postgresql/src/backend/storage/smgr/md.c

1953 lines
60 KiB
C

/*-------------------------------------------------------------------------
*
* md.c
* This code manages relations that reside on magnetic disk.
*
* Or at least, that was what the Berkeley folk had in mind when they named
* this file. In reality, what this code provides is an interface from
* the smgr API to Unix-like filesystem APIs, so it will work with any type
* of device for which the operating system provides filesystem support.
* It doesn't matter whether the bits are on spinning rust or some other
* storage technology.
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/storage/smgr/md.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/file.h>
#include "miscadmin.h"
#include "access/xlog.h"
#include "catalog/catalog.h"
#include "portability/instr_time.h"
#include "postmaster/bgwriter.h"
#include "storage/fd.h"
#include "storage/bufmgr.h"
#include "storage/relfilenode.h"
#include "storage/smgr.h"
#include "utils/hsearch.h"
#include "utils/memutils.h"
#include "pg_trace.h"
/* intervals for calling AbsorbFsyncRequests in mdsync and mdpostckpt */
#define FSYNCS_PER_ABSORB 10
#define UNLINKS_PER_ABSORB 10
/*
* Special values for the segno arg to RememberFsyncRequest.
*
* Note that CompactCheckpointerRequestQueue assumes that it's OK to remove an
* fsync request from the queue if an identical, subsequent request is found.
* See comments there before making changes here.
*/
#define FORGET_RELATION_FSYNC (InvalidBlockNumber)
#define FORGET_DATABASE_FSYNC (InvalidBlockNumber-1)
#define UNLINK_RELATION_REQUEST (InvalidBlockNumber-2)
/*
* On Windows, we have to interpret EACCES as possibly meaning the same as
* ENOENT, because if a file is unlinked-but-not-yet-gone on that platform,
* that's what you get. Ugh. This code is designed so that we don't
* actually believe these cases are okay without further evidence (namely,
* a pending fsync request getting canceled ... see mdsync).
*/
#ifndef WIN32
#define FILE_POSSIBLY_DELETED(err) ((err) == ENOENT)
#else
#define FILE_POSSIBLY_DELETED(err) ((err) == ENOENT || (err) == EACCES)
#endif
/*
* The magnetic disk storage manager keeps track of open file
* descriptors in its own descriptor pool. This is done to make it
* easier to support relations that are larger than the operating
* system's file size limit (often 2GBytes). In order to do that,
* we break relations up into "segment" files that are each shorter than
* the OS file size limit. The segment size is set by the RELSEG_SIZE
* configuration constant in pg_config.h.
*
* On disk, a relation must consist of consecutively numbered segment
* files in the pattern
* -- Zero or more full segments of exactly RELSEG_SIZE blocks each
* -- Exactly one partial segment of size 0 <= size < RELSEG_SIZE blocks
* -- Optionally, any number of inactive segments of size 0 blocks.
* The full and partial segments are collectively the "active" segments.
* Inactive segments are those that once contained data but are currently
* not needed because of an mdtruncate() operation. The reason for leaving
* them present at size zero, rather than unlinking them, is that other
* backends and/or the checkpointer might be holding open file references to
* such segments. If the relation expands again after mdtruncate(), such
* that a deactivated segment becomes active again, it is important that
* such file references still be valid --- else data might get written
* out to an unlinked old copy of a segment file that will eventually
* disappear.
*
* File descriptors are stored in the per-fork md_seg_fds arrays inside
* SMgrRelation. The length of these arrays is stored in md_num_open_segs.
* Note that a fork's md_num_open_segs having a specific value does not
* necessarily mean the relation doesn't have additional segments; we may
* just not have opened the next segment yet. (We could not have "all
* segments are in the array" as an invariant anyway, since another backend
* could extend the relation while we aren't looking.) We do not have
* entries for inactive segments, however; as soon as we find a partial
* segment, we assume that any subsequent segments are inactive.
*
* The entire MdfdVec array is palloc'd in the MdCxt memory context.
*/
typedef struct _MdfdVec
{
File mdfd_vfd; /* fd number in fd.c's pool */
BlockNumber mdfd_segno; /* segment number, from 0 */
} MdfdVec;
static MemoryContext MdCxt; /* context for all MdfdVec objects */
/*
* In some contexts (currently, standalone backends and the checkpointer)
* we keep track of pending fsync operations: we need to remember all relation
* segments that have been written since the last checkpoint, so that we can
* fsync them down to disk before completing the next checkpoint. This hash
* table remembers the pending operations. We use a hash table mostly as
* a convenient way of merging duplicate requests.
*
* We use a similar mechanism to remember no-longer-needed files that can
* be deleted after the next checkpoint, but we use a linked list instead of
* a hash table, because we don't expect there to be any duplicate requests.
*
* These mechanisms are only used for non-temp relations; we never fsync
* temp rels, nor do we need to postpone their deletion (see comments in
* mdunlink).
*
* (Regular backends do not track pending operations locally, but forward
* them to the checkpointer.)
*/
typedef uint16 CycleCtr; /* can be any convenient integer size */
typedef struct
{
RelFileNode rnode; /* hash table key (must be first!) */
CycleCtr cycle_ctr; /* mdsync_cycle_ctr of oldest request */
/* requests[f] has bit n set if we need to fsync segment n of fork f */
Bitmapset *requests[MAX_FORKNUM + 1];
/* canceled[f] is true if we canceled fsyncs for fork "recently" */
bool canceled[MAX_FORKNUM + 1];
} PendingOperationEntry;
typedef struct
{
RelFileNode rnode; /* the dead relation to delete */
CycleCtr cycle_ctr; /* mdckpt_cycle_ctr when request was made */
} PendingUnlinkEntry;
static HTAB *pendingOpsTable = NULL;
static List *pendingUnlinks = NIL;
static MemoryContext pendingOpsCxt; /* context for the above */
static CycleCtr mdsync_cycle_ctr = 0;
static CycleCtr mdckpt_cycle_ctr = 0;
/*** behavior for mdopen & _mdfd_getseg ***/
/* ereport if segment not present */
#define EXTENSION_FAIL (1 << 0)
/* return NULL if segment not present */
#define EXTENSION_RETURN_NULL (1 << 1)
/* create new segments as needed */
#define EXTENSION_CREATE (1 << 2)
/* create new segments if needed during recovery */
#define EXTENSION_CREATE_RECOVERY (1 << 3)
/*
* Allow opening segments which are preceded by segments smaller than
* RELSEG_SIZE, e.g. inactive segments (see above). Note that this is breaks
* mdnblocks() and related functionality henceforth - which currently is ok,
* because this is only required in the checkpointer which never uses
* mdnblocks().
*/
#define EXTENSION_DONT_CHECK_SIZE (1 << 4)
/* local routines */
static void mdunlinkfork(RelFileNodeBackend rnode, ForkNumber forkNum,
bool isRedo);
static MdfdVec *mdopen(SMgrRelation reln, ForkNumber forknum, int behavior);
static void register_dirty_segment(SMgrRelation reln, ForkNumber forknum,
MdfdVec *seg);
static void register_unlink(RelFileNodeBackend rnode);
static void _fdvec_resize(SMgrRelation reln,
ForkNumber forknum,
int nseg);
static char *_mdfd_segpath(SMgrRelation reln, ForkNumber forknum,
BlockNumber segno);
static MdfdVec *_mdfd_openseg(SMgrRelation reln, ForkNumber forkno,
BlockNumber segno, int oflags);
static MdfdVec *_mdfd_getseg(SMgrRelation reln, ForkNumber forkno,
BlockNumber blkno, bool skipFsync, int behavior);
static BlockNumber _mdnblocks(SMgrRelation reln, ForkNumber forknum,
MdfdVec *seg);
/*
* mdinit() -- Initialize private state for magnetic disk storage manager.
