing with column syntax,
* nor if we had WITHIN GROUP (because in that case it's critical to keep
* the argument count unchanged). We can't use foreach() because we may
* modify the list ...
*/
nargs = 0;
for (l = list_head(fargs); l != NULL; l = nextl)
{
Node *arg = lfirst(l);
Oid argtype = exprType(arg);
nextl = lnext(l);
if (argtype == VOIDOID && IsA(arg, Param) &&
!is_column && !agg_within_group)
{
fargs = list_delete_ptr(fargs, arg);
continue;
}
actual_arg_types[nargs++] = argtype;
}
/*
* Check for named arguments; if there are any, build a list of names.
*
* We allow mixed notation (some named and some not), but only with all
* the named parameters after all the unnamed ones. So the name list
* corresponds to the last N actual parameters and we don't need any extra
* bookkeeping to match things up.
*/
argnames = NIL;
foreach(l, fargs)
{
Node *arg = lfirst(l);
if (IsA(arg, NamedArgExpr))
{
NamedArgExpr *na = (NamedArgExpr *) arg;
ListCell *lc;
/* Reject duplicate arg names */
foreach(lc, argnames)
{
if (strcmp(na->name, (char *) lfirst(lc)) == 0)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("argument name \"%s\" used more than once",
na->name),
parser_errposition(pstate, na->location)));
}
argnames = lappend(argnames, na->name);
}
else
{
if (argnames != NIL)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("positional argument cannot follow named argument"),
parser_errposition(pstate, exprLocation(arg))));
}
}
if (fargs)
{
first_arg = linitial(fargs);
Assert(first_arg != NULL);
}
/*
* Decide whether it's legitimate to consider the construct to be a column
* projection. For that, there has to be a single argument of complex
* type, the function name must not be qualified, and there cannot be any
* syntactic decoration that'd require it to be a function (such as
* aggregate or variadic decoration, or named arguments).
*/
could_be_projection = (nargs == 1 && !proc_call &&
agg_order == NIL && agg_filter == NULL &&
!agg_star && !agg_distinct && over == NULL &&
!func_variadic && argnames == NIL &&
list_length(funcname) == 1 &&
(actual_arg_types[0] == RECORDOID ||
ISCOMPLEX(actual_arg_types[0])));
/*
* If it's column syntax, check for column projection case first.
*/
if (could_be_projection && is_column)
{
retval = ParseComplexProjection(pstate,
strVal(linitial(funcname)),
first_arg,
location);
if (retval)
return retval;
/*
* If ParseComplexProjection doesn't recognize it as a projection,
* just press on.
*/
}
/*
* func_get_detail looks up the function in the catalogs, does
* disambiguation for polymorphic functions, handles inheritance, and
* returns the funcid and type and set or singleton status of the
* function's return value. It also returns the true argument types to
* the function.
*
* Note: for a named-notation or variadic function call, the reported
* "true" types aren't really what is in pg_proc: the types are reordered
* to match the given argument order of named arguments, and a variadic
* argument is replaced by a suitable number of copies of its element
* type. We'll fix up the variadic case below. We may also have to deal
* with default arguments.
*/
setup_parser_errposition_callback(&pcbstate, pstate, location);
fdresult = func_get_detail(funcname, fargs, argnames, nargs,
actual_arg_types,
!func_variadic, true,
&funcid, &rettype, &retset,
&nvargs, &vatype,
&declared_arg_types, &argdefaults);
cancel_parser_errposition_callback(&pcbstate);
/*
* Check for various wrong-kind-of-routine cases.
*/
/* If this is a CALL, reject things that aren't procedures */
if (proc_call &&
(fdresult == FUNCDETAIL_NORMAL ||
fdresult == FUNCDETAIL_AGGREGATE ||
fdresult == FUNCDETAIL_WINDOWFUNC ||
fdresult == FUNCDETAIL_COERCION))
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s is not a procedure",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("To call a function, use SELECT."),
parser_errposition(pstate, location)));
/* Conversely, if not a CALL, reject procedures */
if (fdresult == FUNCDETAIL_PROCEDURE && !proc_call)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s is a procedure",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("To call a procedure, use CALL."),
parser_errposition(pstate, location)));
if (fdresult == FUNCDETAIL_NORMAL ||
fdresult == FUNCDETAIL_PROCEDURE ||
fdresult == FUNCDETAIL_COERCION)
{
/*
* In these cases, complain if there was anything indicating it must
* be an aggregate or window function.
*/
if (agg_star)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s(*) specified, but %s is not an aggregate function",
NameListToString(funcname),
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (agg_distinct)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("DISTINCT specified, but %s is not an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("WITHIN GROUP specified, but %s is not an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (agg_order != NIL)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("ORDER BY specified, but %s is not an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (agg_filter)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("FILTER specified, but %s is not an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (over)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("OVER specified, but %s is not a window function nor an aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
}
/*
* So far so good, so do some fdresult-type-specific processing.
*/
if (fdresult == FUNCDETAIL_NORMAL || fdresult == FUNCDETAIL_PROCEDURE)
{
/* Nothing special to do for these cases. */
}
else if (fdresult == FUNCDETAIL_AGGREGATE)
{
/*
* It's an aggregate; fetch needed info from the pg_aggregate entry.
*/
HeapTuple tup;
Form_pg_aggregate classForm;
int catDirectArgs;
tup = SearchSysCache1(AGGFNOID, ObjectIdGetDatum(funcid));
if (!HeapTupleIsValid(tup)) /* should not happen */
elog(ERROR, "cache lookup failed for aggregate %u", funcid);
classForm = (Form_pg_aggregate) GETSTRUCT(tup);
aggkind = classForm->aggkind;
catDirectArgs = classForm->aggnumdirectargs;
ReleaseSysCache(tup);
/* Now check various disallowed cases. */
if (AGGKIND_IS_ORDERED_SET(aggkind))
{
int numAggregatedArgs;
int numDirectArgs;
if (!agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("WITHIN GROUP is required for ordered-set aggregate %s",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (over)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("OVER is not supported for ordered-set aggregate %s",
NameListToString(funcname)),
parser_errposition(pstate, location)));
/* gram.y rejects DISTINCT + WITHIN GROUP */
Assert(!agg_distinct);
/* gram.y rejects VARIADIC + WITHIN GROUP */
Assert(!func_variadic);
/*
* Since func_get_detail was working with an undifferentiated list
* of arguments, it might have selected an aggregate that doesn't
* really match because it requires a different division of direct
* and aggregated arguments. Check that the number of direct
* arguments is actually OK; if not, throw an "undefined function"
* error, similarly to the case where a misplaced ORDER BY is used
* in a regular aggregate call.
*/
numAggregatedArgs = list_length(agg_order);
numDirectArgs = nargs - numAggregatedArgs;
Assert(numDirectArgs >= 0);
if (!OidIsValid(vatype))
{
/* Test is simple if aggregate isn't variadic */
if (numDirectArgs != catDirectArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("There is an ordered-set aggregate %s, but it requires %d direct arguments, not %d.",
NameListToString(funcname),
catDirectArgs, numDirectArgs),
parser_errposition(pstate, location)));
}
else
{
/*
* If it's variadic, we have two cases depending on whether
* the agg was "... ORDER BY VARIADIC" or "..., VARIADIC ORDER
* BY VARIADIC". It's the latter if catDirectArgs equals
* pronargs; to save a catalog lookup, we reverse-engineer
* pronargs from the info we got from func_get_detail.
