postgresql/src/backend/commands/indexcmds.c
Michael Paquier 1d65416661 Improve handling of dropped relations for REINDEX DATABASE/SCHEMA/SYSTEM
When multiple relations are reindexed, a scan of pg_class is done first
to build the list of relations to work on.  However the REINDEX logic
has never checked if a relation listed still exists when beginning the
work on it, causing for example sudden cache lookup failures.

This commit adds safeguards against dropped relations for REINDEX,
similarly to VACUUM or CLUSTER where we try to open the relation,
ignoring it if it is missing.  A new option is added to the REINDEX
routines to control if a missed relation is OK to ignore or not.

An isolation test, based on REINDEX SCHEMA, is added for the concurrent
and non-concurrent cases.

Author: Michael Paquier
Reviewed-by: Anastasia Lubennikova
Discussion: https://postgr.es/m/20200813043805.GE11663@paquier.xyz
2020-09-02 09:08:12 +09:00

3714 lines
112 KiB
C

/*-------------------------------------------------------------------------
*
* indexcmds.c
* POSTGRES define and remove index code.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/commands/indexcmds.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/amapi.h"
#include "access/heapam.h"
#include "access/htup_details.h"
#include "access/reloptions.h"
#include "access/sysattr.h"
#include "access/tableam.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/pg_am.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_tablespace.h"
#include "catalog/pg_type.h"
#include "commands/comment.h"
#include "commands/dbcommands.h"
#include "commands/defrem.h"
#include "commands/event_trigger.h"
#include "commands/progress.h"
#include "commands/tablecmds.h"
#include "commands/tablespace.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/optimizer.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "partitioning/partdesc.h"
#include "pgstat.h"
#include "rewrite/rewriteManip.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/sinvaladt.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/partcache.h"
#include "utils/pg_rusage.h"
#include "utils/regproc.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
/* non-export function prototypes */
static void CheckPredicate(Expr *predicate);
static void ComputeIndexAttrs(IndexInfo *indexInfo,
Oid *typeOidP,
Oid *collationOidP,
Oid *classOidP,
int16 *colOptionP,
List *attList,
List *exclusionOpNames,
Oid relId,
const char *accessMethodName, Oid accessMethodId,
bool amcanorder,
bool isconstraint);
static char *ChooseIndexName(const char *tabname, Oid namespaceId,
List *colnames, List *exclusionOpNames,
bool primary, bool isconstraint);
static char *ChooseIndexNameAddition(List *colnames);
static List *ChooseIndexColumnNames(List *indexElems);
static void RangeVarCallbackForReindexIndex(const RangeVar *relation,
Oid relId, Oid oldRelId, void *arg);
static bool ReindexRelationConcurrently(Oid relationOid, int options);
static void ReindexPartitionedIndex(Relation parentIdx);
static void update_relispartition(Oid relationId, bool newval);
static bool CompareOpclassOptions(Datum *opts1, Datum *opts2, int natts);
/*
* callback argument type for RangeVarCallbackForReindexIndex()
*/
struct ReindexIndexCallbackState
{
bool concurrent; /* flag from statement */
Oid locked_table_oid; /* tracks previously locked table */
};
/*
* CheckIndexCompatible
* Determine whether an existing index definition is compatible with a
* prospective index definition, such that the existing index storage
* could become the storage of the new index, avoiding a rebuild.
*
* 'heapRelation': the relation the index would apply to.
* 'accessMethodName': name of the AM to use.
* 'attributeList': a list of IndexElem specifying columns and expressions
* to index on.
* 'exclusionOpNames': list of names of exclusion-constraint operators,
* or NIL if not an exclusion constraint.
*
* This is tailored to the needs of ALTER TABLE ALTER TYPE, which recreates
* any indexes that depended on a changing column from their pg_get_indexdef
* or pg_get_constraintdef definitions. We omit some of the sanity checks of
* DefineIndex. We assume that the old and new indexes have the same number
* of columns and that if one has an expression column or predicate, both do.
* Errors arising from the attribute list still apply.
*
* Most column type changes that can skip a table rewrite do not invalidate
* indexes. We acknowledge this when all operator classes, collations and
* exclusion operators match. Though we could further permit intra-opfamily
* changes for btree and hash indexes, that adds subtle complexity with no
* concrete benefit for core types. Note, that INCLUDE columns aren't
* checked by this function, for them it's enough that table rewrite is
* skipped.
*
* When a comparison or exclusion operator has a polymorphic input type, the
* actual input types must also match. This defends against the possibility
* that operators could vary behavior in response to get_fn_expr_argtype().
* At present, this hazard is theoretical: check_exclusion_constraint() and
* all core index access methods decline to set fn_expr for such calls.
*
* We do not yet implement a test to verify compatibility of expression
* columns or predicates, so assume any such index is incompatible.
*/
bool
CheckIndexCompatible(Oid oldId,
const char *accessMethodName,
List *attributeList,
List *exclusionOpNames)
{
bool isconstraint;
Oid *typeObjectId;
Oid *collationObjectId;
Oid *classObjectId;
Oid accessMethodId;
Oid relationId;
HeapTuple tuple;
Form_pg_index indexForm;
Form_pg_am accessMethodForm;
IndexAmRoutine *amRoutine;
bool amcanorder;
int16 *coloptions;
IndexInfo *indexInfo;
int numberOfAttributes;
int old_natts;
bool isnull;
bool ret = true;
oidvector *old_indclass;
oidvector *old_indcollation;
Relation irel;
int i;
Datum d;
/* Caller should already have the relation locked in some way. */
relationId = IndexGetRelation(oldId, false);
/*
* We can pretend isconstraint = false unconditionally. It only serves to
* decide the text of an error message that should never happen for us.
*/
isconstraint = false;
numberOfAttributes = list_length(attributeList);
Assert(numberOfAttributes > 0);
Assert(numberOfAttributes <= INDEX_MAX_KEYS);
/* look up the access method */
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
accessMethodId = accessMethodForm->oid;
amRoutine = GetIndexAmRoutine(accessMethodForm->amhandler);
ReleaseSysCache(tuple);
amcanorder = amRoutine->amcanorder;
/*
* Compute the operator classes, collations, and exclusion operators for
* the new index, so we can test whether it's compatible with the existing
* one. Note that ComputeIndexAttrs might fail here, but that's OK:
* DefineIndex would have called this function with the same arguments
* later on, and it would have failed then anyway. Our attributeList
* contains only key attributes, thus we're filling ii_NumIndexAttrs and
* ii_NumIndexKeyAttrs with same value.
*/
indexInfo = makeIndexInfo(numberOfAttributes, numberOfAttributes,
accessMethodId, NIL, NIL, false, false, false);
typeObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
collationObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
classObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
coloptions = (int16 *) palloc(numberOfAttributes * sizeof(int16));
ComputeIndexAttrs(indexInfo,
typeObjectId, collationObjectId, classObjectId,
coloptions, attributeList,
exclusionOpNames, relationId,
accessMethodName, accessMethodId,
amcanorder, isconstraint);
/* Get the soon-obsolete pg_index tuple. */
tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldId));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for index %u", oldId);
indexForm = (Form_pg_index) GETSTRUCT(tuple);
/*
* We don't assess expressions or predicates; assume incompatibility.
* Also, if the index is invalid for any reason, treat it as incompatible.
*/
if (!(heap_attisnull(tuple, Anum_pg_index_indpred, NULL) &&
heap_attisnull(tuple, Anum_pg_index_indexprs, NULL) &&
indexForm->indisvalid))
{
ReleaseSysCache(tuple);
return false;
}
/* Any change in operator class or collation breaks compatibility. */
old_natts = indexForm->indnkeyatts;
Assert(old_natts == numberOfAttributes);
d = SysCacheGetAttr(INDEXRELID, tuple, Anum_pg_index_indcollation, &isnull);
Assert(!isnull);
old_indcollation = (oidvector *) DatumGetPointer(d);
d = SysCacheGetAttr(INDEXRELID, tuple, Anum_pg_index_indclass, &isnull);
Assert(!isnull);
old_indclass = (oidvector *) DatumGetPointer(d);
ret = (memcmp(old_indclass->values, classObjectId,
old_natts * sizeof(Oid)) == 0 &&
memcmp(old_indcollation->values, collationObjectId,
old_natts * sizeof(Oid)) == 0);
ReleaseSysCache(tuple);
if (!ret)
return false;
/* For polymorphic opcintype, column type changes break compatibility. */
irel = index_open(oldId, AccessShareLock); /* caller probably has a lock */
for (i = 0; i < old_natts; i++)
{
if (IsPolymorphicType(get_opclass_input_type(classObjectId[i])) &&
TupleDescAttr(irel->rd_att, i)->atttypid != typeObjectId[i])
{
ret = false;
break;
}
}
/* Any change in opclass options break compatibility. */
if (ret)
{
Datum *opclassOptions = RelationGetIndexRawAttOptions(irel);
ret = CompareOpclassOptions(opclassOptions,
indexInfo->ii_OpclassOptions, old_natts);
if (opclassOptions)
pfree(opclassOptions);
}
/* Any change in exclusion operator selections breaks compatibility. */
if (ret && indexInfo->ii_ExclusionOps != NULL)
{
Oid *old_operators,
*old_procs;
uint16 *old_strats;
RelationGetExclusionInfo(irel, &old_operators, &old_procs, &old_strats);
ret = memcmp(old_operators, indexInfo->ii_ExclusionOps,
old_natts * sizeof(Oid)) == 0;
/* Require an exact input type match for polymorphic operators. */
if (ret)
{
for (i = 0; i < old_natts && ret; i++)
{
Oid left,
right;
op_input_types(indexInfo->ii_ExclusionOps[i], &left, &right);
if ((IsPolymorphicType(left) || IsPolymorphicType(right)) &&
TupleDescAttr(irel->rd_att, i)->atttypid != typeObjectId[i])
{
ret = false;
break;
}
}
}
}
index_close(irel, NoLock);
return ret;
}
/*
* CompareOpclassOptions
*
* Compare per-column opclass options which are represented by arrays of text[]
* datums. Both elements of arrays and array themselves can be NULL.