*/
void
mdinit(void)
{
MdCxt = AllocSetContextCreate(TopMemoryContext,
"MdSmgr",
ALLOCSET_DEFAULT_SIZES);
/*
* Create pending-operations hashtable if we need it. Currently, we need
* it if we are standalone (not under a postmaster) or if we are a startup
* or checkpointer auxiliary process.
*/
if (!IsUnderPostmaster || AmStartupProcess() || AmCheckpointerProcess())
{
HASHCTL hash_ctl;
/*
* XXX: The checkpointer needs to add entries to the pending ops table
* when absorbing fsync requests. That is done within a critical
* section, which isn't usually allowed, but we make an exception. It
* means that there's a theoretical possibility that you run out of
* memory while absorbing fsync requests, which leads to a PANIC.
* Fortunately the hash table is small so that's unlikely to happen in
* practice.
*/
pendingOpsCxt = AllocSetContextCreate(MdCxt,
"Pending ops context",
ALLOCSET_DEFAULT_SIZES);
MemoryContextAllowInCriticalSection(pendingOpsCxt, true);
MemSet(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(RelFileNode);
hash_ctl.entrysize = sizeof(PendingOperationEntry);
hash_ctl.hcxt = pendingOpsCxt;
pendingOpsTable = hash_create("Pending Ops Table",
100L,
&hash_ctl,
HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
pendingUnlinks = NIL;
}
}
/*
* In archive recovery, we rely on checkpointer to do fsyncs, but we will have
* already created the pendingOpsTable during initialization of the startup
* process. Calling this function drops the local pendingOpsTable so that
* subsequent requests will be forwarded to checkpointer.
*/
void
SetForwardFsyncRequests(void)
{
/* Perform any pending fsyncs we may have queued up, then drop table */
if (pendingOpsTable)
{
mdsync();
hash_destroy(pendingOpsTable);
}
pendingOpsTable = NULL;
/*
* We should not have any pending unlink requests, since mdunlink doesn't
* queue unlink requests when isRedo.
*/
Assert(pendingUnlinks == NIL);
}
/*
* mdexists() -- Does the physical file exist?
*
* Note: this will return true for lingering files, with pending deletions
*/
bool
mdexists(SMgrRelation reln, ForkNumber forkNum)
{
/*
* Close it first, to ensure that we notice if the fork has been unlinked
* since we opened it.
*/
mdclose(reln, forkNum);
return (mdopen(reln, forkNum, EXTENSION_RETURN_NULL) != NULL);
}
/*
* mdcreate() -- Create a new relation on magnetic disk.
*
* If isRedo is true, it's okay for the relation to exist already.
*/
void
mdcreate(SMgrRelation reln, ForkNumber forkNum, bool isRedo)
{
MdfdVec *mdfd;
char *path;
File fd;
if (isRedo && reln->md_num_open_segs[forkNum] > 0)
return; /* created and opened already... */
Assert(reln->md_num_open_segs[forkNum] == 0);
path = relpath(reln->smgr_rnode, forkNum);
fd = PathNameOpenFile(path, O_RDWR | O_CREAT | O_EXCL | PG_BINARY, 0600);
if (fd < 0)
{
int save_errno = errno;
/*
* During bootstrap, there are cases where a system relation will be
* accessed (by internal backend processes) before the bootstrap
* script nominally creates it. Therefore, allow the file to exist
* already, even if isRedo is not set. (See also mdopen)
*/
if (isRedo || IsBootstrapProcessingMode())
fd = PathNameOpenFile(path, O_RDWR | PG_BINARY, 0600);
if (fd < 0)
{
/* be sure to report the error reported by create, not open */
errno = save_errno;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m", path)));
}
}
pfree(path);
_fdvec_resize(reln, forkNum, 1);
mdfd = &reln->md_seg_fds[forkNum][0];
mdfd->mdfd_vfd = fd;
mdfd->mdfd_segno = 0;
}
/*
* mdunlink() -- Unlink a relation.
*
* Note that we're passed a RelFileNodeBackend --- by the time this is called,
* there won't be an SMgrRelation hashtable entry anymore.
*
* forkNum can be a fork number to delete a specific fork, or InvalidForkNumber
* to delete all forks.
*
* For regular relations, we don't unlink the first segment file of the rel,
* but just truncate it to zero length, and record a request to unlink it after
* the next checkpoint. Additional segments can be unlinked immediately,
* however. Leaving the empty file in place prevents that relfilenode
* number from being reused. The scenario this protects us from is:
* 1. We delete a relation (and commit, and actually remove its file).
* 2. We create a new relation, which by chance gets the same relfilenode as
* the just-deleted one (OIDs must've wrapped around for that to happen).
* 3. We crash before another checkpoint occurs.
* During replay, we would delete the file and then recreate it, which is fine
* if the contents of the file were repopulated by subsequent WAL entries.
* But if we didn't WAL-log insertions, but instead relied on fsyncing the
* file after populating it (as for instance CLUSTER and CREATE INDEX do),
* the contents of the file would be lost forever. By leaving the empty file
* until after the next checkpoint, we prevent reassignment of the relfilenode
* number until it's safe, because relfilenode assignment skips over any
* existing file.
*
* We do not need to go through this dance for temp relations, though, because
* we never make WAL entries for temp rels, and so a temp rel poses no threat
* to the health of a regular rel that has taken over its relfilenode number.
* The fact that temp rels and regular rels have different file naming
* patterns provides additional safety.
*
* All the above applies only to the relation's main fork; other forks can
* just be removed immediately, since they are not needed to prevent the
* relfilenode number from being recycled. Also, we do not carefully
* track whether other forks have been created or not, but just attempt to
* unlink them unconditionally; so we should never complain about ENOENT.
*
* If isRedo is true, it's unsurprising for the relation to be already gone.
* Also, we should remove the file immediately instead of queuing a request
* for later, since during redo there's no possibility of creating a
* conflicting relation.
*
* Note: any failure should be reported as WARNING not ERROR, because
* we are usually not in a transaction anymore when this is called.
*/
void
mdunlink(RelFileNodeBackend rnode, ForkNumber forkNum, bool isRedo)
{
/*
* We have to clean out any pending fsync requests for the doomed
* relation, else the next mdsync() will fail. There can't be any such
* requests for a temp relation, though. We can send just one request
* even when deleting multiple forks, since the fsync queuing code accepts
* the "InvalidForkNumber = all forks" convention.
*/
if (!RelFileNodeBackendIsTemp(rnode))
ForgetRelationFsyncRequests(rnode.node, forkNum);
/* Now do the per-fork work */
if (forkNum == InvalidForkNumber)
{
for (forkNum = 0; forkNum <= MAX_FORKNUM; forkNum++)
mdunlinkfork(rnode, forkNum, isRedo);
}
else
mdunlinkfork(rnode, forkNum, isRedo);
}
static void
mdunlinkfork(RelFileNodeBackend rnode, ForkNumber forkNum, bool isRedo)
{
char *path;
int ret;
path = relpath(rnode, forkNum);
/*
* Delete or truncate the first segment.
*/
if (isRedo || forkNum != MAIN_FORKNUM || RelFileNodeBackendIsTemp(rnode))
{
ret = unlink(path);
if (ret < 0 && errno != ENOENT)
ereport(WARNING,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m", path)));
}
else
{
/* truncate(2) would be easier here, but Windows hasn't got it */
int fd;
fd = OpenTransientFile(path, O_RDWR | PG_BINARY, 0);
if (fd >= 0)
{
int save_errno;
ret = ftruncate(fd, 0);
save_errno = errno;
CloseTransientFile(fd);
errno = save_errno;
}
else
ret = -1;
if (ret < 0 && errno != ENOENT)
ereport(WARNING,
(errcode_for_file_access(),
errmsg("could not truncate file \"%s\": %m", path)));
/* Register request to unlink first segment later */
register_unlink(rnode);
}
/*
* Delete any additional segments.