*/
int pronargs;
pronargs = nargs;
if (nvargs > 1)
pronargs -= nvargs - 1;
if (catDirectArgs < pronargs)
{
/* VARIADIC isn't part of direct args, so still easy */
if (numDirectArgs != catDirectArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("There is an ordered-set aggregate %s, but it requires %d direct arguments, not %d.",
NameListToString(funcname),
catDirectArgs, numDirectArgs),
parser_errposition(pstate, location)));
}
else
{
/*
* Both direct and aggregated args were declared variadic.
* For a standard ordered-set aggregate, it's okay as long
* as there aren't too few direct args. For a
* hypothetical-set aggregate, we assume that the
* hypothetical arguments are those that matched the
* variadic parameter; there must be just as many of them
* as there are aggregated arguments.
*/
if (aggkind == AGGKIND_HYPOTHETICAL)
{
if (nvargs != 2 * numAggregatedArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("To use the hypothetical-set aggregate %s, the number of hypothetical direct arguments (here %d) must match the number of ordering columns (here %d).",
NameListToString(funcname),
nvargs - numAggregatedArgs, numAggregatedArgs),
parser_errposition(pstate, location)));
}
else
{
if (nvargs <= numAggregatedArgs)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
argnames,
actual_arg_types)),
errhint("There is an ordered-set aggregate %s, but it requires at least %d direct arguments.",
NameListToString(funcname),
catDirectArgs),
parser_errposition(pstate, location)));
}
}
}
/* Check type matching of hypothetical arguments */
if (aggkind == AGGKIND_HYPOTHETICAL)
unify_hypothetical_args(pstate, fargs, numAggregatedArgs,
actual_arg_types, declared_arg_types);
}
else
{
/* Normal aggregate, so it can't have WITHIN GROUP */
if (agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s is not an ordered-set aggregate, so it cannot have WITHIN GROUP",
NameListToString(funcname)),
parser_errposition(pstate, location)));
}
}
else if (fdresult == FUNCDETAIL_WINDOWFUNC)
{
/*
* True window functions must be called with a window definition.
*/
if (!over)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("window function %s requires an OVER clause",
NameListToString(funcname)),
parser_errposition(pstate, location)));
/* And, per spec, WITHIN GROUP isn't allowed */
if (agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("window function %s cannot have WITHIN GROUP",
NameListToString(funcname)),
parser_errposition(pstate, location)));
}
else if (fdresult == FUNCDETAIL_COERCION)
{
/*
* We interpreted it as a type coercion. coerce_type can handle these
* cases, so why duplicate code...
*/
return coerce_type(pstate, linitial(fargs),
actual_arg_types[0], rettype, -1,
COERCION_EXPLICIT, COERCE_EXPLICIT_CALL, location);
}
else if (fdresult == FUNCDETAIL_MULTIPLE)
{
/*
* We found multiple possible functional matches. If we are dealing
* with attribute notation, return failure, letting the caller report
* "no such column" (we already determined there wasn't one). If
* dealing with function notation, report "ambiguous function",
* regardless of whether there's also a column by this name.
*/
if (is_column)
return NULL;
if (proc_call)
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_FUNCTION),
errmsg("procedure %s is not unique",
func_signature_string(funcname, nargs, argnames,
actual_arg_types)),
errhint("Could not choose a best candidate procedure. "
"You might need to add explicit type casts."),
parser_errposition(pstate, location)));
else
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_FUNCTION),
errmsg("function %s is not unique",
func_signature_string(funcname, nargs, argnames,
actual_arg_types)),
errhint("Could not choose a best candidate function. "
"You might need to add explicit type casts."),
parser_errposition(pstate, location)));
}
else
{
/*
* Not found as a function. If we are dealing with attribute
* notation, return failure, letting the caller report "no such
* column" (we already determined there wasn't one).
*/
if (is_column)
return NULL;
/*
* Check for column projection interpretation, since we didn't before.
*/
if (could_be_projection)
{
retval = ParseComplexProjection(pstate,
strVal(linitial(funcname)),
first_arg,
location);
if (retval)
return retval;
}
/*
* No function, and no column either. Since we're dealing with
* function notation, report "function does not exist".
*/
if (list_length(agg_order) > 1 && !agg_within_group)
{
/* It's agg(x, ORDER BY y,z) ... perhaps misplaced ORDER BY */
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs, argnames,
actual_arg_types)),
errhint("No aggregate function matches the given name and argument types. "
"Perhaps you misplaced ORDER BY; ORDER BY must appear "
"after all regular arguments of the aggregate."),
parser_errposition(pstate, location)));
}
else if (proc_call)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("procedure %s does not exist",
func_signature_string(funcname, nargs, argnames,
actual_arg_types)),
errhint("No procedure matches the given name and argument types. "
"You might need to add explicit type casts."),
parser_errposition(pstate, location)));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs, argnames,
actual_arg_types)),
errhint("No function matches the given name and argument types. "
"You might need to add explicit type casts."),
parser_errposition(pstate, location)));
}
/*
* If there are default arguments, we have to include their types in
* actual_arg_types for the purpose of checking generic type consistency.
* However, we do NOT put them into the generated parse node, because
* their actual values might change before the query gets run. The
* planner has to insert the up-to-date values at plan time.
*/
nargsplusdefs = nargs;
foreach(l, argdefaults)
{
Node *expr = (Node *) lfirst(l);
/* probably shouldn't happen ... */
if (nargsplusdefs >= FUNC_MAX_ARGS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg_plural("cannot pass more than %d argument to a function",
"cannot pass more than %d arguments to a function",
FUNC_MAX_ARGS,
FUNC_MAX_ARGS),
parser_errposition(pstate, location)));
actual_arg_types[nargsplusdefs++] = exprType(expr);
}
/*
* enforce consistency with polymorphic argument and return types,
* possibly adjusting return type or declared_arg_types (which will be
* used as the cast destination by make_fn_arguments)
*/
rettype = enforce_generic_type_consistency(actual_arg_types,
declared_arg_types,
nargsplusdefs,
rettype,
false);
/* perform the necessary typecasting of arguments */
make_fn_arguments(pstate, fargs, actual_arg_types, declared_arg_types);
/*
* If the function isn't actually variadic, forget any VARIADIC decoration
* on the call. (Perhaps we should throw an error instead, but
* historically we've allowed people to write that.)
*/
if (!OidIsValid(vatype))
{
Assert(nvargs == 0);
func_variadic = false;
}
/*
* If it's a variadic function call, transform the last nvargs arguments
* into an array --- unless it's an "any" variadic.
*/
if (nvargs > 0 && vatype != ANYOID)
{
ArrayExpr *newa = makeNode(ArrayExpr);
int non_var_args = nargs - nvargs;
List *vargs;
Assert(non_var_args >= 0);
vargs = list_copy_tail(fargs, non_var_args);
fargs = list_truncate(fargs, non_var_args);
newa->elements = vargs;
/* assume all the variadic arguments were coerced to the same type */
newa->element_typeid = exprType((Node *) linitial(vargs));
newa->array_typeid = get_array_type(newa->element_typeid);
if (!OidIsValid(newa->array_typeid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find array type for data type %s",
format_type_be(newa->element_typeid)),
parser_errposition(pstate, exprLocation((Node *) vargs))));
/* array_collid will be set by parse_collate.c */
newa->multidims = false;
newa->location = exprLocation((Node *) vargs);
fargs = lappend(fargs, newa);
/* We could not have had VARIADIC marking before ... */
Assert(!func_variadic);
/* ... but now, it's a VARIADIC call */
func_variadic = true;
}
/*
* If an "any" variadic is called with explicit VARIADIC marking, insist
* that the variadic parameter be of some array type.