*/
static bool
CompareOpclassOptions(Datum *opts1, Datum *opts2, int natts)
{
int i;
if (!opts1 && !opts2)
return true;
for (i = 0; i < natts; i++)
{
Datum opt1 = opts1 ? opts1[i] : (Datum) 0;
Datum opt2 = opts2 ? opts2[i] : (Datum) 0;
if (opt1 == (Datum) 0)
{
if (opt2 == (Datum) 0)
continue;
else
return false;
}
else if (opt2 == (Datum) 0)
return false;
/* Compare non-NULL text[] datums. */
if (!DatumGetBool(DirectFunctionCall2(array_eq, opt1, opt2)))
return false;
}
return true;
}
/*
* WaitForOlderSnapshots
*
* Wait for transactions that might have an older snapshot than the given xmin
* limit, because it might not contain tuples deleted just before it has
* been taken. Obtain a list of VXIDs of such transactions, and wait for them
* individually. This is used when building an index concurrently.
*
* We can exclude any running transactions that have xmin > the xmin given;
* their oldest snapshot must be newer than our xmin limit.
* We can also exclude any transactions that have xmin = zero, since they
* evidently have no live snapshot at all (and any one they might be in
* process of taking is certainly newer than ours). Transactions in other
* DBs can be ignored too, since they'll never even be able to see the
* index being worked on.
*
* We can also exclude autovacuum processes and processes running manual
* lazy VACUUMs, because they won't be fazed by missing index entries
* either. (Manual ANALYZEs, however, can't be excluded because they
* might be within transactions that are going to do arbitrary operations
* later.)
*
* Also, GetCurrentVirtualXIDs never reports our own vxid, so we need not
* check for that.
*
* If a process goes idle-in-transaction with xmin zero, we do not need to
* wait for it anymore, per the above argument. We do not have the
* infrastructure right now to stop waiting if that happens, but we can at
* least avoid the folly of waiting when it is idle at the time we would
* begin to wait. We do this by repeatedly rechecking the output of
* GetCurrentVirtualXIDs. If, during any iteration, a particular vxid
* doesn't show up in the output, we know we can forget about it.
*/
static void
WaitForOlderSnapshots(TransactionId limitXmin, bool progress)
{
int n_old_snapshots;
int i;
VirtualTransactionId *old_snapshots;
old_snapshots = GetCurrentVirtualXIDs(limitXmin, true, false,
PROC_IS_AUTOVACUUM | PROC_IN_VACUUM,
&n_old_snapshots);
if (progress)
pgstat_progress_update_param(PROGRESS_WAITFOR_TOTAL, n_old_snapshots);
for (i = 0; i < n_old_snapshots; i++)
{
if (!VirtualTransactionIdIsValid(old_snapshots[i]))
continue; /* found uninteresting in previous cycle */
if (i > 0)
{
/* see if anything's changed ... */
VirtualTransactionId *newer_snapshots;
int n_newer_snapshots;
int j;
int k;
newer_snapshots = GetCurrentVirtualXIDs(limitXmin,
true, false,
PROC_IS_AUTOVACUUM | PROC_IN_VACUUM,
&n_newer_snapshots);
for (j = i; j < n_old_snapshots; j++)
{
if (!VirtualTransactionIdIsValid(old_snapshots[j]))
continue; /* found uninteresting in previous cycle */
for (k = 0; k < n_newer_snapshots; k++)
{
if (VirtualTransactionIdEquals(old_snapshots[j],
newer_snapshots[k]))
break;
}
if (k >= n_newer_snapshots) /* not there anymore */
SetInvalidVirtualTransactionId(old_snapshots[j]);
}
pfree(newer_snapshots);
}
if (VirtualTransactionIdIsValid(old_snapshots[i]))
{
/* If requested, publish who we're going to wait for. */
if (progress)
{
PGPROC *holder = BackendIdGetProc(old_snapshots[i].backendId);
if (holder)
pgstat_progress_update_param(PROGRESS_WAITFOR_CURRENT_PID,
holder->pid);
}
VirtualXactLock(old_snapshots[i], true);
}
if (progress)
pgstat_progress_update_param(PROGRESS_WAITFOR_DONE, i + 1);
}
}
/*
* DefineIndex
* Creates a new index.
*
* 'relationId': the OID of the heap relation on which the index is to be
* created
* 'stmt': IndexStmt describing the properties of the new index.
* 'indexRelationId': normally InvalidOid, but during bootstrap can be
* nonzero to specify a preselected OID for the index.
* 'parentIndexId': the OID of the parent index; InvalidOid if not the child
* of a partitioned index.
* 'parentConstraintId': the OID of the parent constraint; InvalidOid if not
* the child of a constraint (only used when recursing)
* 'is_alter_table': this is due to an ALTER rather than a CREATE operation.
* 'check_rights': check for CREATE rights in namespace and tablespace. (This
* should be true except when ALTER is deleting/recreating an index.)
* 'check_not_in_use': check for table not already in use in current session.
* This should be true unless caller is holding the table open, in which
* case the caller had better have checked it earlier.
* 'skip_build': make the catalog entries but don't create the index files
* 'quiet': suppress the NOTICE chatter ordinarily provided for constraints.
*
* Returns the object address of the created index.
*/
ObjectAddress
DefineIndex(Oid relationId,
IndexStmt *stmt,
Oid indexRelationId,
Oid parentIndexId,
Oid parentConstraintId,
bool is_alter_table,
bool check_rights,
bool check_not_in_use,
bool skip_build,
bool quiet)
{
bool concurrent;
char *indexRelationName;
char *accessMethodName;
Oid *typeObjectId;
Oid *collationObjectId;
Oid *classObjectId;
Oid accessMethodId;
Oid namespaceId;
Oid tablespaceId;
Oid createdConstraintId = InvalidOid;
List *indexColNames;
List *allIndexParams;
Relation rel;
HeapTuple tuple;
Form_pg_am accessMethodForm;
IndexAmRoutine *amRoutine;
bool amcanorder;
amoptions_function amoptions;
bool partitioned;
Datum reloptions;
int16 *coloptions;
IndexInfo *indexInfo;
bits16 flags;
bits16 constr_flags;
int numberOfAttributes;
int numberOfKeyAttributes;
TransactionId limitXmin;
ObjectAddress address;
LockRelId heaprelid;
LOCKTAG heaplocktag;
LOCKMODE lockmode;
Snapshot snapshot;
int save_nestlevel = -1;
int i;
/*
* Some callers need us to run with an empty default_tablespace; this is a
* necessary hack to be able to reproduce catalog state accurately when
* recreating indexes after table-rewriting ALTER TABLE.
*/
if (stmt->reset_default_tblspc)
{
save_nestlevel = NewGUCNestLevel();
(void) set_config_option("default_tablespace", "",
PGC_USERSET, PGC_S_SESSION,
GUC_ACTION_SAVE, true, 0, false);
}
/*
* Force non-concurrent build on temporary relations, even if CONCURRENTLY
* was requested. Other backends can't access a temporary relation, so
* there's no harm in grabbing a stronger lock, and a non-concurrent DROP
* is more efficient. Do this before any use of the concurrent option is
* done.
*/
if (stmt->concurrent && get_rel_persistence(relationId) != RELPERSISTENCE_TEMP)
concurrent = true;
else
concurrent = false;
/*
* Start progress report. If we're building a partition, this was already
* done.
*/
if (!OidIsValid(parentIndexId))
{
pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
relationId);
pgstat_progress_update_param(PROGRESS_CREATEIDX_COMMAND,
concurrent ?
PROGRESS_CREATEIDX_COMMAND_CREATE_CONCURRENTLY :
PROGRESS_CREATEIDX_COMMAND_CREATE);
}
/*
* No index OID to report yet
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
InvalidOid);
/*
* count key attributes in index
*/
numberOfKeyAttributes = list_length(stmt->indexParams);
/*
* Calculate the new list of index columns including both key columns and
* INCLUDE columns. Later we can determine which of these are key
* columns, and which are just part of the INCLUDE list by checking the
* list position. A list item in a position less than ii_NumIndexKeyAttrs
* is part of the key columns, and anything equal to and over is part of
* the INCLUDE columns.
*/
allIndexParams = list_concat_copy(stmt->indexParams,
stmt->indexIncludingParams);
numberOfAttributes = list_length(allIndexParams);
if (numberOfAttributes <= 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("must specify at least one column")));
if (numberOfAttributes > INDEX_MAX_KEYS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("cannot use more than %d columns in an index",
INDEX_MAX_KEYS)));
/*
* Only SELECT ... FOR UPDATE/SHARE are allowed while doing a standard
* index build; but for concurrent builds we allow INSERT/UPDATE/DELETE
* (but not VACUUM).
*
* NB: Caller is responsible for making sure that relationId refers to the
* relation on which the index should be built; except in bootstrap mode,
* this will typically require the caller to have already locked the
* relation. To avoid lock upgrade hazards, that lock should be at least
* as strong as the one we take here.
*
* NB: If the lock strength here ever changes, code that is run by
* parallel workers under the control of certain particular ambuild
* functions will need to be updated, too.
*/
lockmode = concurrent ? ShareUpdateExclusiveLock : ShareLock;
rel = table_open(relationId, lockmode);
namespaceId = RelationGetNamespace(rel);
/* Ensure that it makes sense to index this kind of relation */
switch (rel->rd_rel->relkind)
{
case RELKIND_RELATION:
case RELKIND_MATVIEW:
case RELKIND_PARTITIONED_TABLE:
/* OK */
break;
case RELKIND_FOREIGN_TABLE:
/*
* Custom error message for FOREIGN TABLE since the term is close
* to a regular table and can confuse the user.
*/
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot create index on foreign table \"%s\"",
RelationGetRelationName(rel))));
break;
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or materialized view",
RelationGetRelationName(rel))));
break;
}
/*
* Establish behavior for partitioned tables, and verify sanity of
* parameters.
*
* We do not build an actual index in this case; we only create a few
* catalog entries. The actual indexes are built by recursing for each
* partition.
*/
partitioned = rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE;
if (partitioned)
{
/*
* Note: we check 'stmt->concurrent' rather than 'concurrent', so that
* the error is thrown also for temporary tables. Seems better to be
* consistent, even though we could do it on temporary table because
* we're not actually doing it concurrently.
*/
if (stmt->concurrent)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create index on partitioned table \"%s\" concurrently",
RelationGetRelationName(rel))));
if (stmt->excludeOpNames)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create exclusion constraints on partitioned table \"%s\"",
RelationGetRelationName(rel))));
}
/*
* Don't try to CREATE INDEX on temp tables of other backends.
*/
if (RELATION_IS_OTHER_TEMP(rel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create indexes on temporary tables of other sessions")));
/*
* Unless our caller vouches for having checked this already, insist that
* the table not be in use by our own session, either. Otherwise we might
* fail to make entries in the new index (for instance, if an INSERT or
* UPDATE is in progress and has already made its list of target indexes).