*/
if (ret >= 0)
{
char *segpath = (char *) palloc(strlen(path) + 12);
BlockNumber segno;
/*
* Note that because we loop until getting ENOENT, we will correctly
* remove all inactive segments as well as active ones.
*/
for (segno = 1;; segno++)
{
sprintf(segpath, "%s.%u", path, segno);
if (unlink(segpath) < 0)
{
/* ENOENT is expected after the last segment... */
if (errno != ENOENT)
ereport(WARNING,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m", segpath)));
break;
}
}
pfree(segpath);
}
pfree(path);
}
/*
* mdextend() -- Add a block to the specified relation.
*
* The semantics are nearly the same as mdwrite(): write at the
* specified position. However, this is to be used for the case of
* extending a relation (i.e., blocknum is at or beyond the current
* EOF). Note that we assume writing a block beyond current EOF
* causes intervening file space to become filled with zeroes.
*/
void
mdextend(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum,
char *buffer, bool skipFsync)
{
off_t seekpos;
int nbytes;
MdfdVec *v;
/* This assert is too expensive to have on normally ... */
#ifdef CHECK_WRITE_VS_EXTEND
Assert(blocknum >= mdnblocks(reln, forknum));
#endif
/*
* If a relation manages to grow to 2^32-1 blocks, refuse to extend it any
* more --- we mustn't create a block whose number actually is
* InvalidBlockNumber.
*/
if (blocknum == InvalidBlockNumber)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("cannot extend file \"%s\" beyond %u blocks",
relpath(reln->smgr_rnode, forknum),
InvalidBlockNumber)));
v = _mdfd_getseg(reln, forknum, blocknum, skipFsync, EXTENSION_CREATE);
seekpos = (off_t) BLCKSZ *(blocknum % ((BlockNumber) RELSEG_SIZE));
Assert(seekpos < (off_t) BLCKSZ * RELSEG_SIZE);
/*
* Note: because caller usually obtained blocknum by calling mdnblocks,
* which did a seek(SEEK_END), this seek is often redundant and will be
* optimized away by fd.c. It's not redundant, however, if there is a
* partial page at the end of the file. In that case we want to try to
* overwrite the partial page with a full page. It's also not redundant
* if bufmgr.c had to dump another buffer of the same file to make room
* for the new page's buffer.
*/
if (FileSeek(v->mdfd_vfd, seekpos, SEEK_SET) != seekpos)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not seek to block %u in file \"%s\": %m",
blocknum, FilePathName(v->mdfd_vfd))));
if ((nbytes = FileWrite(v->mdfd_vfd, buffer, BLCKSZ)) != BLCKSZ)
{
if (nbytes < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not extend file \"%s\": %m",
FilePathName(v->mdfd_vfd)),
errhint("Check free disk space.")));
/* short write: complain appropriately */
ereport(ERROR,
(errcode(ERRCODE_DISK_FULL),
errmsg("could not extend file \"%s\": wrote only %d of %d bytes at block %u",
FilePathName(v->mdfd_vfd),
nbytes, BLCKSZ, blocknum),
errhint("Check free disk space.")));
}
if (!skipFsync && !SmgrIsTemp(reln))
register_dirty_segment(reln, forknum, v);
Assert(_mdnblocks(reln, forknum, v) <= ((BlockNumber) RELSEG_SIZE));
}
/*
* mdopen() -- Open the specified relation.
*
* Note we only open the first segment, when there are multiple segments.
*
* If first segment is not present, either ereport or return NULL according
* to "behavior". We treat EXTENSION_CREATE the same as EXTENSION_FAIL;
* EXTENSION_CREATE means it's OK to extend an existing relation, not to
* invent one out of whole cloth.
*/
static MdfdVec *
mdopen(SMgrRelation reln, ForkNumber forknum, int behavior)
{
MdfdVec *mdfd;
char *path;
File fd;
/* No work if already open */
if (reln->md_num_open_segs[forknum] > 0)
return &reln->md_seg_fds[forknum][0];
path = relpath(reln->smgr_rnode, forknum);
fd = PathNameOpenFile(path, O_RDWR | PG_BINARY, 0600);
if (fd < 0)
{
/*
* During bootstrap, there are cases where a system relation will be
* accessed (by internal backend processes) before the bootstrap
* script nominally creates it. Therefore, accept mdopen() as a
* substitute for mdcreate() in bootstrap mode only. (See mdcreate)
*/
if (IsBootstrapProcessingMode())
fd = PathNameOpenFile(path, O_RDWR | O_CREAT | O_EXCL | PG_BINARY, 0600);
if (fd < 0)
{
if ((behavior & EXTENSION_RETURN_NULL) &&
FILE_POSSIBLY_DELETED(errno))
{
pfree(path);
return NULL;
}
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
}
}
pfree(path);
_fdvec_resize(reln, forknum, 1);
mdfd = &reln->md_seg_fds[forknum][0];
mdfd->mdfd_vfd = fd;
mdfd->mdfd_segno = 0;
Assert(_mdnblocks(reln, forknum, mdfd) <= ((BlockNumber) RELSEG_SIZE));
return mdfd;
}
/*
* mdclose() -- Close the specified relation, if it isn't closed already.
*/
void
mdclose(SMgrRelation reln, ForkNumber forknum)
{
int nopensegs = reln->md_num_open_segs[forknum];
/* No work if already closed */
if (nopensegs == 0)
return;
/* close segments starting from the end */
while (nopensegs > 0)
{
MdfdVec *v = &reln->md_seg_fds[forknum][nopensegs - 1];
/* if not closed already */
if (v->mdfd_vfd >= 0)
{
FileClose(v->mdfd_vfd);
v->mdfd_vfd = -1;
}
nopensegs--;
}
/* resize just once, avoids pointless reallocations */
_fdvec_resize(reln, forknum, 0);
}
/*
* mdprefetch() -- Initiate asynchronous read of the specified block of a relation
*/
void
mdprefetch(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum)
{
#ifdef USE_PREFETCH
off_t seekpos;
MdfdVec *v;
v = _mdfd_getseg(reln, forknum, blocknum, false, EXTENSION_FAIL);
seekpos = (off_t) BLCKSZ *(blocknum % ((BlockNumber) RELSEG_SIZE));
Assert(seekpos < (off_t) BLCKSZ * RELSEG_SIZE);
(void) FilePrefetch(v->mdfd_vfd, seekpos, BLCKSZ);
#endif /* USE_PREFETCH */
}
/*
* mdwriteback() -- Tell the kernel to write pages back to storage.
*
* This accepts a range of blocks because flushing several pages at once is
* considerably more efficient than doing so individually.
*/
void
mdwriteback(SMgrRelation reln, ForkNumber forknum,
BlockNumber blocknum, BlockNumber nblocks)
{
/*
* Issue flush requests in as few requests as possible; have to split at
* segment boundaries though, since those are actually separate files.
*/
while (nblocks > 0)
{
BlockNumber nflush = nblocks;
off_t seekpos;
MdfdVec *v;
int segnum_start,
segnum_end;
v = _mdfd_getseg(reln, forknum, blocknum, true /* not used */ ,
EXTENSION_RETURN_NULL);
/*
* We might be flushing buffers of already removed relations, that's
* ok, just ignore that case.