*/
if (nargs > 0 && vatype == ANYOID && func_variadic)
{
Oid va_arr_typid = actual_arg_types[nargs - 1];
if (!OidIsValid(get_base_element_type(va_arr_typid)))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("VARIADIC argument must be an array"),
parser_errposition(pstate,
exprLocation((Node *) llast(fargs)))));
}
/* if it returns a set, check that's OK */
if (retset)
check_srf_call_placement(pstate, last_srf, location);
/* build the appropriate output structure */
if (fdresult == FUNCDETAIL_NORMAL || fdresult == FUNCDETAIL_PROCEDURE)
{
FuncExpr *funcexpr = makeNode(FuncExpr);
funcexpr->funcid = funcid;
funcexpr->funcresulttype = rettype;
funcexpr->funcretset = retset;
funcexpr->funcvariadic = func_variadic;
funcexpr->funcformat = COERCE_EXPLICIT_CALL;
/* funccollid and inputcollid will be set by parse_collate.c */
funcexpr->args = fargs;
funcexpr->location = location;
retval = (Node *) funcexpr;
}
else if (fdresult == FUNCDETAIL_AGGREGATE && !over)
{
/* aggregate function */
Aggref *aggref = makeNode(Aggref);
aggref->aggfnoid = funcid;
aggref->aggtype = rettype;
/* aggcollid and inputcollid will be set by parse_collate.c */
aggref->aggtranstype = InvalidOid; /* will be set by planner */
/* aggargtypes will be set by transformAggregateCall */
/* aggdirectargs and args will be set by transformAggregateCall */
/* aggorder and aggdistinct will be set by transformAggregateCall */
aggref->aggfilter = agg_filter;
aggref->aggstar = agg_star;
aggref->aggvariadic = func_variadic;
aggref->aggkind = aggkind;
/* agglevelsup will be set by transformAggregateCall */
aggref->aggsplit = AGGSPLIT_SIMPLE; /* planner might change this */
aggref->location = location;
/*
* Reject attempt to call a parameterless aggregate without (*)
* syntax. This is mere pedantry but some folks insisted ...
*/
if (fargs == NIL && !agg_star && !agg_within_group)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s(*) must be used to call a parameterless aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
if (retset)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("aggregates cannot return sets"),
parser_errposition(pstate, location)));
/*
* We might want to support named arguments later, but disallow it for
* now. We'd need to figure out the parsed representation (should the
* NamedArgExprs go above or below the TargetEntry nodes?) and then
* teach the planner to reorder the list properly. Or maybe we could
* make transformAggregateCall do that? However, if you'd also like
* to allow default arguments for aggregates, we'd need to do it in
* planning to avoid semantic problems.
*/
if (argnames != NIL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("aggregates cannot use named arguments"),
parser_errposition(pstate, location)));
/* parse_agg.c does additional aggregate-specific processing */
transformAggregateCall(pstate, aggref, fargs, agg_order, agg_distinct);
retval = (Node *) aggref;
}
else
{
/* window function */
WindowFunc *wfunc = makeNode(WindowFunc);
Assert(over); /* lack of this was checked above */
Assert(!agg_within_group); /* also checked above */
wfunc->winfnoid = funcid;
wfunc->wintype = rettype;
/* wincollid and inputcollid will be set by parse_collate.c */
wfunc->args = fargs;
/* winref will be set by transformWindowFuncCall */
wfunc->winstar = agg_star;
wfunc->winagg = (fdresult == FUNCDETAIL_AGGREGATE);
wfunc->aggfilter = agg_filter;
wfunc->location = location;
/*
* agg_star is allowed for aggregate functions but distinct isn't
*/
if (agg_distinct)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("DISTINCT is not implemented for window functions"),
parser_errposition(pstate, location)));
/*
* Reject attempt to call a parameterless aggregate without (*)
* syntax. This is mere pedantry but some folks insisted ...
*/
if (wfunc->winagg && fargs == NIL && !agg_star)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s(*) must be used to call a parameterless aggregate function",
NameListToString(funcname)),
parser_errposition(pstate, location)));
/*
* ordered aggs not allowed in windows yet
*/
if (agg_order != NIL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("aggregate ORDER BY is not implemented for window functions"),
parser_errposition(pstate, location)));
/*
* FILTER is not yet supported with true window functions
*/
if (!wfunc->winagg && agg_filter)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("FILTER is not implemented for non-aggregate window functions"),
parser_errposition(pstate, location)));
/*
* Window functions can't either take or return sets
*/
if (pstate->p_last_srf != last_srf)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("window function calls cannot contain set-returning function calls"),
errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
parser_errposition(pstate,
exprLocation(pstate->p_last_srf))));
if (retset)
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("window functions cannot return sets"),
parser_errposition(pstate, location)));
/* parse_agg.c does additional window-func-specific processing */
transformWindowFuncCall(pstate, wfunc, over);
retval = (Node *) wfunc;
}
/* if it returns a set, remember it for error checks at higher levels */
if (retset)
pstate->p_last_srf = retval;
return retval;
}
/* func_match_argtypes()
*
* Given a list of candidate functions (having the right name and number
* of arguments) and an array of input datatype OIDs, produce a shortlist of
* those candidates that actually accept the input datatypes (either exactly
* or by coercion), and return the number of such candidates.
*
* Note that can_coerce_type will assume that UNKNOWN inputs are coercible to
* anything, so candidates will not be eliminated on that basis.
*
* NB: okay to modify input list structure, as long as we find at least
* one match. If no match at all, the list must remain unmodified.
*/
int
func_match_argtypes(int nargs,
Oid *input_typeids,
FuncCandidateList raw_candidates,
FuncCandidateList *candidates) /* return value */
{
FuncCandidateList current_candidate;
FuncCandidateList next_candidate;
int ncandidates = 0;
*candidates = NULL;
for (current_candidate = raw_candidates;
current_candidate != NULL;
current_candidate = next_candidate)
{
next_candidate = current_candidate->next;
if (can_coerce_type(nargs, input_typeids, current_candidate->args,
COERCION_IMPLICIT))
{
current_candidate->next = *candidates;
*candidates = current_candidate;
ncandidates++;
}
}
return ncandidates;
} /* func_match_argtypes() */
/* func_select_candidate()
* Given the input argtype array and more than one candidate
* for the function, attempt to resolve the conflict.
*
* Returns the selected candidate if the conflict can be resolved,
* otherwise returns NULL.
*
* Note that the caller has already determined that there is no candidate
* exactly matching the input argtypes, and has pruned away any "candidates"
* that aren't actually coercion-compatible with the input types.
*
* This is also used for resolving ambiguous operator references. Formerly
* parse_oper.c had its own, essentially duplicate code for the purpose.
* The following comments (formerly in parse_oper.c) are kept to record some
* of the history of these heuristics.
*
* OLD COMMENTS:
*
* This routine is new code, replacing binary_oper_select_candidate()
* which dates from v4.2/v1.0.x days. It tries very hard to match up
* operators with types, including allowing type coercions if necessary.
* The important thing is that the code do as much as possible,
* while _never_ doing the wrong thing, where "the wrong thing" would
* be returning an operator when other better choices are available,
* or returning an operator which is a non-intuitive possibility.