*/
if (check_not_in_use)
CheckTableNotInUse(rel, "CREATE INDEX");
/*
* Verify we (still) have CREATE rights in the rel's namespace.
* (Presumably we did when the rel was created, but maybe not anymore.)
* Skip check if caller doesn't want it. Also skip check if
* bootstrapping, since permissions machinery may not be working yet.
*/
if (check_rights && !IsBootstrapProcessingMode())
{
AclResult aclresult;
aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_SCHEMA,
get_namespace_name(namespaceId));
}
/*
* Select tablespace to use. If not specified, use default tablespace
* (which may in turn default to database's default).
*/
if (stmt->tableSpace)
{
tablespaceId = get_tablespace_oid(stmt->tableSpace, false);
if (partitioned && tablespaceId == MyDatabaseTableSpace)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot specify default tablespace for partitioned relations")));
}
else
{
tablespaceId = GetDefaultTablespace(rel->rd_rel->relpersistence,
partitioned);
/* note InvalidOid is OK in this case */
}
/* Check tablespace permissions */
if (check_rights &&
OidIsValid(tablespaceId) && tablespaceId != MyDatabaseTableSpace)
{
AclResult aclresult;
aclresult = pg_tablespace_aclcheck(tablespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_TABLESPACE,
get_tablespace_name(tablespaceId));
}
/*
* Force shared indexes into the pg_global tablespace. This is a bit of a
* hack but seems simpler than marking them in the BKI commands. On the
* other hand, if it's not shared, don't allow it to be placed there.
*/
if (rel->rd_rel->relisshared)
tablespaceId = GLOBALTABLESPACE_OID;
else if (tablespaceId == GLOBALTABLESPACE_OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("only shared relations can be placed in pg_global tablespace")));
/*
* Choose the index column names.
*/
indexColNames = ChooseIndexColumnNames(allIndexParams);
/*
* Select name for index if caller didn't specify
*/
indexRelationName = stmt->idxname;
if (indexRelationName == NULL)
indexRelationName = ChooseIndexName(RelationGetRelationName(rel),
namespaceId,
indexColNames,
stmt->excludeOpNames,
stmt->primary,
stmt->isconstraint);
/*
* look up the access method, verify it can handle the requested features
*/
accessMethodName = stmt->accessMethod;
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
if (!HeapTupleIsValid(tuple))
{
/*
* Hack to provide more-or-less-transparent updating of old RTREE
* indexes to GiST: if RTREE is requested and not found, use GIST.
*/
if (strcmp(accessMethodName, "rtree") == 0)
{
ereport(NOTICE,
(errmsg("substituting access method \"gist\" for obsolete method \"rtree\"")));
accessMethodName = "gist";
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
}
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
accessMethodId = accessMethodForm->oid;
amRoutine = GetIndexAmRoutine(accessMethodForm->amhandler);
pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
accessMethodId);
if (stmt->unique && !amRoutine->amcanunique)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support unique indexes",
accessMethodName)));
if (stmt->indexIncludingParams != NIL && !amRoutine->amcaninclude)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support included columns",
accessMethodName)));
if (numberOfAttributes > 1 && !amRoutine->amcanmulticol)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support multicolumn indexes",
accessMethodName)));
if (stmt->excludeOpNames && amRoutine->amgettuple == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support exclusion constraints",
accessMethodName)));
amcanorder = amRoutine->amcanorder;
amoptions = amRoutine->amoptions;
pfree(amRoutine);
ReleaseSysCache(tuple);
/*
* Validate predicate, if given
*/
if (stmt->whereClause)
CheckPredicate((Expr *) stmt->whereClause);
/*
* Parse AM-specific options, convert to text array form, validate.
*/
reloptions = transformRelOptions((Datum) 0, stmt->options,
NULL, NULL, false, false);
(void) index_reloptions(amoptions, reloptions, true);
/*
* Prepare arguments for index_create, primarily an IndexInfo structure.
* Note that predicates must be in implicit-AND format. In a concurrent
* build, mark it not-ready-for-inserts.
*/
indexInfo = makeIndexInfo(numberOfAttributes,
numberOfKeyAttributes,
accessMethodId,
NIL, /* expressions, NIL for now */
make_ands_implicit((Expr *) stmt->whereClause),
stmt->unique,
!concurrent,
concurrent);
typeObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
collationObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
classObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
coloptions = (int16 *) palloc(numberOfAttributes * sizeof(int16));
ComputeIndexAttrs(indexInfo,
typeObjectId, collationObjectId, classObjectId,
coloptions, allIndexParams,
stmt->excludeOpNames, relationId,
accessMethodName, accessMethodId,
amcanorder, stmt->isconstraint);
/*
* Extra checks when creating a PRIMARY KEY index.
*/
if (stmt->primary)
index_check_primary_key(rel, indexInfo, is_alter_table, stmt);
/*
* If this table is partitioned and we're creating a unique index or a
* primary key, make sure that the partition key is a subset of the
* index's columns. Otherwise it would be possible to violate uniqueness
* by putting values that ought to be unique in different partitions.
*
* We could lift this limitation if we had global indexes, but those have
* their own problems, so this is a useful feature combination.
*/
if (partitioned && (stmt->unique || stmt->primary))
{
PartitionKey key = RelationGetPartitionKey(rel);
const char *constraint_type;
int i;
if (stmt->primary)
constraint_type = "PRIMARY KEY";
else if (stmt->unique)
constraint_type = "UNIQUE";
else if (stmt->excludeOpNames != NIL)
constraint_type = "EXCLUDE";
else
{
elog(ERROR, "unknown constraint type");
constraint_type = NULL; /* keep compiler quiet */
}
/*
* Verify that all the columns in the partition key appear in the
* unique key definition, with the same notion of equality.
*/
for (i = 0; i < key->partnatts; i++)
{
bool found = false;
int eq_strategy;
Oid ptkey_eqop;
int j;
/*
* Identify the equality operator associated with this partkey
* column. For list and range partitioning, partkeys use btree
* operator classes; hash partitioning uses hash operator classes.
* (Keep this in sync with ComputePartitionAttrs!)
*/
if (key->strategy == PARTITION_STRATEGY_HASH)
eq_strategy = HTEqualStrategyNumber;
else
eq_strategy = BTEqualStrategyNumber;
ptkey_eqop = get_opfamily_member(key->partopfamily[i],
key->partopcintype[i],
key->partopcintype[i],
eq_strategy);
if (!OidIsValid(ptkey_eqop))
elog(ERROR, "missing operator %d(%u,%u) in partition opfamily %u",
eq_strategy, key->partopcintype[i], key->partopcintype[i],
key->partopfamily[i]);
/*
* We'll need to be able to identify the equality operators
* associated with index columns, too. We know what to do with
* btree opclasses; if there are ever any other index types that
* support unique indexes, this logic will need extension.
*/
if (accessMethodId == BTREE_AM_OID)
eq_strategy = BTEqualStrategyNumber;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot match partition key to an index using access method \"%s\"",
accessMethodName)));
/*
* It may be possible to support UNIQUE constraints when partition
* keys are expressions, but is it worth it? Give up for now.
*/
if (key->partattrs[i] == 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported %s constraint with partition key definition",
constraint_type),
errdetail("%s constraints cannot be used when partition keys include expressions.",
constraint_type)));
/* Search the index column(s) for a match */
for (j = 0; j < indexInfo->ii_NumIndexKeyAttrs; j++)
{
if (key->partattrs[i] == indexInfo->ii_IndexAttrNumbers[j])
{
/* Matched the column, now what about the equality op? */
Oid idx_opfamily;
Oid idx_opcintype;
if (get_opclass_opfamily_and_input_type(classObjectId[j],
&idx_opfamily,
&idx_opcintype))
{
Oid idx_eqop;
idx_eqop = get_opfamily_member(idx_opfamily,
idx_opcintype,
idx_opcintype,
eq_strategy);
if (ptkey_eqop == idx_eqop)
{
found = true;
break;
}
}
}
}
if (!found)
{
Form_pg_attribute att;
att = TupleDescAttr(RelationGetDescr(rel),
key->partattrs[i] - 1);
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("insufficient columns in %s constraint definition",
constraint_type),
errdetail("%s constraint on table \"%s\" lacks column \"%s\" which is part of the partition key.",
constraint_type, RelationGetRelationName(rel),
NameStr(att->attname))));
}
}
}
/*
* We disallow indexes on system columns. They would not necessarily get
* updated correctly, and they don't seem useful anyway.
*/
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
{
AttrNumber attno = indexInfo->ii_IndexAttrNumbers[i];
if (attno < 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("index creation on system columns is not supported")));
}
/*
* Also check for system columns used in expressions or predicates.
*/
if (indexInfo->ii_Expressions || indexInfo->ii_Predicate)
{
Bitmapset *indexattrs = NULL;
pull_varattnos((Node *) indexInfo->ii_Expressions, 1, &indexattrs);
pull_varattnos((Node *) indexInfo->ii_Predicate, 1, &indexattrs);
for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
{
if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber,
indexattrs))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("index creation on system columns is not supported")));
}
}
/*
* Report index creation if appropriate (delay this till after most of the
* error checks)
*/
if (stmt->isconstraint && !quiet)
{
const char *constraint_type;
if (stmt->primary)
constraint_type = "PRIMARY KEY";
else if (stmt->unique)
constraint_type = "UNIQUE";
else if (stmt->excludeOpNames != NIL)
constraint_type = "EXCLUDE";
else
{
elog(ERROR, "unknown constraint type");
constraint_type = NULL; /* keep compiler quiet */
}
ereport(DEBUG1,
(errmsg("%s %s will create implicit index \"%s\" for table \"%s\"",
is_alter_table ? "ALTER TABLE / ADD" : "CREATE TABLE /",
constraint_type,
indexRelationName, RelationGetRelationName(rel))));
}
/*
* A valid stmt->oldNode implies that we already have a built form of the
* index. The caller should also decline any index build.
*/
Assert(!OidIsValid(stmt->oldNode) || (skip_build && !concurrent));
/*
* Make the catalog entries for the index, including constraints. This
* step also actually builds the index, except if caller requested not to
* or in concurrent mode, in which case it'll be done later, or doing a
* partitioned index (because those don't have storage).