*/
if (!v)
return;
/* compute offset inside the current segment */
segnum_start = blocknum / RELSEG_SIZE;
/* compute number of desired writes within the current segment */
segnum_end = (blocknum + nblocks - 1) / RELSEG_SIZE;
if (segnum_start != segnum_end)
nflush = RELSEG_SIZE - (blocknum % ((BlockNumber) RELSEG_SIZE));
Assert(nflush >= 1);
Assert(nflush <= nblocks);
seekpos = (off_t) BLCKSZ *(blocknum % ((BlockNumber) RELSEG_SIZE));
FileWriteback(v->mdfd_vfd, seekpos, (off_t) BLCKSZ * nflush);
nblocks -= nflush;
blocknum += nflush;
}
}
/*
* mdread() -- Read the specified block from a relation.
*/
void
mdread(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum,
char *buffer)
{
off_t seekpos;
int nbytes;
MdfdVec *v;
TRACE_POSTGRESQL_SMGR_MD_READ_START(forknum, blocknum,
reln->smgr_rnode.node.spcNode,
reln->smgr_rnode.node.dbNode,
reln->smgr_rnode.node.relNode,
reln->smgr_rnode.backend);
v = _mdfd_getseg(reln, forknum, blocknum, false,
EXTENSION_FAIL | EXTENSION_CREATE_RECOVERY);
seekpos = (off_t) BLCKSZ *(blocknum % ((BlockNumber) RELSEG_SIZE));
Assert(seekpos < (off_t) BLCKSZ * RELSEG_SIZE);
if (FileSeek(v->mdfd_vfd, seekpos, SEEK_SET) != seekpos)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not seek to block %u in file \"%s\": %m",
blocknum, FilePathName(v->mdfd_vfd))));
nbytes = FileRead(v->mdfd_vfd, buffer, BLCKSZ);
TRACE_POSTGRESQL_SMGR_MD_READ_DONE(forknum, blocknum,
reln->smgr_rnode.node.spcNode,
reln->smgr_rnode.node.dbNode,
reln->smgr_rnode.node.relNode,
reln->smgr_rnode.backend,
nbytes,
BLCKSZ);
if (nbytes != BLCKSZ)
{
if (nbytes < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read block %u in file \"%s\": %m",
blocknum, FilePathName(v->mdfd_vfd))));
/*
* Short read: we are at or past EOF, or we read a partial block at
* EOF. Normally this is an error; upper levels should never try to
* read a nonexistent block. However, if zero_damaged_pages is ON or
* we are InRecovery, we should instead return zeroes without
* complaining. This allows, for example, the case of trying to
* update a block that was later truncated away.
*/
if (zero_damaged_pages || InRecovery)
MemSet(buffer, 0, BLCKSZ);
else
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("could not read block %u in file \"%s\": read only %d of %d bytes",
blocknum, FilePathName(v->mdfd_vfd),
nbytes, BLCKSZ)));
}
}
/*
* mdwrite() -- Write the supplied block at the appropriate location.
*
* This is to be used only for updating already-existing blocks of a
* relation (ie, those before the current EOF). To extend a relation,
* use mdextend().
*/
void
mdwrite(SMgrRelation reln, ForkNumber forknum, BlockNumber blocknum,
char *buffer, bool skipFsync)
{
off_t seekpos;
int nbytes;
MdfdVec *v;
/* This assert is too expensive to have on normally ... */
#ifdef CHECK_WRITE_VS_EXTEND
Assert(blocknum < mdnblocks(reln, forknum));
#endif
TRACE_POSTGRESQL_SMGR_MD_WRITE_START(forknum, blocknum,
reln->smgr_rnode.node.spcNode,
reln->smgr_rnode.node.dbNode,
reln->smgr_rnode.node.relNode,
reln->smgr_rnode.backend);
v = _mdfd_getseg(reln, forknum, blocknum, skipFsync,
EXTENSION_FAIL | EXTENSION_CREATE_RECOVERY);
seekpos = (off_t) BLCKSZ *(blocknum % ((BlockNumber) RELSEG_SIZE));
Assert(seekpos < (off_t) BLCKSZ * RELSEG_SIZE);
if (FileSeek(v->mdfd_vfd, seekpos, SEEK_SET) != seekpos)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not seek to block %u in file \"%s\": %m",
blocknum, FilePathName(v->mdfd_vfd))));
nbytes = FileWrite(v->mdfd_vfd, buffer, BLCKSZ);
TRACE_POSTGRESQL_SMGR_MD_WRITE_DONE(forknum, blocknum,
reln->smgr_rnode.node.spcNode,
reln->smgr_rnode.node.dbNode,
reln->smgr_rnode.node.relNode,
reln->smgr_rnode.backend,
nbytes,
BLCKSZ);
if (nbytes != BLCKSZ)
{
if (nbytes < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write block %u in file \"%s\": %m",
blocknum, FilePathName(v->mdfd_vfd))));
/* short write: complain appropriately */
ereport(ERROR,
(errcode(ERRCODE_DISK_FULL),
errmsg("could not write block %u in file \"%s\": wrote only %d of %d bytes",
blocknum,
FilePathName(v->mdfd_vfd),
nbytes, BLCKSZ),
errhint("Check free disk space.")));
}
if (!skipFsync && !SmgrIsTemp(reln))
register_dirty_segment(reln, forknum, v);
}
/*
* mdnblocks() -- Get the number of blocks stored in a relation.
*
* Important side effect: all active segments of the relation are opened
* and added to the mdfd_seg_fds array. If this routine has not been
* called, then only segments up to the last one actually touched
* are present in the array.
*/
BlockNumber
mdnblocks(SMgrRelation reln, ForkNumber forknum)
{
MdfdVec *v = mdopen(reln, forknum, EXTENSION_FAIL);
BlockNumber nblocks;
BlockNumber segno = 0;
/* mdopen has opened the first segment */
Assert(reln->md_num_open_segs[forknum] > 0);
/*
* Start from the last open segments, to avoid redundant seeks. We have
* previously verified that these segments are exactly RELSEG_SIZE long,
* and it's useless to recheck that each time.
*
* NOTE: this assumption could only be wrong if another backend has
* truncated the relation. We rely on higher code levels to handle that
* scenario by closing and re-opening the md fd, which is handled via
* relcache flush. (Since the checkpointer doesn't participate in
* relcache flush, it could have segment entries for inactive segments;
* that's OK because the checkpointer never needs to compute relation
* size.)
*/
segno = reln->md_num_open_segs[forknum] - 1;
v = &reln->md_seg_fds[forknum][segno];
for (;;)
{
nblocks = _mdnblocks(reln, forknum, v);
if (nblocks > ((BlockNumber) RELSEG_SIZE))
elog(FATAL, "segment too big");
if (nblocks < ((BlockNumber) RELSEG_SIZE))
return (segno * ((BlockNumber) RELSEG_SIZE)) + nblocks;
/*
* If segment is exactly RELSEG_SIZE, advance to next one.
*/
segno++;
/*
* We used to pass O_CREAT here, but that's has the disadvantage that
* it might create a segment which has vanished through some operating
* system misadventure. In such a case, creating the segment here
* undermines _mdfd_getseg's attempts to notice and report an error
* upon access to a missing segment.
*/
v = _mdfd_openseg(reln, forknum, segno, 0);
if (v == NULL)
return segno * ((BlockNumber) RELSEG_SIZE);
}
}
/*
* mdtruncate() -- Truncate relation to specified number of blocks.
*/
void
mdtruncate(SMgrRelation reln, ForkNumber forknum, BlockNumber nblocks)
{
BlockNumber curnblk;
BlockNumber priorblocks;
int curopensegs;
/*
* NOTE: mdnblocks makes sure we have opened all active segments, so that
* truncation loop will get them all!