* - thomas 1998-05-21
*
* The comments below came from binary_oper_select_candidate(), and
* illustrate the issues and choices which are possible:
* - thomas 1998-05-20
*
* current wisdom holds that the default operator should be one in which
* both operands have the same type (there will only be one such
* operator)
*
* 7.27.93 - I have decided not to do this; it's too hard to justify, and
* it's easy enough to typecast explicitly - avi
* [the rest of this routine was commented out since then - ay]
*
* 6/23/95 - I don't complete agree with avi. In particular, casting
* floats is a pain for users. Whatever the rationale behind not doing
* this is, I need the following special case to work.
*
* In the WHERE clause of a query, if a float is specified without
* quotes, we treat it as float8. I added the float48* operators so
* that we can operate on float4 and float8. But now we have more than
* one matching operator if the right arg is unknown (eg. float
* specified with quotes). This break some stuff in the regression
* test where there are floats in quotes not properly casted. Below is
* the solution. In addition to requiring the operator operates on the
* same type for both operands [as in the code Avi originally
* commented out], we also require that the operators be equivalent in
* some sense. (see equivalentOpersAfterPromotion for details.)
* - ay 6/95
*/
FuncCandidateList
func_select_candidate(int nargs,
Oid *input_typeids,
FuncCandidateList candidates)
{
FuncCandidateList current_candidate,
first_candidate,
last_candidate;
Oid *current_typeids;
Oid current_type;
int i;
int ncandidates;
int nbestMatch,
nmatch,
nunknowns;
Oid input_base_typeids[FUNC_MAX_ARGS];
TYPCATEGORY slot_category[FUNC_MAX_ARGS],
current_category;
bool current_is_preferred;
bool slot_has_preferred_type[FUNC_MAX_ARGS];
bool resolved_unknowns;
/* protect local fixed-size arrays */
if (nargs > FUNC_MAX_ARGS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg_plural("cannot pass more than %d argument to a function",
"cannot pass more than %d arguments to a function",
FUNC_MAX_ARGS,
FUNC_MAX_ARGS)));
/*
* If any input types are domains, reduce them to their base types. This
* ensures that we will consider functions on the base type to be "exact
* matches" in the exact-match heuristic; it also makes it possible to do
* something useful with the type-category heuristics. Note that this
* makes it difficult, but not impossible, to use functions declared to
* take a domain as an input datatype. Such a function will be selected
* over the base-type function only if it is an exact match at all
* argument positions, and so was already chosen by our caller.
*
* While we're at it, count the number of unknown-type arguments for use
* later.
*/
nunknowns = 0;
for (i = 0; i < nargs; i++)
{
if (input_typeids[i] != UNKNOWNOID)
input_base_typeids[i] = getBaseType(input_typeids[i]);
else
{
/* no need to call getBaseType on UNKNOWNOID */
input_base_typeids[i] = UNKNOWNOID;
nunknowns++;
}
}
/*
* Run through all candidates and keep those with the most matches on
* exact types. Keep all candidates if none match.
*/
ncandidates = 0;
nbestMatch = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
nmatch = 0;
for (i = 0; i < nargs; i++)
{
if (input_base_typeids[i] != UNKNOWNOID &&
current_typeids[i] == input_base_typeids[i])
nmatch++;
}
/* take this one as the best choice so far? */
if ((nmatch > nbestMatch) || (last_candidate == NULL))
{
nbestMatch = nmatch;
candidates = current_candidate;
last_candidate = current_candidate;
ncandidates = 1;
}
/* no worse than the last choice, so keep this one too? */
else if (nmatch == nbestMatch)
{
last_candidate->next = current_candidate;
last_candidate = current_candidate;
ncandidates++;
}
/* otherwise, don't bother keeping this one... */
}
if (last_candidate) /* terminate rebuilt list */
last_candidate->next = NULL;
if (ncandidates == 1)
return candidates;
/*
* Still too many candidates? Now look for candidates which have either
* exact matches or preferred types at the args that will require
* coercion. (Restriction added in 7.4: preferred type must be of same
* category as input type; give no preference to cross-category
* conversions to preferred types.) Keep all candidates if none match.
*/
for (i = 0; i < nargs; i++) /* avoid multiple lookups */
slot_category[i] = TypeCategory(input_base_typeids[i]);
ncandidates = 0;
nbestMatch = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
nmatch = 0;
for (i = 0; i < nargs; i++)
{
if (input_base_typeids[i] != UNKNOWNOID)
{
if (current_typeids[i] == input_base_typeids[i] ||
IsPreferredType(slot_category[i], current_typeids[i]))
nmatch++;
}
}
if ((nmatch > nbestMatch) || (last_candidate == NULL))
{
nbestMatch = nmatch;
candidates = current_candidate;
last_candidate = current_candidate;
ncandidates = 1;
}
else if (nmatch == nbestMatch)
{
last_candidate->next = current_candidate;
last_candidate = current_candidate;
ncandidates++;
}
}
if (last_candidate) /* terminate rebuilt list */
last_candidate->next = NULL;
if (ncandidates == 1)
return candidates;
/*
* Still too many candidates? Try assigning types for the unknown inputs.
*
* If there are no unknown inputs, we have no more heuristics that apply,
* and must fail.
*/
if (nunknowns == 0)
return NULL; /* failed to select a best candidate */
/*
* The next step examines each unknown argument position to see if we can
* determine a "type category" for it. If any candidate has an input
* datatype of STRING category, use STRING category (this bias towards
* STRING is appropriate since unknown-type literals look like strings).
* Otherwise, if all the candidates agree on the type category of this
* argument position, use that category. Otherwise, fail because we
* cannot determine a category.
*
* If we are able to determine a type category, also notice whether any of
* the candidates takes a preferred datatype within the category.
*
* Having completed this examination, remove candidates that accept the
* wrong category at any unknown position. Also, if at least one
* candidate accepted a preferred type at a position, remove candidates
* that accept non-preferred types. If just one candidate remains, return
* that one. However, if this rule turns out to reject all candidates,
* keep them all instead.
*/
resolved_unknowns = false;
for (i = 0; i < nargs; i++)
{
bool have_conflict;
if (input_base_typeids[i] != UNKNOWNOID)
continue;
resolved_unknowns = true; /* assume we can do it */
slot_category[i] = TYPCATEGORY_INVALID;
slot_has_preferred_type[i] = false;
have_conflict = false;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
current_type = current_typeids[i];
get_type_category_preferred(current_type,
&current_category,
&current_is_preferred);
if (slot_category[i] == TYPCATEGORY_INVALID)
{
/* first candidate */
slot_category[i] = current_category;
slot_has_preferred_type[i] = current_is_preferred;
}
else if (current_category == slot_category[i])
{
/* more candidates in same category */
slot_has_preferred_type[i] |= current_is_preferred;
}
else
{
/* category conflict! */
if (current_category == TYPCATEGORY_STRING)
{
/* STRING always wins if available */
slot_category[i] = current_category;
slot_has_preferred_type[i] = current_is_preferred;
}
else
{
/*
* Remember conflict, but keep going (might find STRING)
*/
have_conflict = true;
}
}
}
if (have_conflict && slot_category[i] != TYPCATEGORY_STRING)
{
/* Failed to resolve category conflict at this position */
resolved_unknowns = false;
break;
}
}
if (resolved_unknowns)
{
/* Strip non-matching candidates */
ncandidates = 0;
first_candidate = candidates;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
bool keepit = true;
current_typeids = current_candidate->args;
for (i = 0; i < nargs; i++)
{
if (input_base_typeids[i] != UNKNOWNOID)
continue;
current_type = current_typeids[i];
get_type_category_preferred(current_type,
&current_category,
&current_is_preferred);
if (current_category != slot_category[i])
{
keepit = false;
break;
}
if (slot_has_preferred_type[i] && !current_is_preferred)
{
keepit = false;
break;
}
}
if (keepit)
{
/* keep this candidate */
last_candidate = current_candidate;
ncandidates++;
}
else
{
/* forget this candidate */
if (last_candidate)
last_candidate->next = current_candidate->next;
else
first_candidate = current_candidate->next;
}
}
/* if we found any matches, restrict our attention to those */
if (last_candidate)
{
candidates = first_candidate;
/* terminate rebuilt list */
last_candidate->next = NULL;
}
if (ncandidates == 1)
return candidates;
}
/*
* Last gasp: if there are both known- and unknown-type inputs, and all
* the known types are the same, assume the unknown inputs are also that
* type, and see if that gives us a unique match. If so, use that match.