*/
flags = constr_flags = 0;
if (stmt->isconstraint)
flags |= INDEX_CREATE_ADD_CONSTRAINT;
if (skip_build || concurrent || partitioned)
flags |= INDEX_CREATE_SKIP_BUILD;
if (stmt->if_not_exists)
flags |= INDEX_CREATE_IF_NOT_EXISTS;
if (concurrent)
flags |= INDEX_CREATE_CONCURRENT;
if (partitioned)
flags |= INDEX_CREATE_PARTITIONED;
if (stmt->primary)
flags |= INDEX_CREATE_IS_PRIMARY;
/*
* If the table is partitioned, and recursion was declined but partitions
* exist, mark the index as invalid.
*/
if (partitioned && stmt->relation && !stmt->relation->inh)
{
PartitionDesc pd = RelationGetPartitionDesc(rel);
if (pd->nparts != 0)
flags |= INDEX_CREATE_INVALID;
}
if (stmt->deferrable)
constr_flags |= INDEX_CONSTR_CREATE_DEFERRABLE;
if (stmt->initdeferred)
constr_flags |= INDEX_CONSTR_CREATE_INIT_DEFERRED;
indexRelationId =
index_create(rel, indexRelationName, indexRelationId, parentIndexId,
parentConstraintId,
stmt->oldNode, indexInfo, indexColNames,
accessMethodId, tablespaceId,
collationObjectId, classObjectId,
coloptions, reloptions,
flags, constr_flags,
allowSystemTableMods, !check_rights,
&createdConstraintId);
ObjectAddressSet(address, RelationRelationId, indexRelationId);
/*
* Revert to original default_tablespace. Must do this before any return
* from this function, but after index_create, so this is a good time.
*/
if (save_nestlevel >= 0)
AtEOXact_GUC(true, save_nestlevel);
if (!OidIsValid(indexRelationId))
{
table_close(rel, NoLock);
/* If this is the top-level index, we're done */
if (!OidIsValid(parentIndexId))
pgstat_progress_end_command();
return address;
}
/* Add any requested comment */
if (stmt->idxcomment != NULL)
CreateComments(indexRelationId, RelationRelationId, 0,
stmt->idxcomment);
if (partitioned)
{
/*
* Unless caller specified to skip this step (via ONLY), process each
* partition to make sure they all contain a corresponding index.
*
* If we're called internally (no stmt->relation), recurse always.
*/
if (!stmt->relation || stmt->relation->inh)
{
PartitionDesc partdesc = RelationGetPartitionDesc(rel);
int nparts = partdesc->nparts;
Oid *part_oids = palloc(sizeof(Oid) * nparts);
bool invalidate_parent = false;
TupleDesc parentDesc;
Oid *opfamOids;
pgstat_progress_update_param(PROGRESS_CREATEIDX_PARTITIONS_TOTAL,
nparts);
memcpy(part_oids, partdesc->oids, sizeof(Oid) * nparts);
parentDesc = RelationGetDescr(rel);
opfamOids = palloc(sizeof(Oid) * numberOfKeyAttributes);
for (i = 0; i < numberOfKeyAttributes; i++)
opfamOids[i] = get_opclass_family(classObjectId[i]);
/*
* For each partition, scan all existing indexes; if one matches
* our index definition and is not already attached to some other
* parent index, attach it to the one we just created.
*
* If none matches, build a new index by calling ourselves
* recursively with the same options (except for the index name).
*/
for (i = 0; i < nparts; i++)
{
Oid childRelid = part_oids[i];
Relation childrel;
List *childidxs;
ListCell *cell;
AttrMap *attmap;
bool found = false;
childrel = table_open(childRelid, lockmode);
/*
* Don't try to create indexes on foreign tables, though. Skip
* those if a regular index, or fail if trying to create a
* constraint index.
*/
if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
{
if (stmt->unique || stmt->primary)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot create unique index on partitioned table \"%s\"",
RelationGetRelationName(rel)),
errdetail("Table \"%s\" contains partitions that are foreign tables.",
RelationGetRelationName(rel))));
table_close(childrel, lockmode);
continue;
}
childidxs = RelationGetIndexList(childrel);
attmap =
build_attrmap_by_name(RelationGetDescr(childrel),
parentDesc);
foreach(cell, childidxs)
{
Oid cldidxid = lfirst_oid(cell);
Relation cldidx;
IndexInfo *cldIdxInfo;
/* this index is already partition of another one */
if (has_superclass(cldidxid))
continue;
cldidx = index_open(cldidxid, lockmode);
cldIdxInfo = BuildIndexInfo(cldidx);
if (CompareIndexInfo(cldIdxInfo, indexInfo,
cldidx->rd_indcollation,
collationObjectId,
cldidx->rd_opfamily,
opfamOids,
attmap))
{
Oid cldConstrOid = InvalidOid;
/*
* Found a match.
*
* If this index is being created in the parent
* because of a constraint, then the child needs to
* have a constraint also, so look for one. If there
* is no such constraint, this index is no good, so
* keep looking.
*/
if (createdConstraintId != InvalidOid)
{
cldConstrOid =
get_relation_idx_constraint_oid(childRelid,
cldidxid);
if (cldConstrOid == InvalidOid)
{
index_close(cldidx, lockmode);
continue;
}
}
/* Attach index to parent and we're done. */
IndexSetParentIndex(cldidx, indexRelationId);
if (createdConstraintId != InvalidOid)
ConstraintSetParentConstraint(cldConstrOid,
createdConstraintId,
childRelid);
if (!cldidx->rd_index->indisvalid)
invalidate_parent = true;
found = true;
/* keep lock till commit */
index_close(cldidx, NoLock);
break;
}
index_close(cldidx, lockmode);
}
list_free(childidxs);
table_close(childrel, NoLock);
/*
* If no matching index was found, create our own.
*/
if (!found)
{
IndexStmt *childStmt = copyObject(stmt);
bool found_whole_row;
ListCell *lc;
/*
* We can't use the same index name for the child index,
* so clear idxname to let the recursive invocation choose
* a new name. Likewise, the existing target relation
* field is wrong, and if indexOid or oldNode are set,
* they mustn't be applied to the child either.
*/
childStmt->idxname = NULL;
childStmt->relation = NULL;
childStmt->indexOid = InvalidOid;
childStmt->oldNode = InvalidOid;
childStmt->oldCreateSubid = InvalidSubTransactionId;
childStmt->oldFirstRelfilenodeSubid = InvalidSubTransactionId;
/*
* Adjust any Vars (both in expressions and in the index's
* WHERE clause) to match the partition's column numbering
* in case it's different from the parent's.
*/
foreach(lc, childStmt->indexParams)
{
IndexElem *ielem = lfirst(lc);
/*
* If the index parameter is an expression, we must
* translate it to contain child Vars.
*/
if (ielem->expr)
{
ielem->expr =
map_variable_attnos((Node *) ielem->expr,
1, 0, attmap,
InvalidOid,
&found_whole_row);
if (found_whole_row)
elog(ERROR, "cannot convert whole-row table reference");
}
}
childStmt->whereClause =
map_variable_attnos(stmt->whereClause, 1, 0,
attmap,
InvalidOid, &found_whole_row);
if (found_whole_row)
elog(ERROR, "cannot convert whole-row table reference");
DefineIndex(childRelid, childStmt,
InvalidOid, /* no predefined OID */
indexRelationId, /* this is our child */
createdConstraintId,
is_alter_table, check_rights, check_not_in_use,
skip_build, quiet);
}
pgstat_progress_update_param(PROGRESS_CREATEIDX_PARTITIONS_DONE,
i + 1);
free_attrmap(attmap);
}
/*
* The pg_index row we inserted for this index was marked
* indisvalid=true. But if we attached an existing index that is
* invalid, this is incorrect, so update our row to invalid too.
*/
if (invalidate_parent)
{
Relation pg_index = table_open(IndexRelationId, RowExclusiveLock);
HeapTuple tup,
newtup;
tup = SearchSysCache1(INDEXRELID,
ObjectIdGetDatum(indexRelationId));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for index %u",
indexRelationId);
newtup = heap_copytuple(tup);
((Form_pg_index) GETSTRUCT(newtup))->indisvalid = false;
CatalogTupleUpdate(pg_index, &tup->t_self, newtup);
ReleaseSysCache(tup);
table_close(pg_index, RowExclusiveLock);
heap_freetuple(newtup);
}
}
/*
* Indexes on partitioned tables are not themselves built, so we're
* done here.
*/
table_close(rel, NoLock);
if (!OidIsValid(parentIndexId))
pgstat_progress_end_command();
return address;
}
if (!concurrent)
{
/* Close the heap and we're done, in the non-concurrent case */
table_close(rel, NoLock);
/* If this is the top-level index, we're done. */
if (!OidIsValid(parentIndexId))
pgstat_progress_end_command();
return address;
}
/* save lockrelid and locktag for below, then close rel */
heaprelid = rel->rd_lockInfo.lockRelId;
SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
table_close(rel, NoLock);
/*
* For a concurrent build, it's important to make the catalog entries
* visible to other transactions before we start to build the index. That
* will prevent them from making incompatible HOT updates. The new index
* will be marked not indisready and not indisvalid, so that no one else
* tries to either insert into it or use it for queries.
*
* We must commit our current transaction so that the index becomes
* visible; then start another. Note that all the data structures we just
* built are lost in the commit. The only data we keep past here are the
* relation IDs.
*
* Before committing, get a session-level lock on the table, to ensure
* that neither it nor the index can be dropped before we finish. This
* cannot block, even if someone else is waiting for access, because we
* already have the same lock within our transaction.
*
* Note: we don't currently bother with a session lock on the index,
* because there are no operations that could change its state while we
* hold lock on the parent table. This might need to change later.
*/
LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
PopActiveSnapshot();
CommitTransactionCommand();
StartTransactionCommand();
/*
* The index is now visible, so we can report the OID.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
indexRelationId);
/*
* Phase 2 of concurrent index build (see comments for validate_index()
* for an overview of how this works)
*
* Now we must wait until no running transaction could have the table open
* with the old list of indexes. Use ShareLock to consider running
* transactions that hold locks that permit writing to the table. Note we
* do not need to worry about xacts that open the table for writing after
* this point; they will see the new index when they open it.
*
* Note: the reason we use actual lock acquisition here, rather than just
* checking the ProcArray and sleeping, is that deadlock is possible if
* one of the transactions in question is blocked trying to acquire an
* exclusive lock on our table. The lock code will detect deadlock and
* error out properly.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_1);
WaitForLockers(heaplocktag, ShareLock, true);
/*
* At this moment we are sure that there are no transactions with the
* table open for write that don't have this new index in their list of
* indexes. We have waited out all the existing transactions and any new
* transaction will have the new index in its list, but the index is still
* marked as "not-ready-for-inserts". The index is consulted while
* deciding HOT-safety though. This arrangement ensures that no new HOT
* chains can be created where the new tuple and the old tuple in the
* chain have different index keys.