*/
curnblk = mdnblocks(reln, forknum);
if (nblocks > curnblk)
{
/* Bogus request ... but no complaint if InRecovery */
if (InRecovery)
return;
ereport(ERROR,
(errmsg("could not truncate file \"%s\" to %u blocks: it's only %u blocks now",
relpath(reln->smgr_rnode, forknum),
nblocks, curnblk)));
}
if (nblocks == curnblk)
return; /* no work */
/*
* Truncate segments, starting at the last one. Starting at the end makes
* managing the memory for the fd array easier, should there be errors.
*/
curopensegs = reln->md_num_open_segs[forknum];
while (curopensegs > 0)
{
MdfdVec *v;
priorblocks = (curopensegs - 1) * RELSEG_SIZE;
v = &reln->md_seg_fds[forknum][curopensegs - 1];
if (priorblocks > nblocks)
{
/*
* This segment is no longer active. We truncate the file, but do
* not delete it, for reasons explained in the header comments.
*/
if (FileTruncate(v->mdfd_vfd, 0) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not truncate file \"%s\": %m",
FilePathName(v->mdfd_vfd))));
if (!SmgrIsTemp(reln))
register_dirty_segment(reln, forknum, v);
/* we never drop the 1st segment */
Assert(v != &reln->md_seg_fds[forknum][0]);
FileClose(v->mdfd_vfd);
_fdvec_resize(reln, forknum, curopensegs - 1);
}
else if (priorblocks + ((BlockNumber) RELSEG_SIZE) > nblocks)
{
/*
* This is the last segment we want to keep. Truncate the file to
* the right length. NOTE: if nblocks is exactly a multiple K of
* RELSEG_SIZE, we will truncate the K+1st segment to 0 length but
* keep it. This adheres to the invariant given in the header
* comments.
*/
BlockNumber lastsegblocks = nblocks - priorblocks;
if (FileTruncate(v->mdfd_vfd, (off_t) lastsegblocks * BLCKSZ) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not truncate file \"%s\" to %u blocks: %m",
FilePathName(v->mdfd_vfd),
nblocks)));
if (!SmgrIsTemp(reln))
register_dirty_segment(reln, forknum, v);
}
else
{
/*
* We still need this segment, so nothing to do for this and any
* earlier segment.
*/
break;
}
curopensegs--;
}
}
/*
* mdimmedsync() -- Immediately sync a relation to stable storage.
*
* Note that only writes already issued are synced; this routine knows
* nothing of dirty buffers that may exist inside the buffer manager.
*/
void
mdimmedsync(SMgrRelation reln, ForkNumber forknum)
{
int segno;
/*
* NOTE: mdnblocks makes sure we have opened all active segments, so that
* fsync loop will get them all!
*/
mdnblocks(reln, forknum);
segno = reln->md_num_open_segs[forknum];
while (segno > 0)
{
MdfdVec *v = &reln->md_seg_fds[forknum][segno - 1];
if (FileSync(v->mdfd_vfd) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m",
FilePathName(v->mdfd_vfd))));
segno--;
}
}
/*
* mdsync() -- Sync previous writes to stable storage.
*/
void
mdsync(void)
{
static bool mdsync_in_progress = false;
HASH_SEQ_STATUS hstat;
PendingOperationEntry *entry;
int absorb_counter;
/* Statistics on sync times */
int processed = 0;
instr_time sync_start,
sync_end,
sync_diff;
uint64 elapsed;
uint64 longest = 0;
uint64 total_elapsed = 0;
/*
* This is only called during checkpoints, and checkpoints should only
* occur in processes that have created a pendingOpsTable.
*/
if (!pendingOpsTable)
elog(ERROR, "cannot sync without a pendingOpsTable");
/*
* If we are in the checkpointer, the sync had better include all fsync
* requests that were queued by backends up to this point. The tightest
* race condition that could occur is that a buffer that must be written
* and fsync'd for the checkpoint could have been dumped by a backend just
* before it was visited by BufferSync(). We know the backend will have
* queued an fsync request before clearing the buffer's dirtybit, so we
* are safe as long as we do an Absorb after completing BufferSync().
*/
AbsorbFsyncRequests();
/*
* To avoid excess fsync'ing (in the worst case, maybe a never-terminating
* checkpoint), we want to ignore fsync requests that are entered into the
* hashtable after this point --- they should be processed next time,
* instead. We use mdsync_cycle_ctr to tell old entries apart from new
* ones: new ones will have cycle_ctr equal to the incremented value of
* mdsync_cycle_ctr.
*
* In normal circumstances, all entries present in the table at this point
* will have cycle_ctr exactly equal to the current (about to be old)
* value of mdsync_cycle_ctr. However, if we fail partway through the
* fsync'ing loop, then older values of cycle_ctr might remain when we
* come back here to try again. Repeated checkpoint failures would
* eventually wrap the counter around to the point where an old entry
* might appear new, causing us to skip it, possibly allowing a checkpoint
* to succeed that should not have. To forestall wraparound, any time the
* previous mdsync() failed to complete, run through the table and
* forcibly set cycle_ctr = mdsync_cycle_ctr.
*
* Think not to merge this loop with the main loop, as the problem is
* exactly that that loop may fail before having visited all the entries.
* From a performance point of view it doesn't matter anyway, as this path
* will never be taken in a system that's functioning normally.
*/
if (mdsync_in_progress)
{
/* prior try failed, so update any stale cycle_ctr values */
hash_seq_init(&hstat, pendingOpsTable);
while ((entry = (PendingOperationEntry *) hash_seq_search(&hstat)) != NULL)
{
entry->cycle_ctr = mdsync_cycle_ctr;
}
}
/* Advance counter so that new hashtable entries are distinguishable */
mdsync_cycle_ctr++;
/* Set flag to detect failure if we don't reach the end of the loop */
mdsync_in_progress = true;
/* Now scan the hashtable for fsync requests to process */
absorb_counter = FSYNCS_PER_ABSORB;
hash_seq_init(&hstat, pendingOpsTable);
while ((entry = (PendingOperationEntry *) hash_seq_search(&hstat)) != NULL)
{
ForkNumber forknum;
/*
* If the entry is new then don't process it this time; it might
* contain multiple fsync-request bits, but they are all new. Note
* "continue" bypasses the hash-remove call at the bottom of the loop.
*/
if (entry->cycle_ctr == mdsync_cycle_ctr)
continue;
/* Else assert we haven't missed it */
Assert((CycleCtr) (entry->cycle_ctr + 1) == mdsync_cycle_ctr);
/*
* Scan over the forks and segments represented by the entry.
*
* The bitmap manipulations are slightly tricky, because we can call
* AbsorbFsyncRequests() inside the loop and that could result in
* bms_add_member() modifying and even re-palloc'ing the bitmapsets.
* This is okay because we unlink each bitmapset from the hashtable
* entry before scanning it. That means that any incoming fsync
* requests will be processed now if they reach the table before we
* begin to scan their fork.
*/
for (forknum = 0; forknum <= MAX_FORKNUM; forknum++)
{
Bitmapset *requests = entry->requests[forknum];
int segno;
entry->requests[forknum] = NULL;
entry->canceled[forknum] = false;
while ((segno = bms_first_member(requests)) >= 0)
{
int failures;
/*
* If fsync is off then we don't have to bother opening the
* file at all. (We delay checking until this point so that
* changing fsync on the fly behaves sensibly.)
*/
if (!enableFsync)
continue;
/*
* If in checkpointer, we want to absorb pending requests
* every so often to prevent overflow of the fsync request
* queue. It is unspecified whether newly-added entries will
* be visited by hash_seq_search, but we don't care since we
* don't need to process them anyway.