*
* NOTE: for a binary operator with one unknown and one non-unknown input,
* we already tried this heuristic in binary_oper_exact(). However, that
* code only finds exact matches, whereas here we will handle matches that
* involve coercion, polymorphic type resolution, etc.
*/
if (nunknowns < nargs)
{
Oid known_type = UNKNOWNOID;
for (i = 0; i < nargs; i++)
{
if (input_base_typeids[i] == UNKNOWNOID)
continue;
if (known_type == UNKNOWNOID) /* first known arg? */
known_type = input_base_typeids[i];
else if (known_type != input_base_typeids[i])
{
/* oops, not all match */
known_type = UNKNOWNOID;
break;
}
}
if (known_type != UNKNOWNOID)
{
/* okay, just one known type, apply the heuristic */
for (i = 0; i < nargs; i++)
input_base_typeids[i] = known_type;
ncandidates = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
if (can_coerce_type(nargs, input_base_typeids, current_typeids,
COERCION_IMPLICIT))
{
if (++ncandidates > 1)
break; /* not unique, give up */
last_candidate = current_candidate;
}
}
if (ncandidates == 1)
{
/* successfully identified a unique match */
last_candidate->next = NULL;
return last_candidate;
}
}
}
return NULL; /* failed to select a best candidate */
} /* func_select_candidate() */
/* func_get_detail()
*
* Find the named function in the system catalogs.
*
* Attempt to find the named function in the system catalogs with
* arguments exactly as specified, so that the normal case (exact match)
* is as quick as possible.
*
* If an exact match isn't found:
* 1) check for possible interpretation as a type coercion request
* 2) apply the ambiguous-function resolution rules
*
* Return values *funcid through *true_typeids receive info about the function.
* If argdefaults isn't NULL, *argdefaults receives a list of any default
* argument expressions that need to be added to the given arguments.
*
* When processing a named- or mixed-notation call (ie, fargnames isn't NIL),
* the returned true_typeids and argdefaults are ordered according to the
* call's argument ordering: first any positional arguments, then the named
* arguments, then defaulted arguments (if needed and allowed by
* expand_defaults). Some care is needed if this information is to be compared
* to the function's pg_proc entry, but in practice the caller can usually
* just work with the call's argument ordering.
*
* We rely primarily on fargnames/nargs/argtypes as the argument description.
* The actual expression node list is passed in fargs so that we can check
* for type coercion of a constant. Some callers pass fargs == NIL indicating
* they don't need that check made. Note also that when fargnames isn't NIL,
* the fargs list must be passed if the caller wants actual argument position
* information to be returned into the NamedArgExpr nodes.
*/
FuncDetailCode
func_get_detail(List *funcname,
List *fargs,
List *fargnames,
int nargs,
Oid *argtypes,
bool expand_variadic,
bool expand_defaults,
Oid *funcid, /* return value */
Oid *rettype, /* return value */
bool *retset, /* return value */
int *nvargs, /* return value */
Oid *vatype, /* return value */
Oid **true_typeids, /* return value */
List **argdefaults) /* optional return value */
{
FuncCandidateList raw_candidates;
FuncCandidateList best_candidate;
/* Passing NULL for argtypes is no longer allowed */
Assert(argtypes);
/* initialize output arguments to silence compiler warnings */
*funcid = InvalidOid;
*rettype = InvalidOid;
*retset = false;
*nvargs = 0;
*vatype = InvalidOid;
*true_typeids = NULL;
if (argdefaults)
*argdefaults = NIL;
/* Get list of possible candidates from namespace search */
raw_candidates = FuncnameGetCandidates(funcname, nargs, fargnames,
expand_variadic, expand_defaults,
false);
/*
* Quickly check if there is an exact match to the input datatypes (there
* can be only one)
*/
for (best_candidate = raw_candidates;
best_candidate != NULL;
best_candidate = best_candidate->next)
{
if (memcmp(argtypes, best_candidate->args, nargs * sizeof(Oid)) == 0)
break;
}
if (best_candidate == NULL)
{
/*
* If we didn't find an exact match, next consider the possibility
* that this is really a type-coercion request: a single-argument
* function call where the function name is a type name. If so, and
* if the coercion path is RELABELTYPE or COERCEVIAIO, then go ahead
* and treat the "function call" as a coercion.
*
* This interpretation needs to be given higher priority than
* interpretations involving a type coercion followed by a function
* call, otherwise we can produce surprising results. For example, we
* want "text(varchar)" to be interpreted as a simple coercion, not as
* "text(name(varchar))" which the code below this point is entirely
* capable of selecting.
*
* We also treat a coercion of a previously-unknown-type literal
* constant to a specific type this way.
*
* The reason we reject COERCION_PATH_FUNC here is that we expect the
* cast implementation function to be named after the target type.
* Thus the function will be found by normal lookup if appropriate.
*
* The reason we reject COERCION_PATH_ARRAYCOERCE is mainly that you
* can't write "foo[] (something)" as a function call. In theory
* someone might want to invoke it as "_foo (something)" but we have
* never supported that historically, so we can insist that people
* write it as a normal cast instead.
*
* We also reject the specific case of COERCEVIAIO for a composite
* source type and a string-category target type. This is a case that
* find_coercion_pathway() allows by default, but experience has shown
* that it's too commonly invoked by mistake. So, again, insist that
* people use cast syntax if they want to do that.
*
* NB: it's important that this code does not exceed what coerce_type
* can do, because the caller will try to apply coerce_type if we
* return FUNCDETAIL_COERCION. If we return that result for something
* coerce_type can't handle, we'll cause infinite recursion between
* this module and coerce_type!
*/
if (nargs == 1 && fargs != NIL && fargnames == NIL)
{
Oid targetType = FuncNameAsType(funcname);
if (OidIsValid(targetType))
{
Oid sourceType = argtypes[0];
Node *arg1 = linitial(fargs);
bool iscoercion;
if (sourceType == UNKNOWNOID && IsA(arg1, Const))
{
/* always treat typename('literal') as coercion */
iscoercion = true;
}
else
{
CoercionPathType cpathtype;
Oid cfuncid;
cpathtype = find_coercion_pathway(targetType, sourceType,
COERCION_EXPLICIT,
&cfuncid);
switch (cpathtype)
{
case COERCION_PATH_RELABELTYPE:
iscoercion = true;
break;
case COERCION_PATH_COERCEVIAIO:
if ((sourceType == RECORDOID ||
ISCOMPLEX(sourceType)) &&
TypeCategory(targetType) == TYPCATEGORY_STRING)
iscoercion = false;
else
iscoercion = true;
break;
default:
iscoercion = false;
break;
}
}
if (iscoercion)
{
/* Treat it as a type coercion */
*funcid = InvalidOid;
*rettype = targetType;
*retset = false;
*nvargs = 0;
*vatype = InvalidOid;
*true_typeids = argtypes;
return FUNCDETAIL_COERCION;
}
}
}
/*
* didn't find an exact match, so now try to match up candidates...