*
* We now take a new snapshot, and build the index using all tuples that
* are visible in this snapshot. We can be sure that any HOT updates to
* these tuples will be compatible with the index, since any updates made
* by transactions that didn't know about the index are now committed or
* rolled back. Thus, each visible tuple is either the end of its
* HOT-chain or the extension of the chain is HOT-safe for this index.
*/
/* Set ActiveSnapshot since functions in the indexes may need it */
PushActiveSnapshot(GetTransactionSnapshot());
/* Perform concurrent build of index */
index_concurrently_build(relationId, indexRelationId);
/* we can do away with our snapshot */
PopActiveSnapshot();
/*
* Commit this transaction to make the indisready update visible.
*/
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 3 of concurrent index build
*
* We once again wait until no transaction can have the table open with
* the index marked as read-only for updates.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_2);
WaitForLockers(heaplocktag, ShareLock, true);
/*
* Now take the "reference snapshot" that will be used by validate_index()
* to filter candidate tuples. Beware! There might still be snapshots in
* use that treat some transaction as in-progress that our reference
* snapshot treats as committed. If such a recently-committed transaction
* deleted tuples in the table, we will not include them in the index; yet
* those transactions which see the deleting one as still-in-progress will
* expect such tuples to be there once we mark the index as valid.
*
* We solve this by waiting for all endangered transactions to exit before
* we mark the index as valid.
*
* We also set ActiveSnapshot to this snap, since functions in indexes may
* need a snapshot.
*/
snapshot = RegisterSnapshot(GetTransactionSnapshot());
PushActiveSnapshot(snapshot);
/*
* Scan the index and the heap, insert any missing index entries.
*/
validate_index(relationId, indexRelationId, snapshot);
/*
* Drop the reference snapshot. We must do this before waiting out other
* snapshot holders, else we will deadlock against other processes also
* doing CREATE INDEX CONCURRENTLY, which would see our snapshot as one
* they must wait for. But first, save the snapshot's xmin to use as
* limitXmin for GetCurrentVirtualXIDs().
*/
limitXmin = snapshot->xmin;
PopActiveSnapshot();
UnregisterSnapshot(snapshot);
/*
* The snapshot subsystem could still contain registered snapshots that
* are holding back our process's advertised xmin; in particular, if
* default_transaction_isolation = serializable, there is a transaction
* snapshot that is still active. The CatalogSnapshot is likewise a
* hazard. To ensure no deadlocks, we must commit and start yet another
* transaction, and do our wait before any snapshot has been taken in it.
*/
CommitTransactionCommand();
StartTransactionCommand();
/* We should now definitely not be advertising any xmin. */
Assert(MyProc->xmin == InvalidTransactionId);
/*
* The index is now valid in the sense that it contains all currently
* interesting tuples. But since it might not contain tuples deleted just
* before the reference snap was taken, we have to wait out any
* transactions that might have older snapshots.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_3);
WaitForOlderSnapshots(limitXmin, true);
/*
* Index can now be marked valid -- update its pg_index entry
*/
index_set_state_flags(indexRelationId, INDEX_CREATE_SET_VALID);
/*
* The pg_index update will cause backends (including this one) to update
* relcache entries for the index itself, but we should also send a
* relcache inval on the parent table to force replanning of cached plans.
* Otherwise existing sessions might fail to use the new index where it
* would be useful. (Note that our earlier commits did not create reasons
* to replan; so relcache flush on the index itself was sufficient.)
*/
CacheInvalidateRelcacheByRelid(heaprelid.relId);
/*
* Last thing to do is release the session-level lock on the parent table.
*/
UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
pgstat_progress_end_command();
return address;
}
/*
* CheckMutability
* Test whether given expression is mutable
*/
static bool
CheckMutability(Expr *expr)
{
/*
* First run the expression through the planner. This has a couple of
* important consequences. First, function default arguments will get
* inserted, which may affect volatility (consider "default now()").
* Second, inline-able functions will get inlined, which may allow us to
* conclude that the function is really less volatile than it's marked. As
* an example, polymorphic functions must be marked with the most volatile
* behavior that they have for any input type, but once we inline the
* function we may be able to conclude that it's not so volatile for the
* particular input type we're dealing with.
*
* We assume here that expression_planner() won't scribble on its input.
*/
expr = expression_planner(expr);
/* Now we can search for non-immutable functions */
return contain_mutable_functions((Node *) expr);
}
/*
* CheckPredicate
* Checks that the given partial-index predicate is valid.
*
* This used to also constrain the form of the predicate to forms that
* indxpath.c could do something with. However, that seems overly
* restrictive. One useful application of partial indexes is to apply
* a UNIQUE constraint across a subset of a table, and in that scenario
* any evaluable predicate will work. So accept any predicate here
* (except ones requiring a plan), and let indxpath.c fend for itself.
*/
static void
CheckPredicate(Expr *predicate)
{
/*
* transformExpr() should have already rejected subqueries, aggregates,
* and window functions, based on the EXPR_KIND_ for a predicate.
*/
/*
* A predicate using mutable functions is probably wrong, for the same
* reasons that we don't allow an index expression to use one.
*/
if (CheckMutability(predicate))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("functions in index predicate must be marked IMMUTABLE")));
}
/*
* Compute per-index-column information, including indexed column numbers
* or index expressions, opclasses and their options. Note, all output vectors
* should be allocated for all columns, including "including" ones.
*/
static void
ComputeIndexAttrs(IndexInfo *indexInfo,
Oid *typeOidP,
Oid *collationOidP,
Oid *classOidP,
int16 *colOptionP,
List *attList, /* list of IndexElem's */
List *exclusionOpNames,
Oid relId,
const char *accessMethodName,
Oid accessMethodId,
bool amcanorder,
bool isconstraint)
{
ListCell *nextExclOp;
ListCell *lc;
int attn;
int nkeycols = indexInfo->ii_NumIndexKeyAttrs;
/* Allocate space for exclusion operator info, if needed */
if (exclusionOpNames)
{
Assert(list_length(exclusionOpNames) == nkeycols);
indexInfo->ii_ExclusionOps = (Oid *) palloc(sizeof(Oid) * nkeycols);
indexInfo->ii_ExclusionProcs = (Oid *) palloc(sizeof(Oid) * nkeycols);
indexInfo->ii_ExclusionStrats = (uint16 *) palloc(sizeof(uint16) * nkeycols);
nextExclOp = list_head(exclusionOpNames);
}
else
nextExclOp = NULL;
/*
* process attributeList
*/
attn = 0;
foreach(lc, attList)
{
IndexElem *attribute = (IndexElem *) lfirst(lc);
Oid atttype;
Oid attcollation;
/*
* Process the column-or-expression to be indexed.
*/
if (attribute->name != NULL)
{
/* Simple index attribute */
HeapTuple atttuple;
Form_pg_attribute attform;
Assert(attribute->expr == NULL);
atttuple = SearchSysCacheAttName(relId, attribute->name);
if (!HeapTupleIsValid(atttuple))
{
/* difference in error message spellings is historical */
if (isconstraint)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" named in key does not exist",
attribute->name)));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" does not exist",
attribute->name)));
}
attform = (Form_pg_attribute) GETSTRUCT(atttuple);
indexInfo->ii_IndexAttrNumbers[attn] = attform->attnum;
atttype = attform->atttypid;
attcollation = attform->attcollation;
ReleaseSysCache(atttuple);
}
else
{
/* Index expression */
Node *expr = attribute->expr;
Assert(expr != NULL);
if (attn >= nkeycols)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("expressions are not supported in included columns")));
atttype = exprType(expr);
attcollation = exprCollation(expr);
/*
* Strip any top-level COLLATE clause. This ensures that we treat
* "x COLLATE y" and "(x COLLATE y)" alike.
*/
while (IsA(expr, CollateExpr))
expr = (Node *) ((CollateExpr *) expr)->arg;
if (IsA(expr, Var) &&
((Var *) expr)->varattno != InvalidAttrNumber)
{
/*
* User wrote "(column)" or "(column COLLATE something)".
* Treat it like simple attribute anyway.
*/
indexInfo->ii_IndexAttrNumbers[attn] = ((Var *) expr)->varattno;
}
else
{
indexInfo->ii_IndexAttrNumbers[attn] = 0; /* marks expression */
indexInfo->ii_Expressions = lappend(indexInfo->ii_Expressions,
expr);
/*
* transformExpr() should have already rejected subqueries,
* aggregates, and window functions, based on the EXPR_KIND_
* for an index expression.
*/
/*
* An expression using mutable functions is probably wrong,
* since if you aren't going to get the same result for the
* same data every time, it's not clear what the index entries
* mean at all.
*/
if (CheckMutability((Expr *) expr))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("functions in index expression must be marked IMMUTABLE")));
}
}
typeOidP[attn] = atttype;
/*
* Included columns have no collation, no opclass and no ordering
* options.
*/
if (attn >= nkeycols)
{
if (attribute->collation)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support a collation")));
if (attribute->opclass)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support an operator class")));
if (attribute->ordering != SORTBY_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support ASC/DESC options")));
if (attribute->nulls_ordering != SORTBY_NULLS_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support NULLS FIRST/LAST options")));
classOidP[attn] = InvalidOid;
colOptionP[attn] = 0;
collationOidP[attn] = InvalidOid;
attn++;
continue;
}
/*
* Apply collation override if any
*/
if (attribute->collation)
attcollation = get_collation_oid(attribute->collation, false);
/*
* Check we have a collation iff it's a collatable type. The only
* expected failures here are (1) COLLATE applied to a noncollatable
* type, or (2) index expression had an unresolved collation. But we
* might as well code this to be a complete consistency check.
*/
if (type_is_collatable(atttype))
{
if (!OidIsValid(attcollation))
ereport(ERROR,
(errcode(ERRCODE_INDETERMINATE_COLLATION),
errmsg("could not determine which collation to use for index expression"),
errhint("Use the COLLATE clause to set the collation explicitly.")));
}
else
{
if (OidIsValid(attcollation))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("collations are not supported by type %s",
format_type_be(atttype))));
}
collationOidP[attn] = attcollation;
/*
* Identify the opclass to use.
*/
classOidP[attn] = ResolveOpClass(attribute->opclass,
atttype,
accessMethodName,
accessMethodId);
/*
* Identify the exclusion operator, if any.