*/
if (--absorb_counter <= 0)
{
AbsorbFsyncRequests();
absorb_counter = FSYNCS_PER_ABSORB;
}
/*
* The fsync table could contain requests to fsync segments
* that have been deleted (unlinked) by the time we get to
* them. Rather than just hoping an ENOENT (or EACCES on
* Windows) error can be ignored, what we do on error is
* absorb pending requests and then retry. Since mdunlink()
* queues a "cancel" message before actually unlinking, the
* fsync request is guaranteed to be marked canceled after the
* absorb if it really was this case. DROP DATABASE likewise
* has to tell us to forget fsync requests before it starts
* deletions.
*/
for (failures = 0;; failures++) /* loop exits at "break" */
{
SMgrRelation reln;
MdfdVec *seg;
char *path;
int save_errno;
/*
* Find or create an smgr hash entry for this relation.
* This may seem a bit unclean -- md calling smgr? But
* it's really the best solution. It ensures that the
* open file reference isn't permanently leaked if we get
* an error here. (You may say "but an unreferenced
* SMgrRelation is still a leak!" Not really, because the
* only case in which a checkpoint is done by a process
* that isn't about to shut down is in the checkpointer,
* and it will periodically do smgrcloseall(). This fact
* justifies our not closing the reln in the success path
* either, which is a good thing since in non-checkpointer
* cases we couldn't safely do that.)
*/
reln = smgropen(entry->rnode, InvalidBackendId);
/* Attempt to open and fsync the target segment */
seg = _mdfd_getseg(reln, forknum,
(BlockNumber) segno * (BlockNumber) RELSEG_SIZE,
false,
EXTENSION_RETURN_NULL
| EXTENSION_DONT_CHECK_SIZE);
INSTR_TIME_SET_CURRENT(sync_start);
if (seg != NULL &&
FileSync(seg->mdfd_vfd) >= 0)
{
/* Success; update statistics about sync timing */
INSTR_TIME_SET_CURRENT(sync_end);
sync_diff = sync_end;
INSTR_TIME_SUBTRACT(sync_diff, sync_start);
elapsed = INSTR_TIME_GET_MICROSEC(sync_diff);
if (elapsed > longest)
longest = elapsed;
total_elapsed += elapsed;
processed++;
if (log_checkpoints)
elog(DEBUG1, "checkpoint sync: number=%d file=%s time=%.3f msec",
processed,
FilePathName(seg->mdfd_vfd),
(double) elapsed / 1000);
break; /* out of retry loop */
}
/* Compute file name for use in message */
save_errno = errno;
path = _mdfd_segpath(reln, forknum, (BlockNumber) segno);
errno = save_errno;
/*
* It is possible that the relation has been dropped or
* truncated since the fsync request was entered.
* Therefore, allow ENOENT, but only if we didn't fail
* already on this file. This applies both for
* _mdfd_getseg() and for FileSync, since fd.c might have
* closed the file behind our back.
*
* XXX is there any point in allowing more than one retry?
* Don't see one at the moment, but easy to change the
* test here if so.
*/
if (!FILE_POSSIBLY_DELETED(errno) ||
failures > 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m",
path)));
else
ereport(DEBUG1,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\" but retrying: %m",
path)));
pfree(path);
/*
* Absorb incoming requests and check to see if a cancel
* arrived for this relation fork.
*/
AbsorbFsyncRequests();
absorb_counter = FSYNCS_PER_ABSORB; /* might as well... */
if (entry->canceled[forknum])
break;
} /* end retry loop */
}
bms_free(requests);
}
/*
* We've finished everything that was requested before we started to
* scan the entry. If no new requests have been inserted meanwhile,
* remove the entry. Otherwise, update its cycle counter, as all the
* requests now in it must have arrived during this cycle.
*/
for (forknum = 0; forknum <= MAX_FORKNUM; forknum++)
{
if (entry->requests[forknum] != NULL)
break;
}
if (forknum <= MAX_FORKNUM)
entry->cycle_ctr = mdsync_cycle_ctr;
else
{
/* Okay to remove it */
if (hash_search(pendingOpsTable, &entry->rnode,
HASH_REMOVE, NULL) == NULL)
elog(ERROR, "pendingOpsTable corrupted");
}
} /* end loop over hashtable entries */
/* Return sync performance metrics for report at checkpoint end */
CheckpointStats.ckpt_sync_rels = processed;
CheckpointStats.ckpt_longest_sync = longest;
CheckpointStats.ckpt_agg_sync_time = total_elapsed;
/* Flag successful completion of mdsync */
mdsync_in_progress = false;
}
/*
* mdpreckpt() -- Do pre-checkpoint work
*
* To distinguish unlink requests that arrived before this checkpoint
* started from those that arrived during the checkpoint, we use a cycle
* counter similar to the one we use for fsync requests. That cycle
* counter is incremented here.
*
* This must be called *before* the checkpoint REDO point is determined.
* That ensures that we won't delete files too soon.
*
* Note that we can't do anything here that depends on the assumption
* that the checkpoint will be completed.
*/
void
mdpreckpt(void)
{
/*
* Any unlink requests arriving after this point will be assigned the next
* cycle counter, and won't be unlinked until next checkpoint.
*/
mdckpt_cycle_ctr++;
}
/*
* mdpostckpt() -- Do post-checkpoint work
*
* Remove any lingering files that can now be safely removed.
*/
void
mdpostckpt(void)
{
int absorb_counter;
absorb_counter = UNLINKS_PER_ABSORB;
while (pendingUnlinks != NIL)
{
PendingUnlinkEntry *entry = (PendingUnlinkEntry *) linitial(pendingUnlinks);
char *path;
/*
* New entries are appended to the end, so if the entry is new we've
* reached the end of old entries.
*
* Note: if just the right number of consecutive checkpoints fail, we
* could be fooled here by cycle_ctr wraparound. However, the only
* consequence is that we'd delay unlinking for one more checkpoint,
* which is perfectly tolerable.
*/
if (entry->cycle_ctr == mdckpt_cycle_ctr)
break;
/* Unlink the file */
path = relpathperm(entry->rnode, MAIN_FORKNUM);
if (unlink(path) < 0)
{
/*
* There's a race condition, when the database is dropped at the
* same time that we process the pending unlink requests. If the
* DROP DATABASE deletes the file before we do, we will get ENOENT
* here. rmtree() also has to ignore ENOENT errors, to deal with
* the possibility that we delete the file first.
*/
if (errno != ENOENT)
ereport(WARNING,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m", path)));
}
pfree(path);
/* And remove the list entry */
pendingUnlinks = list_delete_first(pendingUnlinks);
pfree(entry);
/*
* As in mdsync, we don't want to stop absorbing fsync requests for a
* long time when there are many deletions to be done. We can safely
* call AbsorbFsyncRequests() at this point in the loop (note it might
* try to delete list entries).
*/
if (--absorb_counter <= 0)
{
AbsorbFsyncRequests();
absorb_counter = UNLINKS_PER_ABSORB;
}
}
}
/*
* register_dirty_segment() -- Mark a relation segment as needing fsync
*
* If there is a local pending-ops table, just make an entry in it for
* mdsync to process later. Otherwise, try to pass off the fsync request
* to the checkpointer process. If that fails, just do the fsync
* locally before returning (we hope this will not happen often enough
* to be a performance problem).
*/
static void
register_dirty_segment(SMgrRelation reln, ForkNumber forknum, MdfdVec *seg)
{
/* Temp relations should never be fsync'd */
Assert(!SmgrIsTemp(reln));
if (pendingOpsTable)
{
/* push it into local pending-ops table */
RememberFsyncRequest(reln->smgr_rnode.node, forknum, seg->mdfd_segno);
}
else
{
if (ForwardFsyncRequest(reln->smgr_rnode.node, forknum, seg->mdfd_segno))
return; /* passed it off successfully */
ereport(DEBUG1,
(errmsg("could not forward fsync request because request queue is full")));
if (FileSync(seg->mdfd_vfd) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m",
FilePathName(seg->mdfd_vfd))));
}
}
/*
* register_unlink() -- Schedule a file to be deleted after next checkpoint
*
* We don't bother passing in the fork number, because this is only used
* with main forks.