*/
if (raw_candidates != NULL)
{
FuncCandidateList current_candidates;
int ncandidates;
ncandidates = func_match_argtypes(nargs,
argtypes,
raw_candidates,
&current_candidates);
/* one match only? then run with it... */
if (ncandidates == 1)
best_candidate = current_candidates;
/*
* multiple candidates? then better decide or throw an error...
*/
else if (ncandidates > 1)
{
best_candidate = func_select_candidate(nargs,
argtypes,
current_candidates);
/*
* If we were able to choose a best candidate, we're done.
* Otherwise, ambiguous function call.
*/
if (!best_candidate)
return FUNCDETAIL_MULTIPLE;
}
}
}
if (best_candidate)
{
HeapTuple ftup;
Form_pg_proc pform;
FuncDetailCode result;
/*
* If processing named args or expanding variadics or defaults, the
* "best candidate" might represent multiple equivalently good
* functions; treat this case as ambiguous.
*/
if (!OidIsValid(best_candidate->oid))
return FUNCDETAIL_MULTIPLE;
/*
* We disallow VARIADIC with named arguments unless the last argument
* (the one with VARIADIC attached) actually matched the variadic
* parameter. This is mere pedantry, really, but some folks insisted.
*/
if (fargnames != NIL && !expand_variadic && nargs > 0 &&
best_candidate->argnumbers[nargs - 1] != nargs - 1)
return FUNCDETAIL_NOTFOUND;
*funcid = best_candidate->oid;
*nvargs = best_candidate->nvargs;
*true_typeids = best_candidate->args;
/*
* If processing named args, return actual argument positions into
* NamedArgExpr nodes in the fargs list. This is a bit ugly but not
* worth the extra notation needed to do it differently.
*/
if (best_candidate->argnumbers != NULL)
{
int i = 0;
ListCell *lc;
foreach(lc, fargs)
{
NamedArgExpr *na = (NamedArgExpr *) lfirst(lc);
if (IsA(na, NamedArgExpr))
na->argnumber = best_candidate->argnumbers[i];
i++;
}
}
ftup = SearchSysCache1(PROCOID,
ObjectIdGetDatum(best_candidate->oid));
if (!HeapTupleIsValid(ftup)) /* should not happen */
elog(ERROR, "cache lookup failed for function %u",
best_candidate->oid);
pform = (Form_pg_proc) GETSTRUCT(ftup);
*rettype = pform->prorettype;
*retset = pform->proretset;
*vatype = pform->provariadic;
/* fetch default args if caller wants 'em */
if (argdefaults && best_candidate->ndargs > 0)
{
Datum proargdefaults;
bool isnull;
char *str;
List *defaults;
/* shouldn't happen, FuncnameGetCandidates messed up */
if (best_candidate->ndargs > pform->pronargdefaults)
elog(ERROR, "not enough default arguments");
proargdefaults = SysCacheGetAttr(PROCOID, ftup,
Anum_pg_proc_proargdefaults,
&isnull);
Assert(!isnull);
str = TextDatumGetCString(proargdefaults);
defaults = castNode(List, stringToNode(str));
pfree(str);
/* Delete any unused defaults from the returned list */
if (best_candidate->argnumbers != NULL)
{
/*
* This is a bit tricky in named notation, since the supplied
* arguments could replace any subset of the defaults. We
* work by making a bitmapset of the argnumbers of defaulted
* arguments, then scanning the defaults list and selecting
* the needed items. (This assumes that defaulted arguments
* should be supplied in their positional order.)
*/
Bitmapset *defargnumbers;
int *firstdefarg;
List *newdefaults;
ListCell *lc;
int i;
defargnumbers = NULL;
firstdefarg = &best_candidate->argnumbers[best_candidate->nargs - best_candidate->ndargs];
for (i = 0; i < best_candidate->ndargs; i++)
defargnumbers = bms_add_member(defargnumbers,
firstdefarg[i]);
newdefaults = NIL;
i = pform->pronargs - pform->pronargdefaults;
foreach(lc, defaults)
{
if (bms_is_member(i, defargnumbers))
newdefaults = lappend(newdefaults, lfirst(lc));
i++;
}
Assert(list_length(newdefaults) == best_candidate->ndargs);
bms_free(defargnumbers);
*argdefaults = newdefaults;
}
else
{
/*
* Defaults for positional notation are lots easier; just
* remove any unwanted ones from the front.
*/
int ndelete;
ndelete = list_length(defaults) - best_candidate->ndargs;
while (ndelete-- > 0)
defaults = list_delete_first(defaults);
*argdefaults = defaults;
}
}
switch (pform->prokind)
{
case PROKIND_AGGREGATE:
result = FUNCDETAIL_AGGREGATE;
break;
case PROKIND_FUNCTION:
result = FUNCDETAIL_NORMAL;
break;
case PROKIND_PROCEDURE:
result = FUNCDETAIL_PROCEDURE;
break;
case PROKIND_WINDOW:
result = FUNCDETAIL_WINDOWFUNC;
break;
default:
elog(ERROR, "unrecognized prokind: %c", pform->prokind);
result = FUNCDETAIL_NORMAL; /* keep compiler quiet */
break;
}
ReleaseSysCache(ftup);
return result;
}
return FUNCDETAIL_NOTFOUND;
}
/*
* unify_hypothetical_args()
*
* Ensure that each hypothetical direct argument of a hypothetical-set
* aggregate has the same type as the corresponding aggregated argument.
* Modify the expressions in the fargs list, if necessary, and update
* actual_arg_types[].
*
* If the agg declared its args non-ANY (even ANYELEMENT), we need only a
* sanity check that the declared types match; make_fn_arguments will coerce
* the actual arguments to match the declared ones. But if the declaration
* is ANY, nothing will happen in make_fn_arguments, so we need to fix any
* mismatch here. We use the same type resolution logic as UNION etc.
*/
static void
unify_hypothetical_args(ParseState *pstate,
List *fargs,
int numAggregatedArgs,
Oid *actual_arg_types,
Oid *declared_arg_types)
{
Node *args[FUNC_MAX_ARGS];
int numDirectArgs,
numNonHypotheticalArgs;
int i;
ListCell *lc;
numDirectArgs = list_length(fargs) - numAggregatedArgs;
numNonHypotheticalArgs = numDirectArgs - numAggregatedArgs;
/* safety check (should only trigger with a misdeclared agg) */
if (numNonHypotheticalArgs < 0)
elog(ERROR, "incorrect number of arguments to hypothetical-set aggregate");
/* Deconstruct fargs into an array for ease of subscripting */
i = 0;
foreach(lc, fargs)
{
args[i++] = (Node *) lfirst(lc);
}
/* Check each hypothetical arg and corresponding aggregated arg */
for (i = numNonHypotheticalArgs; i < numDirectArgs; i++)
{
int aargpos = numDirectArgs + (i - numNonHypotheticalArgs);
Oid commontype;
/* A mismatch means AggregateCreate didn't check properly ... */
if (declared_arg_types[i] != declared_arg_types[aargpos])
elog(ERROR, "hypothetical-set aggregate has inconsistent declared argument types");
/* No need to unify if make_fn_arguments will coerce */
if (declared_arg_types[i] != ANYOID)
continue;
/*
* Select common type, giving preference to the aggregated argument's
* type (we'd rather coerce the direct argument once than coerce all
* the aggregated values).
