postgresql/src/backend/optimizer/geqo/geqo_erx.c

469 lines
11 KiB
C

/*------------------------------------------------------------------------
*
* geqo_erx.c
* edge recombination crossover [ER]
*
* src/backend/optimizer/geqo/geqo_erx.c
*
*-------------------------------------------------------------------------
*/
/* contributed by:
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
* Martin Utesch * Institute of Automatic Control *
= = University of Mining and Technology =
* utesch@aut.tu-freiberg.de * Freiberg, Germany *
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
*/
/* the edge recombination algorithm is adopted from Genitor : */
/*************************************************************/
/* */
/* Copyright (c) 1990 */
/* Darrell L. Whitley */
/* Computer Science Department */
/* Colorado State University */
/* */
/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The author's name */
/* and this copyright notice must be included in any copy. */
/* */
/*************************************************************/
#include "postgres.h"
#include "optimizer/geqo_recombination.h"
#include "optimizer/geqo_random.h"
static int gimme_edge(PlannerInfo *root, Gene gene1, Gene gene2, Edge *edge_table);
static void remove_gene(PlannerInfo *root, Gene gene, Edge edge, Edge *edge_table);
static Gene gimme_gene(PlannerInfo *root, Edge edge, Edge *edge_table);
static Gene edge_failure(PlannerInfo *root, Gene *gene, int index, Edge *edge_table, int num_gene);
/* alloc_edge_table
*
* allocate memory for edge table
*
*/
Edge *
alloc_edge_table(PlannerInfo *root, int num_gene)
{
Edge *edge_table;
/*
* palloc one extra location so that nodes numbered 1..n can be indexed
* directly; 0 will not be used
*/
edge_table = (Edge *) palloc((num_gene + 1) * sizeof(Edge));
return edge_table;
}
/* free_edge_table
*
* deallocate memory of edge table
*
*/
void
free_edge_table(PlannerInfo *root, Edge *edge_table)
{
pfree(edge_table);
}
/* gimme_edge_table
*
* fills a data structure which represents the set of explicit
* edges between points in the (2) input genes
*
* assumes circular tours and bidirectional edges
*
* gimme_edge() will set "shared" edges to negative values
*
* returns average number edges/city in range 2.0 - 4.0
* where 2.0=homogeneous; 4.0=diverse
*
*/
float
gimme_edge_table(PlannerInfo *root, Gene *tour1, Gene *tour2,
int num_gene, Edge *edge_table)
{
int i,
index1,
index2;
int edge_total; /* total number of unique edges in two genes */
/* at first clear the edge table's old data */
for (i = 1; i <= num_gene; i++)
{
edge_table[i].total_edges = 0;
edge_table[i].unused_edges = 0;
}
/* fill edge table with new data */
edge_total = 0;
for (index1 = 0; index1 < num_gene; index1++)
{
/*
* presume the tour is circular, i.e. 1->2, 2->3, 3->1 this operation
* maps n back to 1
*/
index2 = (index1 + 1) % num_gene;
/*
* edges are bidirectional, i.e. 1->2 is same as 2->1 call gimme_edge
* twice per edge
*/
edge_total += gimme_edge(root, tour1[index1], tour1[index2], edge_table);
gimme_edge(root, tour1[index2], tour1[index1], edge_table);
edge_total += gimme_edge(root, tour2[index1], tour2[index2], edge_table);
gimme_edge(root, tour2[index2], tour2[index1], edge_table);
}
/* return average number of edges per index */
return ((float) (edge_total * 2) / (float) num_gene);
}
/* gimme_edge
*
* registers edge from city1 to city2 in input edge table
*
* no assumptions about directionality are made;
* therefore it is up to the calling routine to
* call gimme_edge twice to make a bi-directional edge
* between city1 and city2;
* uni-directional edges are possible as well (just call gimme_edge
* once with the direction from city1 to city2)
*
* returns 1 if edge was not already registered and was just added;
* 0 if edge was already registered and edge_table is unchanged
*/
static int
gimme_edge(PlannerInfo *root, Gene gene1, Gene gene2, Edge *edge_table)
{
int i;
int edges;
int city1 = (int) gene1;
int city2 = (int) gene2;
/* check whether edge city1->city2 already exists */
edges = edge_table[city1].total_edges;
for (i = 0; i < edges; i++)
{
if ((Gene) Abs(edge_table[city1].edge_list[i]) == city2)
{
/* mark shared edges as negative */
edge_table[city1].edge_list[i] = 0 - city2;
return 0;
}
}
/* add city1->city2; */
edge_table[city1].edge_list[edges] = city2;
/* increment the number of edges from city1 */
edge_table[city1].total_edges++;
edge_table[city1].unused_edges++;
return 1;
}
/* gimme_tour
*
* creates a new tour using edges from the edge table.
* priority is given to "shared" edges (i.e. edges which
* all parent genes possess and are marked as negative
* in the edge table.)
*
*/
int
gimme_tour(PlannerInfo *root, Edge *edge_table, Gene *new_gene, int num_gene)
{
int i;
int edge_failures = 0;
/* choose int between 1 and num_gene */
new_gene[0] = (Gene) geqo_randint(root, num_gene, 1);
for (i = 1; i < num_gene; i++)
{
/*
* as each point is entered into the tour, remove it from the edge
* table
*/
remove_gene(root, new_gene[i - 1], edge_table[(int) new_gene[i - 1]], edge_table);
/* find destination for the newly entered point */
if (edge_table[new_gene[i - 1]].unused_edges > 0)
new_gene[i] = gimme_gene(root, edge_table[(int) new_gene[i - 1]], edge_table);
else
{ /* cope with fault */
edge_failures++;
new_gene[i] = edge_failure(root, new_gene, i - 1, edge_table, num_gene);
}
/* mark this node as incorporated */
edge_table[(int) new_gene[i - 1]].unused_edges = -1;
} /* for (i=1; i<num_gene; i++) */
return edge_failures;
}
/* remove_gene
*
* removes input gene from edge_table.
