postgresql/src/backend/replication
Andres Freund 168d5805e4 Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint.  DO NOTHING avoids the
constraint violation, without touching the pre-existing row.  DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed.  The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.

This feature is often referred to as upsert.

This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert.  If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made.  If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.

To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.

Bumps catversion as stored rules change.

Author: Peter Geoghegan, with significant contributions from Heikki
    Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
    Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:43:10 +02:00
..
libpqwalreceiver Fix missing PQclear() in libpqrcv_endstreaming(). 2015-02-11 19:20:49 -05:00
logical Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. 2015-05-08 05:43:10 +02:00
.gitignore Remove generation of repl_gram.h 2012-10-08 20:36:46 -04:00
basebackup.c Error when creating names too long for tar format 2015-02-24 13:41:07 -05:00
Makefile Fix VPATH builds of the replication parser from git for some !gcc compilers. 2014-09-25 15:22:26 +02:00
README Fix typo in README. 2015-02-24 14:33:26 +02:00
repl_gram.y Remove spurious semicolons. 2015-03-31 15:12:27 +03:00
repl_scanner.l Tweak __attribute__-wrapping macros for better pgindent results. 2015-03-26 14:03:25 -04:00
slot.c Use a fd opened for read/write when syncing slots during startup. 2015-04-28 00:17:43 +02:00
slotfuncs.c Add 'active_in' column to pg_replication_slots. 2015-04-21 11:51:06 +02:00
syncrep.c Make SyncRepWakeQueue to a static function 2015-03-26 10:34:08 +09:00
walreceiver.c Fix integer overflow in debug message of walreceiver 2015-03-14 08:16:50 +09:00
walreceiverfuncs.c Fix integer overflow in debug message of walreceiver 2015-03-14 08:16:50 +09:00
walsender.c Remove duplicated words in comments. 2015-04-12 10:46:17 +03:00

src/backend/replication/README

Walreceiver - libpqwalreceiver API
----------------------------------

The transport-specific part of walreceiver, responsible for connecting to
the primary server, receiving WAL files and sending messages, is loaded
dynamically to avoid having to link the main server binary with libpq.
The dynamically loaded module is in libpqwalreceiver subdirectory.

The dynamically loaded module implements four functions:


bool walrcv_connect(char *conninfo, XLogRecPtr startpoint)

Establish connection to the primary, and starts streaming from 'startpoint'.
Returns true on success.

bool walrcv_receive(int timeout, unsigned char *type, char **buffer, int *len)

Retrieve any message available through the connection, blocking for
maximum of 'timeout' ms. If a message was successfully read, returns true,
otherwise false. On success, a pointer to the message payload is stored in
*buffer, length in *len, and the type of message received in *type. The
returned buffer is valid until the next call to walrcv_* functions, the
caller should not attempt freeing it.

void walrcv_send(const char *buffer, int nbytes)

Send a message to XLOG stream.

void walrcv_disconnect(void);

Disconnect.


This API should be considered internal at the moment, but we could open it
up for 3rd party replacements of libpqwalreceiver in the future, allowing
pluggable methods for receiving WAL.

Walreceiver IPC
---------------

When the WAL replay in startup process has reached the end of archived WAL,
restorable using restore_command, it starts up the walreceiver process
to fetch more WAL (if streaming replication is configured).

Walreceiver is a postmaster subprocess, so the startup process can't fork it
directly. Instead, it sends a signal to postmaster, asking postmaster to launch
it. Before that, however, startup process fills in WalRcvData->conninfo
and WalRcvData->slotname, and initializes the starting point in
WalRcvData->receiveStart.

As walreceiver receives WAL from the master server, and writes and flushes
it to disk (in pg_xlog), it updates WalRcvData->receivedUpto and signals
the startup process to know how far WAL replay can advance.

Walreceiver sends information about replication progress to the master server
whenever it either writes or flushes new WAL, or the specified interval elapses.
This is used for reporting purpose.

Walsender IPC
-------------

At shutdown, postmaster handles walsender processes differently from regular
backends. It waits for regular backends to die before writing the
shutdown checkpoint and terminating pgarch and other auxiliary processes, but
that's not desirable for walsenders, because we want the standby servers to
receive all the WAL, including the shutdown checkpoint, before the master
is shut down. Therefore postmaster treats walsenders like the pgarch process,
and instructs them to terminate at PM_SHUTDOWN_2 phase, after all regular
backends have died and checkpointer has issued the shutdown checkpoint.

When postmaster accepts a connection, it immediately forks a new process
to handle the handshake and authentication, and the process initializes to
become a backend. Postmaster doesn't know if the process becomes a regular
backend or a walsender process at that time - that's indicated in the
connection handshake - so we need some extra signaling to let postmaster
identify walsender processes.

When walsender process starts up, it marks itself as a walsender process in
the PMSignal array. That way postmaster can tell it apart from regular
backends.

Note that no big harm is done if postmaster thinks that a walsender is a
regular backend; it will just terminate the walsender earlier in the shutdown
phase. A walsender will look like a regular backend until it's done with the
initialization and has marked itself in PMSignal array, and at process
termination, after unmarking the PMSignal slot.

Each walsender allocates an entry from the WalSndCtl array, and tracks
information about replication progress. User can monitor them via
statistics views.


Walsender - walreceiver protocol
--------------------------------

See manual.