*
* As with register_dirty_segment, this could involve either a local or
* a remote pending-ops table.
*/
static void
register_unlink(RelFileNodeBackend rnode)
{
/* Should never be used with temp relations */
Assert(!RelFileNodeBackendIsTemp(rnode));
if (pendingOpsTable)
{
/* push it into local pending-ops table */
RememberFsyncRequest(rnode.node, MAIN_FORKNUM,
UNLINK_RELATION_REQUEST);
}
else
{
/*
* Notify the checkpointer about it. If we fail to queue the request
* message, we have to sleep and try again, because we can't simply
* delete the file now. Ugly, but hopefully won't happen often.
*
* XXX should we just leave the file orphaned instead?
*/
Assert(IsUnderPostmaster);
while (!ForwardFsyncRequest(rnode.node, MAIN_FORKNUM,
UNLINK_RELATION_REQUEST))
pg_usleep(10000L); /* 10 msec seems a good number */
}
}
/*
* RememberFsyncRequest() -- callback from checkpointer side of fsync request
*
* We stuff fsync requests into the local hash table for execution
* during the checkpointer's next checkpoint. UNLINK requests go into a
* separate linked list, however, because they get processed separately.
*
* The range of possible segment numbers is way less than the range of
* BlockNumber, so we can reserve high values of segno for special purposes.
* We define three:
* - FORGET_RELATION_FSYNC means to cancel pending fsyncs for a relation,
* either for one fork, or all forks if forknum is InvalidForkNumber
* - FORGET_DATABASE_FSYNC means to cancel pending fsyncs for a whole database
* - UNLINK_RELATION_REQUEST is a request to delete the file after the next
* checkpoint.
* Note also that we're assuming real segment numbers don't exceed INT_MAX.
*
* (Handling FORGET_DATABASE_FSYNC requests is a tad slow because the hash
* table has to be searched linearly, but dropping a database is a pretty
* heavyweight operation anyhow, so we'll live with it.)
*/
void
RememberFsyncRequest(RelFileNode rnode, ForkNumber forknum, BlockNumber segno)
{
Assert(pendingOpsTable);
if (segno == FORGET_RELATION_FSYNC)
{
/* Remove any pending requests for the relation (one or all forks) */
PendingOperationEntry *entry;
entry = (PendingOperationEntry *) hash_search(pendingOpsTable,
&rnode,
HASH_FIND,
NULL);
if (entry)
{
/*
* We can't just delete the entry since mdsync could have an
* active hashtable scan. Instead we delete the bitmapsets; this
* is safe because of the way mdsync is coded. We also set the
* "canceled" flags so that mdsync can tell that a cancel arrived
* for the fork(s).
*/
if (forknum == InvalidForkNumber)
{
/* remove requests for all forks */
for (forknum = 0; forknum <= MAX_FORKNUM; forknum++)
{
bms_free(entry->requests[forknum]);
entry->requests[forknum] = NULL;
entry->canceled[forknum] = true;
}
}
else
{
/* remove requests for single fork */
bms_free(entry->requests[forknum]);
entry->requests[forknum] = NULL;
entry->canceled[forknum] = true;
}
}
}
else if (segno == FORGET_DATABASE_FSYNC)
{
/* Remove any pending requests for the entire database */
HASH_SEQ_STATUS hstat;
PendingOperationEntry *entry;
ListCell *cell,
*prev,
*next;
/* Remove fsync requests */
hash_seq_init(&hstat, pendingOpsTable);
while ((entry = (PendingOperationEntry *) hash_seq_search(&hstat)) != NULL)
{
if (entry->rnode.dbNode == rnode.dbNode)
{
/* remove requests for all forks */
for (forknum = 0; forknum <= MAX_FORKNUM; forknum++)
{
bms_free(entry->requests[forknum]);
entry->requests[forknum] = NULL;
entry->canceled[forknum] = true;
}
}
}
/* Remove unlink requests */
prev = NULL;
for (cell = list_head(pendingUnlinks); cell; cell = next)
{
PendingUnlinkEntry *entry = (PendingUnlinkEntry *) lfirst(cell);
next = lnext(cell);
if (entry->rnode.dbNode == rnode.dbNode)
{
pendingUnlinks = list_delete_cell(pendingUnlinks, cell, prev);
pfree(entry);
}
else
prev = cell;
}
}
else if (segno == UNLINK_RELATION_REQUEST)
{
/* Unlink request: put it in the linked list */
MemoryContext oldcxt = MemoryContextSwitchTo(pendingOpsCxt);
PendingUnlinkEntry *entry;
/* PendingUnlinkEntry doesn't store forknum, since it's always MAIN */
Assert(forknum == MAIN_FORKNUM);
entry = palloc(sizeof(PendingUnlinkEntry));
entry->rnode = rnode;
entry->cycle_ctr = mdckpt_cycle_ctr;
pendingUnlinks = lappend(pendingUnlinks, entry);
MemoryContextSwitchTo(oldcxt);
}
else
{
/* Normal case: enter a request to fsync this segment */
MemoryContext oldcxt = MemoryContextSwitchTo(pendingOpsCxt);
PendingOperationEntry *entry;
bool found;
entry = (PendingOperationEntry *) hash_search(pendingOpsTable,
&rnode,
HASH_ENTER,
&found);
/* if new entry, initialize it */
if (!found)
{
entry->cycle_ctr = mdsync_cycle_ctr;
MemSet(entry->requests, 0, sizeof(entry->requests));
MemSet(entry->canceled, 0, sizeof(entry->canceled));
}
/*
* NB: it's intentional that we don't change cycle_ctr if the entry
* already exists. The cycle_ctr must represent the oldest fsync
* request that could be in the entry.
*/
entry->requests[forknum] = bms_add_member(entry->requests[forknum],
(int) segno);
MemoryContextSwitchTo(oldcxt);
}
}
/*
* ForgetRelationFsyncRequests -- forget any fsyncs for a relation fork
*
* forknum == InvalidForkNumber means all forks, although this code doesn't
* actually know that, since it's just forwarding the request elsewhere.
*/
void
ForgetRelationFsyncRequests(RelFileNode rnode, ForkNumber forknum)
{
if (pendingOpsTable)
{
/* standalone backend or startup process: fsync state is local */
RememberFsyncRequest(rnode, forknum, FORGET_RELATION_FSYNC);
}
else if (IsUnderPostmaster)
{
/*
* Notify the checkpointer about it. If we fail to queue the cancel
* message, we have to sleep and try again ... ugly, but hopefully
* won't happen often.
*
* XXX should we CHECK_FOR_INTERRUPTS in this loop? Escaping with an
* error would leave the no-longer-used file still present on disk,
* which would be bad, so I'm inclined to assume that the checkpointer
* will always empty the queue soon.
*/
while (!ForwardFsyncRequest(rnode, forknum, FORGET_RELATION_FSYNC))
pg_usleep(10000L); /* 10 msec seems a good number */
/*
* Note we don't wait for the checkpointer to actually absorb the
* cancel message; see mdsync() for the implications.
