postgresql/contrib/btree_gist/btree_int4.c
Andres Freund 101c7ee3ee Use new overflow aware integer operations.
A previous commit added inline functions that provide fast(er) and
correct overflow checks for signed integer math. Use them in a
significant portion of backend code.  There's more to touch in both
backend and frontend code, but these were the easily identifiable
cases.

The old overflow checks are noticeable in integer heavy workloads.

A secondary benefit is that getting rid of overflow checks that rely
on signed integer overflow wrapping around, will allow us to get rid
of -fwrapv in the future. Which in turn slows down other code.

Author: Andres Freund
Discussion: https://postgr.es/m/20171024103954.ztmatprlglz3rwke@alap3.anarazel.de
2017-12-12 16:55:37 -08:00

222 lines
4.9 KiB
C

/*
* contrib/btree_gist/btree_int4.c
*/
#include "postgres.h"
#include "btree_gist.h"
#include "btree_utils_num.h"
#include "common/int.h"
typedef struct int32key
{
int32 lower;
int32 upper;
} int32KEY;
/*
** int32 ops
*/
PG_FUNCTION_INFO_V1(gbt_int4_compress);
PG_FUNCTION_INFO_V1(gbt_int4_fetch);
PG_FUNCTION_INFO_V1(gbt_int4_union);
PG_FUNCTION_INFO_V1(gbt_int4_picksplit);
PG_FUNCTION_INFO_V1(gbt_int4_consistent);
PG_FUNCTION_INFO_V1(gbt_int4_distance);
PG_FUNCTION_INFO_V1(gbt_int4_penalty);
PG_FUNCTION_INFO_V1(gbt_int4_same);
static bool
gbt_int4gt(const void *a, const void *b, FmgrInfo *flinfo)
{
return (*((const int32 *) a) > *((const int32 *) b));
}
static bool
gbt_int4ge(const void *a, const void *b, FmgrInfo *flinfo)
{
return (*((const int32 *) a) >= *((const int32 *) b));
}
static bool
gbt_int4eq(const void *a, const void *b, FmgrInfo *flinfo)
{
return (*((const int32 *) a) == *((const int32 *) b));
}
static bool
gbt_int4le(const void *a, const void *b, FmgrInfo *flinfo)
{
return (*((const int32 *) a) <= *((const int32 *) b));
}
static bool
gbt_int4lt(const void *a, const void *b, FmgrInfo *flinfo)
{
return (*((const int32 *) a) < *((const int32 *) b));
}
static int
gbt_int4key_cmp(const void *a, const void *b, FmgrInfo *flinfo)
{
int32KEY *ia = (int32KEY *) (((const Nsrt *) a)->t);
int32KEY *ib = (int32KEY *) (((const Nsrt *) b)->t);
if (ia->lower == ib->lower)
{
if (ia->upper == ib->upper)
return 0;
return (ia->upper > ib->upper) ? 1 : -1;
}
return (ia->lower > ib->lower) ? 1 : -1;
}
static float8
gbt_int4_dist(const void *a, const void *b, FmgrInfo *flinfo)
{
return GET_FLOAT_DISTANCE(int32, a, b);
}
static const gbtree_ninfo tinfo =
{
gbt_t_int4,
sizeof(int32),
8, /* sizeof(gbtreekey8) */
gbt_int4gt,
gbt_int4ge,
gbt_int4eq,
gbt_int4le,
gbt_int4lt,
gbt_int4key_cmp,
gbt_int4_dist
};
PG_FUNCTION_INFO_V1(int4_dist);
Datum
int4_dist(PG_FUNCTION_ARGS)
{
int32 a = PG_GETARG_INT32(0);
int32 b = PG_GETARG_INT32(1);
int32 r;
int32 ra;
if (pg_sub_s32_overflow(a, b, &r) ||
r == INT32_MIN)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
ra = Abs(r);
PG_RETURN_INT32(ra);
}
/**************************************************
* int32 ops
**************************************************/
Datum
gbt_int4_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
PG_RETURN_POINTER(gbt_num_compress(entry, &tinfo));
}
Datum
gbt_int4_fetch(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
PG_RETURN_POINTER(gbt_num_fetch(entry, &tinfo));
}
Datum
gbt_int4_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
int32 query = PG_GETARG_INT32(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
int32KEY *kkk = (int32KEY *) DatumGetPointer(entry->key);
GBT_NUMKEY_R key;
/* All cases served by this function are exact */
*recheck = false;
key.lower = (GBT_NUMKEY *) &kkk->lower;
key.upper = (GBT_NUMKEY *) &kkk->upper;
PG_RETURN_BOOL(
gbt_num_consistent(&key, (void *) &query, &strategy, GIST_LEAF(entry), &tinfo, fcinfo->flinfo)
);
}
Datum
gbt_int4_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
int32 query = PG_GETARG_INT32(1);
/* Oid subtype = PG_GETARG_OID(3); */
int32KEY *kkk = (int32KEY *) DatumGetPointer(entry->key);
GBT_NUMKEY_R key;
key.lower = (GBT_NUMKEY *) &kkk->lower;
key.upper = (GBT_NUMKEY *) &kkk->upper;
PG_RETURN_FLOAT8(
gbt_num_distance(&key, (void *) &query, GIST_LEAF(entry), &tinfo, fcinfo->flinfo)
);
}
Datum
gbt_int4_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
void *out = palloc(sizeof(int32KEY));
*(int *) PG_GETARG_POINTER(1) = sizeof(int32KEY);
PG_RETURN_POINTER(gbt_num_union((void *) out, entryvec, &tinfo, fcinfo->flinfo));
}
Datum
gbt_int4_penalty(PG_FUNCTION_ARGS)
{
int32KEY *origentry = (int32KEY *) DatumGetPointer(((GISTENTRY *) PG_GETARG_POINTER(0))->key);
int32KEY *newentry = (int32KEY *) DatumGetPointer(((GISTENTRY *) PG_GETARG_POINTER(1))->key);
float *result = (float *) PG_GETARG_POINTER(2);
penalty_num(result, origentry->lower, origentry->upper, newentry->lower, newentry->upper);
PG_RETURN_POINTER(result);
}
Datum
gbt_int4_picksplit(PG_FUNCTION_ARGS)
{
PG_RETURN_POINTER(gbt_num_picksplit(
(GistEntryVector *) PG_GETARG_POINTER(0),
(GIST_SPLITVEC *) PG_GETARG_POINTER(1),
&tinfo, fcinfo->flinfo
));
}
Datum
gbt_int4_same(PG_FUNCTION_ARGS)
{
int32KEY *b1 = (int32KEY *) PG_GETARG_POINTER(0);
int32KEY *b2 = (int32KEY *) PG_GETARG_POINTER(1);
bool *result = (bool *) PG_GETARG_POINTER(2);
*result = gbt_num_same((void *) b1, (void *) b2, &tinfo, fcinfo->flinfo);
PG_RETURN_POINTER(result);
}