*/
if (nextExclOp)
{
List *opname = (List *) lfirst(nextExclOp);
Oid opid;
Oid opfamily;
int strat;
/*
* Find the operator --- it must accept the column datatype
* without runtime coercion (but binary compatibility is OK)
*/
opid = compatible_oper_opid(opname, atttype, atttype, false);
/*
* Only allow commutative operators to be used in exclusion
* constraints. If X conflicts with Y, but Y does not conflict
* with X, bad things will happen.
*/
if (get_commutator(opid) != opid)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("operator %s is not commutative",
format_operator(opid)),
errdetail("Only commutative operators can be used in exclusion constraints.")));
/*
* Operator must be a member of the right opfamily, too
*/
opfamily = get_opclass_family(classOidP[attn]);
strat = get_op_opfamily_strategy(opid, opfamily);
if (strat == 0)
{
HeapTuple opftuple;
Form_pg_opfamily opfform;
/*
* attribute->opclass might not explicitly name the opfamily,
* so fetch the name of the selected opfamily for use in the
* error message.
*/
opftuple = SearchSysCache1(OPFAMILYOID,
ObjectIdGetDatum(opfamily));
if (!HeapTupleIsValid(opftuple))
elog(ERROR, "cache lookup failed for opfamily %u",
opfamily);
opfform = (Form_pg_opfamily) GETSTRUCT(opftuple);
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("operator %s is not a member of operator family \"%s\"",
format_operator(opid),
NameStr(opfform->opfname)),
errdetail("The exclusion operator must be related to the index operator class for the constraint.")));
}
indexInfo->ii_ExclusionOps[attn] = opid;
indexInfo->ii_ExclusionProcs[attn] = get_opcode(opid);
indexInfo->ii_ExclusionStrats[attn] = strat;
nextExclOp = lnext(exclusionOpNames, nextExclOp);
}
/*
* Set up the per-column options (indoption field). For now, this is
* zero for any un-ordered index, while ordered indexes have DESC and
* NULLS FIRST/LAST options.
*/
colOptionP[attn] = 0;
if (amcanorder)
{
/* default ordering is ASC */
if (attribute->ordering == SORTBY_DESC)
colOptionP[attn] |= INDOPTION_DESC;
/* default null ordering is LAST for ASC, FIRST for DESC */
if (attribute->nulls_ordering == SORTBY_NULLS_DEFAULT)
{
if (attribute->ordering == SORTBY_DESC)
colOptionP[attn] |= INDOPTION_NULLS_FIRST;
}
else if (attribute->nulls_ordering == SORTBY_NULLS_FIRST)
colOptionP[attn] |= INDOPTION_NULLS_FIRST;
}
else
{
/* index AM does not support ordering */
if (attribute->ordering != SORTBY_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support ASC/DESC options",
accessMethodName)));
if (attribute->nulls_ordering != SORTBY_NULLS_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support NULLS FIRST/LAST options",
accessMethodName)));
}
/* Set up the per-column opclass options (attoptions field). */
if (attribute->opclassopts)
{
Assert(attn < nkeycols);
if (!indexInfo->ii_OpclassOptions)
indexInfo->ii_OpclassOptions =
palloc0(sizeof(Datum) * indexInfo->ii_NumIndexAttrs);
indexInfo->ii_OpclassOptions[attn] =
transformRelOptions((Datum) 0, attribute->opclassopts,
NULL, NULL, false, false);
}
attn++;
}
}
/*
* Resolve possibly-defaulted operator class specification
*
* Note: This is used to resolve operator class specifications in index and
* partition key definitions.
*/
Oid
ResolveOpClass(List *opclass, Oid attrType,
const char *accessMethodName, Oid accessMethodId)
{
char *schemaname;
char *opcname;
HeapTuple tuple;
Form_pg_opclass opform;
Oid opClassId,
opInputType;
if (opclass == NIL)
{
/* no operator class specified, so find the default */
opClassId = GetDefaultOpClass(attrType, accessMethodId);
if (!OidIsValid(opClassId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("data type %s has no default operator class for access method \"%s\"",
format_type_be(attrType), accessMethodName),
errhint("You must specify an operator class for the index or define a default operator class for the data type.")));
return opClassId;
}
/*
* Specific opclass name given, so look up the opclass.
*/
/* deconstruct the name list */
DeconstructQualifiedName(opclass, &schemaname, &opcname);
if (schemaname)
{
/* Look in specific schema only */
Oid namespaceId;
namespaceId = LookupExplicitNamespace(schemaname, false);
tuple = SearchSysCache3(CLAAMNAMENSP,
ObjectIdGetDatum(accessMethodId),
PointerGetDatum(opcname),
ObjectIdGetDatum(namespaceId));
}
else
{
/* Unqualified opclass name, so search the search path */
opClassId = OpclassnameGetOpcid(accessMethodId, opcname);
if (!OidIsValid(opClassId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("operator class \"%s\" does not exist for access method \"%s\"",
opcname, accessMethodName)));
tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opClassId));
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("operator class \"%s\" does not exist for access method \"%s\"",
NameListToString(opclass), accessMethodName)));
/*
* Verify that the index operator class accepts this datatype. Note we
* will accept binary compatibility.
*/
opform = (Form_pg_opclass) GETSTRUCT(tuple);
opClassId = opform->oid;
opInputType = opform->opcintype;
if (!IsBinaryCoercible(attrType, opInputType))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("operator class \"%s\" does not accept data type %s",
NameListToString(opclass), format_type_be(attrType))));
ReleaseSysCache(tuple);
return opClassId;
}
/*
* GetDefaultOpClass
*
* Given the OIDs of a datatype and an access method, find the default
* operator class, if any. Returns InvalidOid if there is none.
*/
Oid
GetDefaultOpClass(Oid type_id, Oid am_id)
{
Oid result = InvalidOid;
int nexact = 0;
int ncompatible = 0;
int ncompatiblepreferred = 0;
Relation rel;
ScanKeyData skey[1];
SysScanDesc scan;
HeapTuple tup;
TYPCATEGORY tcategory;
/* If it's a domain, look at the base type instead */
type_id = getBaseType(type_id);
tcategory = TypeCategory(type_id);
/*
* We scan through all the opclasses available for the access method,
* looking for one that is marked default and matches the target type
* (either exactly or binary-compatibly, but prefer an exact match).
*
* We could find more than one binary-compatible match. If just one is
* for a preferred type, use that one; otherwise we fail, forcing the user
* to specify which one he wants. (The preferred-type special case is a
* kluge for varchar: it's binary-compatible to both text and bpchar, so
* we need a tiebreaker.) If we find more than one exact match, then
* someone put bogus entries in pg_opclass.
*/
rel = table_open(OperatorClassRelationId, AccessShareLock);
ScanKeyInit(&skey[0],
Anum_pg_opclass_opcmethod,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(am_id));
scan = systable_beginscan(rel, OpclassAmNameNspIndexId, true,
NULL, 1, skey);
while (HeapTupleIsValid(tup = systable_getnext(scan)))
{
Form_pg_opclass opclass = (Form_pg_opclass) GETSTRUCT(tup);
/* ignore altogether if not a default opclass */
if (!opclass->opcdefault)
continue;
if (opclass->opcintype == type_id)
{
nexact++;
result = opclass->oid;
}
else if (nexact == 0 &&
IsBinaryCoercible(type_id, opclass->opcintype))
{
if (IsPreferredType(tcategory, opclass->opcintype))
{
ncompatiblepreferred++;
result = opclass->oid;
}
else if (ncompatiblepreferred == 0)
{
ncompatible++;
result = opclass->oid;
}
}
}
systable_endscan(scan);
table_close(rel, AccessShareLock);
/* raise error if pg_opclass contains inconsistent data */
if (nexact > 1)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("there are multiple default operator classes for data type %s",
format_type_be(type_id))));
if (nexact == 1 ||
ncompatiblepreferred == 1 ||
(ncompatiblepreferred == 0 && ncompatible == 1))
return result;
return InvalidOid;
}
/*
* makeObjectName()
*
* Create a name for an implicitly created index, sequence, constraint,
* extended statistics, etc.
*
* The parameters are typically: the original table name, the original field
* name, and a "type" string (such as "seq" or "pkey"). The field name
* and/or type can be NULL if not relevant.
*
* The result is a palloc'd string.
*
* The basic result we want is "name1_name2_label", omitting "_name2" or
* "_label" when those parameters are NULL. However, we must generate
* a name with less than NAMEDATALEN characters! So, we truncate one or
* both names if necessary to make a short-enough string. The label part
* is never truncated (so it had better be reasonably short).
*
* The caller is responsible for checking uniqueness of the generated
* name and retrying as needed; retrying will be done by altering the
* "label" string (which is why we never truncate that part).
*/
char *
makeObjectName(const char *name1, const char *name2, const char *label)
{
char *name;
int overhead = 0; /* chars needed for label and underscores */
int availchars; /* chars available for name(s) */
int name1chars; /* chars allocated to name1 */
int name2chars; /* chars allocated to name2 */
int ndx;
name1chars = strlen(name1);
if (name2)
{
name2chars = strlen(name2);
overhead++; /* allow for separating underscore */
}
else
name2chars = 0;
if (label)
overhead += strlen(label) + 1;
availchars = NAMEDATALEN - 1 - overhead;
Assert(availchars > 0); /* else caller chose a bad label */
/*
* If we must truncate, preferentially truncate the longer name. This
* logic could be expressed without a loop, but it's simple and obvious as
* a loop.
*/
while (name1chars + name2chars > availchars)
{
if (name1chars > name2chars)
name1chars--;
else
name2chars--;
}
name1chars = pg_mbcliplen(name1, name1chars, name1chars);
if (name2)
name2chars = pg_mbcliplen(name2, name2chars, name2chars);
/* Now construct the string using the chosen lengths */
name = palloc(name1chars + name2chars + overhead + 1);
memcpy(name, name1, name1chars);
ndx = name1chars;
if (name2)
{
name[ndx++] = '_';
memcpy(name + ndx, name2, name2chars);
ndx += name2chars;
}
if (label)
{
name[ndx++] = '_';
strcpy(name + ndx, label);
}
else
name[ndx] = '\0';
return name;
}
/*
* Select a nonconflicting name for a new relation. This is ordinarily
* used to choose index names (which is why it's here) but it can also
* be used for sequences, or any autogenerated relation kind.
*
* name1, name2, and label are used the same way as for makeObjectName(),
* except that the label can't be NULL; digits will be appended to the label
* if needed to create a name that is unique within the specified namespace.
*
* If isconstraint is true, we also avoid choosing a name matching any
* existing constraint in the same namespace. (This is stricter than what
* Postgres itself requires, but the SQL standard says that constraint names
* should be unique within schemas, so we follow that for autogenerated
* constraint names.)