*/
commontype = select_common_type(pstate,
list_make2(args[aargpos], args[i]),
"WITHIN GROUP",
NULL);
/*
* Perform the coercions. We don't need to worry about NamedArgExprs
* here because they aren't supported with aggregates.
*/
args[i] = coerce_type(pstate,
args[i],
actual_arg_types[i],
commontype, -1,
COERCION_IMPLICIT,
COERCE_IMPLICIT_CAST,
-1);
actual_arg_types[i] = commontype;
args[aargpos] = coerce_type(pstate,
args[aargpos],
actual_arg_types[aargpos],
commontype, -1,
COERCION_IMPLICIT,
COERCE_IMPLICIT_CAST,
-1);
actual_arg_types[aargpos] = commontype;
}
/* Reconstruct fargs from array */
i = 0;
foreach(lc, fargs)
{
lfirst(lc) = args[i++];
}
}
/*
* make_fn_arguments()
*
* Given the actual argument expressions for a function, and the desired
* input types for the function, add any necessary typecasting to the
* expression tree. Caller should already have verified that casting is
* allowed.
*
* Caution: given argument list is modified in-place.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
void
make_fn_arguments(ParseState *pstate,
List *fargs,
Oid *actual_arg_types,
Oid *declared_arg_types)
{
ListCell *current_fargs;
int i = 0;
foreach(current_fargs, fargs)
{
/* types don't match? then force coercion using a function call... */
if (actual_arg_types[i] != declared_arg_types[i])
{
Node *node = (Node *) lfirst(current_fargs);
/*
* If arg is a NamedArgExpr, coerce its input expr instead --- we
* want the NamedArgExpr to stay at the top level of the list.
*/
if (IsA(node, NamedArgExpr))
{
NamedArgExpr *na = (NamedArgExpr *) node;
node = coerce_type(pstate,
(Node *) na->arg,
actual_arg_types[i],
declared_arg_types[i], -1,
COERCION_IMPLICIT,
COERCE_IMPLICIT_CAST,
-1);
na->arg = (Expr *) node;
}
else
{
node = coerce_type(pstate,
node,
actual_arg_types[i],
declared_arg_types[i], -1,
COERCION_IMPLICIT,
COERCE_IMPLICIT_CAST,
-1);
lfirst(current_fargs) = node;
}
}
i++;
}
}
/*
* FuncNameAsType -
* convenience routine to see if a function name matches a type name
*
* Returns the OID of the matching type, or InvalidOid if none. We ignore
* shell types and complex types.
*/
static Oid
FuncNameAsType(List *funcname)
{
Oid result;
Type typtup;
typtup = LookupTypeName(NULL, makeTypeNameFromNameList(funcname), NULL, false);
if (typtup == NULL)
return InvalidOid;
if (((Form_pg_type) GETSTRUCT(typtup))->typisdefined &&
!OidIsValid(typeTypeRelid(typtup)))
result = typeTypeId(typtup);
else
result = InvalidOid;
ReleaseSysCache(typtup);
return result;
}
/*
* ParseComplexProjection -
* handles function calls with a single argument that is of complex type.
* If the function call is actually a column projection, return a suitably
* transformed expression tree. If not, return NULL.
*/
static Node *
ParseComplexProjection(ParseState *pstate, const char *funcname, Node *first_arg,
int location)
{
TupleDesc tupdesc;
int i;
/*
* Special case for whole-row Vars so that we can resolve (foo.*).bar even
* when foo is a reference to a subselect, join, or RECORD function. A
* bonus is that we avoid generating an unnecessary FieldSelect; our
* result can omit the whole-row Var and just be a Var for the selected
* field.
*
* This case could be handled by expandRecordVariable, but it's more
* efficient to do it this way when possible.
*/
if (IsA(first_arg, Var) &&
((Var *) first_arg)->varattno == InvalidAttrNumber)
{
RangeTblEntry *rte;
rte = GetRTEByRangeTablePosn(pstate,
((Var *) first_arg)->varno,
((Var *) first_arg)->varlevelsup);
/* Return a Var if funcname matches a column, else NULL */
return scanRTEForColumn(pstate, rte, funcname, location, 0, NULL);
}
/*
* Else do it the hard way with get_expr_result_tupdesc().
*
* If it's a Var of type RECORD, we have to work even harder: we have to
* find what the Var refers to, and pass that to get_expr_result_tupdesc.
* That task is handled by expandRecordVariable().
*/
if (IsA(first_arg, Var) &&
((Var *) first_arg)->vartype == RECORDOID)
tupdesc = expandRecordVariable(pstate, (Var *) first_arg, 0);
else
tupdesc = get_expr_result_tupdesc(first_arg, true);
if (!tupdesc)
return NULL; /* unresolvable RECORD type */
for (i = 0; i < tupdesc->natts; i++)
{
Form_pg_attribute att = TupleDescAttr(tupdesc, i);
if (strcmp(funcname, NameStr(att->attname)) == 0 &&
!att->attisdropped)
{
/* Success, so generate a FieldSelect expression */
FieldSelect *fselect = makeNode(FieldSelect);
fselect->arg = (Expr *) first_arg;
fselect->fieldnum = i + 1;
fselect->resulttype = att->atttypid;
fselect->resulttypmod = att->atttypmod;
/* save attribute's collation for parse_collate.c */
fselect->resultcollid = att->attcollation;
return (Node *) fselect;
}
}
return NULL; /* funcname does not match any column */
}
/*
* funcname_signature_string
* Build a string representing a function name, including arg types.
* The result is something like "foo(integer)".
*
* If argnames isn't NIL, it is a list of C strings representing the actual
* arg names for the last N arguments. This must be considered part of the
* function signature too, when dealing with named-notation function calls.
*
* This is typically used in the construction of function-not-found error
* messages.
*/
const char *
funcname_signature_string(const char *funcname, int nargs,
List *argnames, const Oid *argtypes)
{
StringInfoData argbuf;
int numposargs;
ListCell *lc;
int i;
initStringInfo(&argbuf);
appendStringInfo(&argbuf, "%s(", funcname);
numposargs = nargs - list_length(argnames);
lc = list_head(argnames);
for (i = 0; i < nargs; i++)
{
if (i)
appendStringInfoString(&argbuf, ", ");
if (i >= numposargs)
{
appendStringInfo(&argbuf, "%s => ", (char *) lfirst(lc));
lc = lnext(lc);
}
appendStringInfoString(&argbuf, format_type_be(argtypes[i]));
}
appendStringInfoChar(&argbuf, ')');
return argbuf.data; /* return palloc'd string buffer */
}
/*
* func_signature_string
* As above, but function name is passed as a qualified name list.
*/
const char *
func_signature_string(List *funcname, int nargs,
List *argnames, const Oid *argtypes)
{
return funcname_signature_string(NameListToString(funcname),
nargs, argnames, argtypes);
}
/*
* LookupFuncName
*
* Given a possibly-qualified function name and optionally a set of argument
* types, look up the function. Pass nargs == -1 to indicate that no argument
* types are specified.
*
* If the function name is not schema-qualified, it is sought in the current
* namespace search path.
*
* If the function is not found, we return InvalidOid if noError is true,
* else raise an error.
*/
Oid
LookupFuncName(List *funcname, int nargs, const Oid *argtypes, bool noError)
{
FuncCandidateList clist;
/* Passing NULL for argtypes is no longer allowed */
Assert(argtypes);
clist = FuncnameGetCandidates(funcname, nargs, NIL, false, false, noError);
/*
* If no arguments were specified, the name must yield a unique candidate.