* input edge is used
* to identify deletion locations within edge table.
*
*/
static void
remove_gene(PlannerInfo *root, Gene gene, Edge edge, Edge *edge_table)
{
int i,
j;
int possess_edge;
int genes_remaining;
/*
* do for every gene known to have an edge to input gene (i.e. in
* edge_list for input edge)
*/
for (i = 0; i < edge.unused_edges; i++)
{
possess_edge = (int) Abs(edge.edge_list[i]);
genes_remaining = edge_table[possess_edge].unused_edges;
/* find the input gene in all edge_lists and delete it */
for (j = 0; j < genes_remaining; j++)
{
if ((Gene) Abs(edge_table[possess_edge].edge_list[j]) == gene)
{
edge_table[possess_edge].unused_edges--;
edge_table[possess_edge].edge_list[j] =
edge_table[possess_edge].edge_list[genes_remaining - 1];
break;
}
}
}
}
/* gimme_gene
*
* priority is given to "shared" edges
* (i.e. edges which both genes possess)
*
*/
static Gene
gimme_gene(PlannerInfo *root, Edge edge, Edge *edge_table)
{
int i;
Gene friend;
int minimum_edges;
int minimum_count = -1;
int rand_decision;
/*
* no point has edges to more than 4 other points thus, this contrived
* minimum will be replaced
*/
minimum_edges = 5;
/* consider candidate destination points in edge list */
for (i = 0; i < edge.unused_edges; i++)
{
friend = (Gene) edge.edge_list[i];
/*
* give priority to shared edges that are negative; so return 'em
*/
/*
* negative values are caught here so we need not worry about
* converting to absolute values
*/
if (friend < 0)
return (Gene) Abs(friend);
/*
* give priority to candidates with fewest remaining unused edges;
* find out what the minimum number of unused edges is
* (minimum_edges); if there is more than one candidate with the
* minimum number of unused edges keep count of this number
* (minimum_count);
*/
/*
* The test for minimum_count can probably be removed at some point
* but comments should probably indicate exactly why it is guaranteed
* that the test will always succeed the first time around. If it can
* fail then the code is in error
*/
if (edge_table[(int) friend].unused_edges < minimum_edges)
{
minimum_edges = edge_table[(int) friend].unused_edges;
minimum_count = 1;
}
else if (minimum_count == -1)
elog(ERROR, "minimum_count not set");
else if (edge_table[(int) friend].unused_edges == minimum_edges)
minimum_count++;
} /* for (i=0; i<edge.unused_edges; i++) */
/* random decision of the possible candidates to use */
rand_decision = geqo_randint(root, minimum_count - 1, 0);
for (i = 0; i < edge.unused_edges; i++)
{
friend = (Gene) edge.edge_list[i];
/* return the chosen candidate point */
if (edge_table[(int) friend].unused_edges == minimum_edges)
{
minimum_count--;
if (minimum_count == rand_decision)
return friend;
}
}
/* ... should never be reached */
elog(ERROR, "neither shared nor minimum number nor random edge found");
return 0; /* to keep the compiler quiet */
}
/* edge_failure
*
* routine for handling edge failure
*
*/
static Gene
edge_failure(PlannerInfo *root, Gene *gene, int index, Edge *edge_table, int num_gene)
{
int i;
Gene fail_gene = gene[index];
int remaining_edges = 0;
int four_count = 0;
int rand_decision;
/*
* how many edges remain? how many gene with four total (initial) edges
* remain?
*/
for (i = 1; i <= num_gene; i++)
{
if ((edge_table[i].unused_edges != -1) && (i != (int) fail_gene))
{
remaining_edges++;
if (edge_table[i].total_edges == 4)
four_count++;
}
}
/*
* random decision of the gene with remaining edges and whose total_edges
* == 4
*/
if (four_count != 0)
{
rand_decision = geqo_randint(root, four_count - 1, 0);
for (i = 1; i <= num_gene; i++)
{
if ((Gene) i != fail_gene &&
edge_table[i].unused_edges != -1 &&
edge_table[i].total_edges == 4)
{
four_count--;
if (rand_decision == four_count)
return (Gene) i;
}
}
elog(LOG, "no edge found via random decision and total_edges == 4");
}
else if (remaining_edges != 0)
{
/* random decision of the gene with remaining edges */
rand_decision = geqo_randint(root, remaining_edges - 1, 0);
for (i = 1; i <= num_gene; i++)
{
if ((Gene) i != fail_gene &&
edge_table[i].unused_edges != -1)
{
remaining_edges--;
if (rand_decision == remaining_edges)
return i;
}
}
elog(LOG, "no edge found via random decision with remaining edges");
}
/*
* edge table seems to be empty; this happens sometimes on the last point
* due to the fact that the first point is removed from the table even
* though only one of its edges has been determined
*/
else
{ /* occurs only at the last point in the tour;
* simply look for the point which is not yet
* used */
for (i = 1; i <= num_gene; i++)
if (edge_table[i].unused_edges >= 0)
return (Gene) i;
elog(LOG, "no edge found via looking for the last ununsed point");
}
/* ... should never be reached */
elog(ERROR, "no edge found");
return 0; /* to keep the compiler quiet */
}