*
* Note: it is theoretically possible to get a collision anyway, if someone
* else chooses the same name concurrently. This is fairly unlikely to be
* a problem in practice, especially if one is holding an exclusive lock on
* the relation identified by name1. However, if choosing multiple names
* within a single command, you'd better create the new object and do
* CommandCounterIncrement before choosing the next one!
*
* Returns a palloc'd string.
*/
char *
ChooseRelationName(const char *name1, const char *name2,
const char *label, Oid namespaceid,
bool isconstraint)
{
int pass = 0;
char *relname = NULL;
char modlabel[NAMEDATALEN];
/* try the unmodified label first */
strlcpy(modlabel, label, sizeof(modlabel));
for (;;)
{
relname = makeObjectName(name1, name2, modlabel);
if (!OidIsValid(get_relname_relid(relname, namespaceid)))
{
if (!isconstraint ||
!ConstraintNameExists(relname, namespaceid))
break;
}
/* found a conflict, so try a new name component */
pfree(relname);
snprintf(modlabel, sizeof(modlabel), "%s%d", label, ++pass);
}
return relname;
}
/*
* Select the name to be used for an index.
*
* The argument list is pretty ad-hoc :-(
*/
static char *
ChooseIndexName(const char *tabname, Oid namespaceId,
List *colnames, List *exclusionOpNames,
bool primary, bool isconstraint)
{
char *indexname;
if (primary)
{
/* the primary key's name does not depend on the specific column(s) */
indexname = ChooseRelationName(tabname,
NULL,
"pkey",
namespaceId,
true);
}
else if (exclusionOpNames != NIL)
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"excl",
namespaceId,
true);
}
else if (isconstraint)
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"key",
namespaceId,
true);
}
else
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"idx",
namespaceId,
false);
}
return indexname;
}
/*
* Generate "name2" for a new index given the list of column names for it
* (as produced by ChooseIndexColumnNames). This will be passed to
* ChooseRelationName along with the parent table name and a suitable label.
*
* We know that less than NAMEDATALEN characters will actually be used,
* so we can truncate the result once we've generated that many.
*
* XXX See also ChooseForeignKeyConstraintNameAddition and
* ChooseExtendedStatisticNameAddition.
*/
static char *
ChooseIndexNameAddition(List *colnames)
{
char buf[NAMEDATALEN * 2];
int buflen = 0;
ListCell *lc;
buf[0] = '\0';
foreach(lc, colnames)
{
const char *name = (const char *) lfirst(lc);
if (buflen > 0)
buf[buflen++] = '_'; /* insert _ between names */
/*
* At this point we have buflen <= NAMEDATALEN. name should be less
* than NAMEDATALEN already, but use strlcpy for paranoia.
*/
strlcpy(buf + buflen, name, NAMEDATALEN);
buflen += strlen(buf + buflen);
if (buflen >= NAMEDATALEN)
break;
}
return pstrdup(buf);
}
/*
* Select the actual names to be used for the columns of an index, given the
* list of IndexElems for the columns. This is mostly about ensuring the
* names are unique so we don't get a conflicting-attribute-names error.
*
* Returns a List of plain strings (char *, not String nodes).
*/
static List *
ChooseIndexColumnNames(List *indexElems)
{
List *result = NIL;
ListCell *lc;
foreach(lc, indexElems)
{
IndexElem *ielem = (IndexElem *) lfirst(lc);
const char *origname;
const char *curname;
int i;
char buf[NAMEDATALEN];
/* Get the preliminary name from the IndexElem */
if (ielem->indexcolname)
origname = ielem->indexcolname; /* caller-specified name */
else if (ielem->name)
origname = ielem->name; /* simple column reference */
else
origname = "expr"; /* default name for expression */
/* If it conflicts with any previous column, tweak it */
curname = origname;
for (i = 1;; i++)
{
ListCell *lc2;
char nbuf[32];
int nlen;
foreach(lc2, result)
{
if (strcmp(curname, (char *) lfirst(lc2)) == 0)
break;
}
if (lc2 == NULL)
break; /* found nonconflicting name */
sprintf(nbuf, "%d", i);
/* Ensure generated names are shorter than NAMEDATALEN */
nlen = pg_mbcliplen(origname, strlen(origname),
NAMEDATALEN - 1 - strlen(nbuf));
memcpy(buf, origname, nlen);
strcpy(buf + nlen, nbuf);
curname = buf;
}
/* And attach to the result list */
result = lappend(result, pstrdup(curname));
}
return result;
}
/*
* ReindexIndex
* Recreate a specific index.
*/
void
ReindexIndex(RangeVar *indexRelation, int options, bool concurrent)
{
struct ReindexIndexCallbackState state;
Oid indOid;
Relation irel;
char persistence;
/*
* Find and lock index, and check permissions on table; use callback to
* obtain lock on table first, to avoid deadlock hazard. The lock level
* used here must match the index lock obtained in reindex_index().
*
* If it's a temporary index, we will perform a non-concurrent reindex,
* even if CONCURRENTLY was requested. In that case, reindex_index() will
* upgrade the lock, but that's OK, because other sessions can't hold
* locks on our temporary table.
*/
state.concurrent = concurrent;
state.locked_table_oid = InvalidOid;
indOid = RangeVarGetRelidExtended(indexRelation,
concurrent ? ShareUpdateExclusiveLock : AccessExclusiveLock,
0,
RangeVarCallbackForReindexIndex,
&state);
/*
* Obtain the current persistence of the existing index. We already hold
* lock on the index.
*/
irel = index_open(indOid, NoLock);
if (irel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
{
ReindexPartitionedIndex(irel);
return;
}
persistence = irel->rd_rel->relpersistence;
index_close(irel, NoLock);
if (concurrent && persistence != RELPERSISTENCE_TEMP)
ReindexRelationConcurrently(indOid, options);
else
reindex_index(indOid, false, persistence,
options | REINDEXOPT_REPORT_PROGRESS);
}
/*
* Check permissions on table before acquiring relation lock; also lock
* the heap before the RangeVarGetRelidExtended takes the index lock, to avoid
* deadlocks.
*/
static void
RangeVarCallbackForReindexIndex(const RangeVar *relation,
Oid relId, Oid oldRelId, void *arg)
{
char relkind;
struct ReindexIndexCallbackState *state = arg;
LOCKMODE table_lockmode;
/*
* Lock level here should match table lock in reindex_index() for
* non-concurrent case and table locks used by index_concurrently_*() for
* concurrent case.
*/
table_lockmode = state->concurrent ? ShareUpdateExclusiveLock : ShareLock;
/*
* If we previously locked some other index's heap, and the name we're
* looking up no longer refers to that relation, release the now-useless
* lock.
*/
if (relId != oldRelId && OidIsValid(oldRelId))
{
UnlockRelationOid(state->locked_table_oid, table_lockmode);
state->locked_table_oid = InvalidOid;
}
/* If the relation does not exist, there's nothing more to do. */
if (!OidIsValid(relId))
return;
/*
* If the relation does exist, check whether it's an index. But note that
* the relation might have been dropped between the time we did the name
* lookup and now. In that case, there's nothing to do.
*/
relkind = get_rel_relkind(relId);
if (!relkind)
return;
if (relkind != RELKIND_INDEX &&
relkind != RELKIND_PARTITIONED_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not an index", relation->relname)));
/* Check permissions */
if (!pg_class_ownercheck(relId, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_INDEX, relation->relname);
/* Lock heap before index to avoid deadlock. */
if (relId != oldRelId)
{
Oid table_oid = IndexGetRelation(relId, true);
/*
* If the OID isn't valid, it means the index was concurrently
* dropped, which is not a problem for us; just return normally.
*/
if (OidIsValid(table_oid))
{
LockRelationOid(table_oid, table_lockmode);
state->locked_table_oid = table_oid;
}
}
}
/*
* ReindexTable
* Recreate all indexes of a table (and of its toast table, if any)
*/
Oid
ReindexTable(RangeVar *relation, int options, bool concurrent)
{
Oid heapOid;
bool result;
/*
* The lock level used here should match reindex_relation().
*
* If it's a temporary table, we will perform a non-concurrent reindex,
* even if CONCURRENTLY was requested. In that case, reindex_relation()
* will upgrade the lock, but that's OK, because other sessions can't hold
* locks on our temporary table.
*/
heapOid = RangeVarGetRelidExtended(relation,
concurrent ? ShareUpdateExclusiveLock : ShareLock,
0,
RangeVarCallbackOwnsTable, NULL);
if (concurrent && get_rel_persistence(heapOid) != RELPERSISTENCE_TEMP)
{
result = ReindexRelationConcurrently(heapOid, options);
if (!result)
ereport(NOTICE,
(errmsg("table \"%s\" has no indexes that can be reindexed concurrently",
relation->relname)));
}
else
{
result = reindex_relation(heapOid,
REINDEX_REL_PROCESS_TOAST |
REINDEX_REL_CHECK_CONSTRAINTS,
options | REINDEXOPT_REPORT_PROGRESS);
if (!result)
ereport(NOTICE,
(errmsg("table \"%s\" has no indexes to reindex",
relation->relname)));
}
return heapOid;
}
/*
* ReindexMultipleTables
* Recreate indexes of tables selected by objectName/objectKind.
*
* To reduce the probability of deadlocks, each table is reindexed in a
* separate transaction, so we can release the lock on it right away.
* That means this must not be called within a user transaction block!
*/
void
ReindexMultipleTables(const char *objectName, ReindexObjectType objectKind,
int options, bool concurrent)
{
Oid objectOid;
Relation relationRelation;
TableScanDesc scan;
ScanKeyData scan_keys[1];
HeapTuple tuple;
MemoryContext private_context;
MemoryContext old;
List *relids = NIL;
ListCell *l;
int num_keys;
bool concurrent_warning = false;
AssertArg(objectName);
Assert(objectKind == REINDEX_OBJECT_SCHEMA ||
objectKind == REINDEX_OBJECT_SYSTEM ||
objectKind == REINDEX_OBJECT_DATABASE);
if (objectKind == REINDEX_OBJECT_SYSTEM && concurrent)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex system catalogs concurrently")));
/*
* Get OID of object to reindex, being the database currently being used
* by session for a database or for system catalogs, or the schema defined
* by caller. At the same time do permission checks that need different
* processing depending on the object type.