*/
}
}
/*
* ForgetDatabaseFsyncRequests -- forget any fsyncs and unlinks for a DB
*/
void
ForgetDatabaseFsyncRequests(Oid dbid)
{
RelFileNode rnode;
rnode.dbNode = dbid;
rnode.spcNode = 0;
rnode.relNode = 0;
if (pendingOpsTable)
{
/* standalone backend or startup process: fsync state is local */
RememberFsyncRequest(rnode, InvalidForkNumber, FORGET_DATABASE_FSYNC);
}
else if (IsUnderPostmaster)
{
/* see notes in ForgetRelationFsyncRequests */
while (!ForwardFsyncRequest(rnode, InvalidForkNumber,
FORGET_DATABASE_FSYNC))
pg_usleep(10000L); /* 10 msec seems a good number */
}
}
/*
* _fdvec_resize() -- Resize the fork's open segments array
*/
static void
_fdvec_resize(SMgrRelation reln,
ForkNumber forknum,
int nseg)
{
if (nseg == 0)
{
if (reln->md_num_open_segs[forknum] > 0)
{
pfree(reln->md_seg_fds[forknum]);
reln->md_seg_fds[forknum] = NULL;
}
}
else if (reln->md_num_open_segs[forknum] == 0)
{
reln->md_seg_fds[forknum] =
MemoryContextAlloc(MdCxt, sizeof(MdfdVec) * nseg);
}
else
{
/*
* It doesn't seem worthwhile complicating the code by having a more
* aggressive growth strategy here; the number of segments doesn't
* grow that fast, and the memory context internally will sometimes
* avoid doing an actual reallocation.
*/
reln->md_seg_fds[forknum] =
repalloc(reln->md_seg_fds[forknum],
sizeof(MdfdVec) * nseg);
}
reln->md_num_open_segs[forknum] = nseg;
}
/*
* Return the filename for the specified segment of the relation. The
* returned string is palloc'd.
*/
static char *
_mdfd_segpath(SMgrRelation reln, ForkNumber forknum, BlockNumber segno)
{
char *path,
*fullpath;
path = relpath(reln->smgr_rnode, forknum);
if (segno > 0)
{
fullpath = psprintf("%s.%u", path, segno);
pfree(path);
}
else
fullpath = path;
return fullpath;
}
/*
* Open the specified segment of the relation,
* and make a MdfdVec object for it. Returns NULL on failure.
*/
static MdfdVec *
_mdfd_openseg(SMgrRelation reln, ForkNumber forknum, BlockNumber segno,
int oflags)
{
MdfdVec *v;
int fd;
char *fullpath;
fullpath = _mdfd_segpath(reln, forknum, segno);
/* open the file */
fd = PathNameOpenFile(fullpath, O_RDWR | PG_BINARY | oflags, 0600);
pfree(fullpath);
if (fd < 0)
return NULL;
if (segno <= reln->md_num_open_segs[forknum])
_fdvec_resize(reln, forknum, segno + 1);
/* fill the entry */
v = &reln->md_seg_fds[forknum][segno];
v->mdfd_vfd = fd;
v->mdfd_segno = segno;
Assert(_mdnblocks(reln, forknum, v) <= ((BlockNumber) RELSEG_SIZE));
/* all done */
return v;
}
/*
* _mdfd_getseg() -- Find the segment of the relation holding the
* specified block.
*
* If the segment doesn't exist, we ereport, return NULL, or create the
* segment, according to "behavior". Note: skipFsync is only used in the
* EXTENSION_CREATE case.
*/
static MdfdVec *
_mdfd_getseg(SMgrRelation reln, ForkNumber forknum, BlockNumber blkno,
bool skipFsync, int behavior)
{
MdfdVec *v;
BlockNumber targetseg;
BlockNumber nextsegno;
/* some way to handle non-existent segments needs to be specified */
Assert(behavior &
(EXTENSION_FAIL | EXTENSION_CREATE | EXTENSION_RETURN_NULL));
targetseg = blkno / ((BlockNumber) RELSEG_SIZE);
/* if an existing and opened segment, we're done */
if (targetseg < reln->md_num_open_segs[forknum])
{
v = &reln->md_seg_fds[forknum][targetseg];
return v;
}
/*
* The target segment is not yet open. Iterate over all the segments
* between the last opened and the target segment. This way missing
* segments either raise an error, or get created (according to
* 'behavior'). Start with either the last opened, or the first segment if
* none was opened before.
*/
if (reln->md_num_open_segs[forknum] > 0)
v = &reln->md_seg_fds[forknum][reln->md_num_open_segs[forknum] - 1];
else
{
v = mdopen(reln, forknum, behavior);
if (!v)
return NULL; /* if behavior & EXTENSION_RETURN_NULL */
}
for (nextsegno = reln->md_num_open_segs[forknum];
nextsegno <= targetseg; nextsegno++)
{
BlockNumber nblocks = _mdnblocks(reln, forknum, v);
int flags = 0;
Assert(nextsegno == v->mdfd_segno + 1);
if (nblocks > ((BlockNumber) RELSEG_SIZE))
elog(FATAL, "segment too big");
if ((behavior & EXTENSION_CREATE) ||
(InRecovery && (behavior & EXTENSION_CREATE_RECOVERY)))
{
/*
* Normally we will create new segments only if authorized by the
* caller (i.e., we are doing mdextend()). But when doing WAL
* recovery, create segments anyway; this allows cases such as
* replaying WAL data that has a write into a high-numbered
* segment of a relation that was later deleted. We want to go
* ahead and create the segments so we can finish out the replay.
* However if the caller has specified
* EXTENSION_REALLY_RETURN_NULL, then extension is not desired
* even in recovery; we won't reach this point in that case.
*
* We have to maintain the invariant that segments before the last
* active segment are of size RELSEG_SIZE; therefore, if
* extending, pad them out with zeroes if needed. (This only
* matters if in recovery, or if the caller is extending the
* relation discontiguously, but that can happen in hash indexes.)
*/
if (nblocks < ((BlockNumber) RELSEG_SIZE))
{
char *zerobuf = palloc0(BLCKSZ);
mdextend(reln, forknum,
nextsegno * ((BlockNumber) RELSEG_SIZE) - 1,
zerobuf, skipFsync);
pfree(zerobuf);
}
flags = O_CREAT;
}
else if (!(behavior & EXTENSION_DONT_CHECK_SIZE) &&
nblocks < ((BlockNumber) RELSEG_SIZE))
{
/*
* When not extending (or explicitly including truncated
* segments), only open the next segment if the current one is
* exactly RELSEG_SIZE. If not (this branch), either return NULL
* or fail.
*/
if (behavior & EXTENSION_RETURN_NULL)
{
/*
* Some callers discern between reasons for _mdfd_getseg()
* returning NULL based on errno. As there's no failing
* syscall involved in this case, explicitly set errno to
* ENOENT, as that seems the closest interpretation.
*/
errno = ENOENT;
return NULL;
}
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\" (target block %u): previous segment is only %u blocks",
_mdfd_segpath(reln, forknum, nextsegno),
blkno, nblocks)));
}
v = _mdfd_openseg(reln, forknum, nextsegno, flags);
if (v == NULL)
{
if ((behavior & EXTENSION_RETURN_NULL) &&
FILE_POSSIBLY_DELETED(errno))
return NULL;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\" (target block %u): %m",
_mdfd_segpath(reln, forknum, nextsegno),
blkno)));
}
}
return v;
}
/*
* Get number of blocks present in a single disk file
*/
static BlockNumber
_mdnblocks(SMgrRelation reln, ForkNumber forknum, MdfdVec *seg)
{
off_t len;
len = FileSeek(seg->mdfd_vfd, 0L, SEEK_END);
if (len < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not seek to end of file \"%s\": %m",
FilePathName(seg->mdfd_vfd))));
/* note that this calculation will ignore any partial block at EOF */
return (BlockNumber) (len / BLCKSZ);
}