*/
if (nargs == -1)
{
if (clist)
{
if (clist->next)
{
if (!noError)
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_FUNCTION),
errmsg("function name \"%s\" is not unique",
NameListToString(funcname)),
errhint("Specify the argument list to select the function unambiguously.")));
}
else
return clist->oid;
}
else
{
if (!noError)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not find a function named \"%s\"",
NameListToString(funcname))));
}
}
while (clist)
{
if (memcmp(argtypes, clist->args, nargs * sizeof(Oid)) == 0)
return clist->oid;
clist = clist->next;
}
if (!noError)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("function %s does not exist",
func_signature_string(funcname, nargs,
NIL, argtypes))));
return InvalidOid;
}
/*
* LookupFuncWithArgs
*
* Like LookupFuncName, but the argument types are specified by a
* ObjectWithArgs node. Also, this function can check whether the result is a
* function, procedure, or aggregate, based on the objtype argument. Pass
* OBJECT_ROUTINE to accept any of them.
*
* For historical reasons, we also accept aggregates when looking for a
* function.
*/
Oid
LookupFuncWithArgs(ObjectType objtype, ObjectWithArgs *func, bool noError)
{
Oid argoids[FUNC_MAX_ARGS];
int argcount;
int i;
ListCell *args_item;
Oid oid;
Assert(objtype == OBJECT_AGGREGATE ||
objtype == OBJECT_FUNCTION ||
objtype == OBJECT_PROCEDURE ||
objtype == OBJECT_ROUTINE);
argcount = list_length(func->objargs);
if (argcount > FUNC_MAX_ARGS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg_plural("functions cannot have more than %d argument",
"functions cannot have more than %d arguments",
FUNC_MAX_ARGS,
FUNC_MAX_ARGS)));
i = 0;
foreach(args_item, func->objargs)
{
TypeName *t = (TypeName *) lfirst(args_item);
argoids[i++] = LookupTypeNameOid(NULL, t, noError);
}
/*
* When looking for a function or routine, we pass noError through to
* LookupFuncName and let it make any error messages. Otherwise, we make
* our own errors for the aggregate and procedure cases.
*/
oid = LookupFuncName(func->objname, func->args_unspecified ? -1 : argcount, argoids,
(objtype == OBJECT_FUNCTION || objtype == OBJECT_ROUTINE) ? noError : true);
if (objtype == OBJECT_FUNCTION)
{
/* Make sure it's a function, not a procedure */
if (oid && get_func_prokind(oid) == PROKIND_PROCEDURE)
{
if (noError)
return InvalidOid;
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s is not a function",
func_signature_string(func->objname, argcount,
NIL, argoids))));
}
}
else if (objtype == OBJECT_PROCEDURE)
{
if (!OidIsValid(oid))
{
if (noError)
return InvalidOid;
else if (func->args_unspecified)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not find a procedure named \"%s\"",
NameListToString(func->objname))));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("procedure %s does not exist",
func_signature_string(func->objname, argcount,
NIL, argoids))));
}
/* Make sure it's a procedure */
if (get_func_prokind(oid) != PROKIND_PROCEDURE)
{
if (noError)
return InvalidOid;
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("%s is not a procedure",
func_signature_string(func->objname, argcount,
NIL, argoids))));
}
}
else if (objtype == OBJECT_AGGREGATE)
{
if (!OidIsValid(oid))
{
if (noError)
return InvalidOid;
else if (func->args_unspecified)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not find an aggregate named \"%s\"",
NameListToString(func->objname))));
else if (argcount == 0)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("aggregate %s(*) does not exist",
NameListToString(func->objname))));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("aggregate %s does not exist",
func_signature_string(func->objname, argcount,
NIL, argoids))));
}
/* Make sure it's an aggregate */
if (get_func_prokind(oid) != PROKIND_AGGREGATE)
{
if (noError)
return InvalidOid;
/* we do not use the (*) notation for functions... */
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("function %s is not an aggregate",
func_signature_string(func->objname, argcount,
NIL, argoids))));
}
}
return oid;
}
/*
* check_srf_call_placement
* Verify that a set-returning function is called in a valid place,
* and throw a nice error if not.
*
* A side-effect is to set pstate->p_hasTargetSRFs true if appropriate.
*
* last_srf should be a copy of pstate->p_last_srf from just before we
* started transforming the function's arguments. This allows detection
* of whether the SRF's arguments contain any SRFs.
*/
void
check_srf_call_placement(ParseState *pstate, Node *last_srf, int location)
{
const char *err;
bool errkind;
/*
* Check to see if the set-returning function is in an invalid place
* within the query. Basically, we don't allow SRFs anywhere except in
* the targetlist (which includes GROUP BY/ORDER BY expressions), VALUES,
* and functions in FROM.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/* Accept SRF here; caller must throw error if wanted */
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
err = _("set-returning functions are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* can't get here, but just in case, throw an error */
errkind = true;
break;
case EXPR_KIND_FROM_FUNCTION:
/* okay, but we don't allow nested SRFs here */
/* errmsg is chosen to match transformRangeFunction() */
/* errposition should point to the inner SRF */
if (pstate->p_last_srf != last_srf)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-returning functions must appear at top level of FROM"),
parser_errposition(pstate,
exprLocation(pstate->p_last_srf))));
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_POLICY:
err = _("set-returning functions are not allowed in policy expressions");
break;
case EXPR_KIND_HAVING:
errkind = true;
break;
case EXPR_KIND_FILTER:
errkind = true;
break;
case EXPR_KIND_WINDOW_PARTITION:
case EXPR_KIND_WINDOW_ORDER:
/* okay, these are effectively GROUP BY/ORDER BY */
pstate->p_hasTargetSRFs = true;
break;
case EXPR_KIND_WINDOW_FRAME_RANGE:
case EXPR_KIND_WINDOW_FRAME_ROWS:
case EXPR_KIND_WINDOW_FRAME_GROUPS:
err = _("set-returning functions are not allowed in window definitions");
break;
case EXPR_KIND_SELECT_TARGET:
case EXPR_KIND_INSERT_TARGET:
/* okay */
pstate->p_hasTargetSRFs = true;
break;
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
/* disallowed because it would be ambiguous what to do */
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
case EXPR_KIND_ORDER_BY:
/* okay */
pstate->p_hasTargetSRFs = true;
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
pstate->p_hasTargetSRFs = true;
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
/* SRFs are presently not supported by nodeValuesscan.c */
errkind = true;
break;
case EXPR_KIND_VALUES_SINGLE:
/* okay, since we process this like a SELECT tlist */
pstate->p_hasTargetSRFs = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
err = _("set-returning functions are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
err = _("set-returning functions are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
err = _("set-returning functions are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
err = _("set-returning functions are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
err = _("set-returning functions are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
err = _("set-returning functions are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
err = _("set-returning functions are not allowed in trigger WHEN conditions");
break;
case EXPR_KIND_PARTITION_BOUND:
err = _("set-returning functions are not allowed in partition bound");
break;
case EXPR_KIND_PARTITION_EXPRESSION:
err = _("set-returning functions are not allowed in partition key expressions");
break;
case EXPR_KIND_CALL_ARGUMENT:
err = _("set-returning functions are not allowed in CALL arguments");
break;
case EXPR_KIND_COPY_WHERE:
err = _("set-returning functions are not allowed in COPY FROM WHERE conditions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg_internal("%s", err),
parser_errposition(pstate, location)));
if (errkind)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
/* translator: %s is name of a SQL construct, eg GROUP BY */
errmsg("set-returning functions are not allowed in %s",
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, location)));
}