*/
if (objectKind == REINDEX_OBJECT_SCHEMA)
{
objectOid = get_namespace_oid(objectName, false);
if (!pg_namespace_ownercheck(objectOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_SCHEMA,
objectName);
}
else
{
objectOid = MyDatabaseId;
if (strcmp(objectName, get_database_name(objectOid)) != 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("can only reindex the currently open database")));
if (!pg_database_ownercheck(objectOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_DATABASE,
objectName);
}
/*
* Create a memory context that will survive forced transaction commits we
* do below. Since it is a child of PortalContext, it will go away
* eventually even if we suffer an error; there's no need for special
* abort cleanup logic.
*/
private_context = AllocSetContextCreate(PortalContext,
"ReindexMultipleTables",
ALLOCSET_SMALL_SIZES);
/*
* Define the search keys to find the objects to reindex. For a schema, we
* select target relations using relnamespace, something not necessary for
* a database-wide operation.
*/
if (objectKind == REINDEX_OBJECT_SCHEMA)
{
num_keys = 1;
ScanKeyInit(&scan_keys[0],
Anum_pg_class_relnamespace,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(objectOid));
}
else
num_keys = 0;
/*
* Scan pg_class to build a list of the relations we need to reindex.
*
* We only consider plain relations and materialized views here (toast
* rels will be processed indirectly by reindex_relation).
*/
relationRelation = table_open(RelationRelationId, AccessShareLock);
scan = table_beginscan_catalog(relationRelation, num_keys, scan_keys);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
Form_pg_class classtuple = (Form_pg_class) GETSTRUCT(tuple);
Oid relid = classtuple->oid;
/*
* Only regular tables and matviews can have indexes, so ignore any
* other kind of relation.
*
* It is tempting to also consider partitioned tables here, but that
* has the problem that if the children are in the same schema, they
* would be processed twice. Maybe we could have a separate list of
* partitioned tables, and expand that afterwards into relids,
* ignoring any duplicates.
*/
if (classtuple->relkind != RELKIND_RELATION &&
classtuple->relkind != RELKIND_MATVIEW)
continue;
/* Skip temp tables of other backends; we can't reindex them at all */
if (classtuple->relpersistence == RELPERSISTENCE_TEMP &&
!isTempNamespace(classtuple->relnamespace))
continue;
/* Check user/system classification, and optionally skip */
if (objectKind == REINDEX_OBJECT_SYSTEM &&
!IsSystemClass(relid, classtuple))
continue;
/*
* The table can be reindexed if the user is superuser, the table
* owner, or the database/schema owner (but in the latter case, only
* if it's not a shared relation). pg_class_ownercheck includes the
* superuser case, and depending on objectKind we already know that
* the user has permission to run REINDEX on this database or schema
* per the permission checks at the beginning of this routine.
*/
if (classtuple->relisshared &&
!pg_class_ownercheck(relid, GetUserId()))
continue;
/*
* Skip system tables, since index_create() would reject indexing them
* concurrently (and it would likely fail if we tried).
*/
if (concurrent &&
IsCatalogRelationOid(relid))
{
if (!concurrent_warning)
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex system catalogs concurrently, skipping all")));
concurrent_warning = true;
continue;
}
/* Save the list of relation OIDs in private context */
old = MemoryContextSwitchTo(private_context);
/*
* We always want to reindex pg_class first if it's selected to be
* reindexed. This ensures that if there is any corruption in
* pg_class' indexes, they will be fixed before we process any other
* tables. This is critical because reindexing itself will try to
* update pg_class.
*/
if (relid == RelationRelationId)
relids = lcons_oid(relid, relids);
else
relids = lappend_oid(relids, relid);
MemoryContextSwitchTo(old);
}
table_endscan(scan);
table_close(relationRelation, AccessShareLock);
/* Now reindex each rel in a separate transaction */
PopActiveSnapshot();
CommitTransactionCommand();
foreach(l, relids)
{
Oid relid = lfirst_oid(l);
StartTransactionCommand();
/* functions in indexes may want a snapshot set */
PushActiveSnapshot(GetTransactionSnapshot());
/* check if the relation still exists */
if (!SearchSysCacheExists1(RELOID, ObjectIdGetDatum(relid)))
{
PopActiveSnapshot();
CommitTransactionCommand();
continue;
}
if (concurrent && get_rel_persistence(relid) != RELPERSISTENCE_TEMP)
{
(void) ReindexRelationConcurrently(relid,
options |
REINDEXOPT_MISSING_OK);
/* ReindexRelationConcurrently() does the verbose output */
}
else
{
bool result;
result = reindex_relation(relid,
REINDEX_REL_PROCESS_TOAST |
REINDEX_REL_CHECK_CONSTRAINTS,
options |
REINDEXOPT_REPORT_PROGRESS |
REINDEXOPT_MISSING_OK);
if (result && (options & REINDEXOPT_VERBOSE))
ereport(INFO,
(errmsg("table \"%s.%s\" was reindexed",
get_namespace_name(get_rel_namespace(relid)),
get_rel_name(relid))));
PopActiveSnapshot();
}
CommitTransactionCommand();
}
StartTransactionCommand();
MemoryContextDelete(private_context);
}
/*
* ReindexRelationConcurrently - process REINDEX CONCURRENTLY for given
* relation OID
*
* 'relationOid' can either belong to an index, a table or a materialized
* view. For tables and materialized views, all its indexes will be rebuilt,
* excluding invalid indexes and any indexes used in exclusion constraints,
* but including its associated toast table indexes. For indexes, the index
* itself will be rebuilt. If 'relationOid' belongs to a partitioned table
* then we issue a warning to mention these are not yet supported.
*
* The locks taken on parent tables and involved indexes are kept until the
* transaction is committed, at which point a session lock is taken on each
* relation. Both of these protect against concurrent schema changes.
*
* Returns true if any indexes have been rebuilt (including toast table's
* indexes, when relevant), otherwise returns false.
*
* NOTE: This cannot be used on temporary relations. A concurrent build would
* cause issues with ON COMMIT actions triggered by the transactions of the
* concurrent build. Temporary relations are not subject to concurrent
* concerns, so there's no need for the more complicated concurrent build,
* anyway, and a non-concurrent reindex is more efficient.
*/
static bool
ReindexRelationConcurrently(Oid relationOid, int options)
{
List *heapRelationIds = NIL;
List *indexIds = NIL;
List *newIndexIds = NIL;
List *relationLocks = NIL;
List *lockTags = NIL;
ListCell *lc,
*lc2;
MemoryContext private_context;
MemoryContext oldcontext;
char relkind;
char *relationName = NULL;
char *relationNamespace = NULL;
PGRUsage ru0;
/*
* Create a memory context that will survive forced transaction commits we
* do below. Since it is a child of PortalContext, it will go away
* eventually even if we suffer an error; there's no need for special
* abort cleanup logic.
*/
private_context = AllocSetContextCreate(PortalContext,
"ReindexConcurrent",
ALLOCSET_SMALL_SIZES);
if (options & REINDEXOPT_VERBOSE)
{
/* Save data needed by REINDEX VERBOSE in private context */
oldcontext = MemoryContextSwitchTo(private_context);
relationName = get_rel_name(relationOid);
relationNamespace = get_namespace_name(get_rel_namespace(relationOid));
pg_rusage_init(&ru0);
MemoryContextSwitchTo(oldcontext);
}
relkind = get_rel_relkind(relationOid);
/*
* Extract the list of indexes that are going to be rebuilt based on the
* relation Oid given by caller.
*/
switch (relkind)
{
case RELKIND_RELATION:
case RELKIND_MATVIEW:
case RELKIND_TOASTVALUE:
{
/*
* In the case of a relation, find all its indexes including
* toast indexes.
*/
Relation heapRelation;
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Track this relation for session locks */
heapRelationIds = lappend_oid(heapRelationIds, relationOid);
MemoryContextSwitchTo(oldcontext);
if (IsCatalogRelationOid(relationOid))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex system catalogs concurrently")));
/* Open relation to get its indexes */
if ((options & REINDEXOPT_MISSING_OK) != 0)
{
heapRelation = try_table_open(relationOid,
ShareUpdateExclusiveLock);
/* leave if relation does not exist */
if (!heapRelation)
break;
}
else
heapRelation = table_open(relationOid,
ShareUpdateExclusiveLock);
/* Add all the valid indexes of relation to list */
foreach(lc, RelationGetIndexList(heapRelation))
{
Oid cellOid = lfirst_oid(lc);
Relation indexRelation = index_open(cellOid,
ShareUpdateExclusiveLock);
if (!indexRelation->rd_index->indisvalid)
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex invalid index \"%s.%s\" concurrently, skipping",
get_namespace_name(get_rel_namespace(cellOid)),
get_rel_name(cellOid))));
else if (indexRelation->rd_index->indisexclusion)
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex exclusion constraint index \"%s.%s\" concurrently, skipping",
get_namespace_name(get_rel_namespace(cellOid)),
get_rel_name(cellOid))));
else
{
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
indexIds = lappend_oid(indexIds, cellOid);
MemoryContextSwitchTo(oldcontext);
}
index_close(indexRelation, NoLock);
}
/* Also add the toast indexes */
if (OidIsValid(heapRelation->rd_rel->reltoastrelid))
{
Oid toastOid = heapRelation->rd_rel->reltoastrelid;
Relation toastRelation = table_open(toastOid,
ShareUpdateExclusiveLock);
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Track this relation for session locks */
heapRelationIds = lappend_oid(heapRelationIds, toastOid);
MemoryContextSwitchTo(oldcontext);
foreach(lc2, RelationGetIndexList(toastRelation))
{
Oid cellOid = lfirst_oid(lc2);
Relation indexRelation = index_open(cellOid,
ShareUpdateExclusiveLock);
if (!indexRelation->rd_index->indisvalid)
ereport(WARNING,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("cannot reindex invalid index \"%s.%s\" concurrently, skipping",
get_namespace_name(get_rel_namespace(cellOid)),
get_rel_name(cellOid))));
else
{
/*
* Save the list of relation OIDs in private
* context
*/
oldcontext = MemoryContextSwitchTo(private_context);
indexIds = lappend_oid(indexIds, cellOid);
MemoryContextSwitchTo(oldcontext);
}
index_close(indexRelation, NoLock);
}
table_close(toastRelation, NoLock);
}
table_close(heapRelation, NoLock);
break;
}
case RELKIND_INDEX:
{
Oid heapId = IndexGetRelation(relationOid,
(options & REINDEXOPT_MISSING_OK) != 0);
Relation heapRelation;
/* if relation is missing, leave */
if (!OidIsValid(heapId))
break;
if (IsCatalogRelationOid(heapId))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex system catalogs concurrently")));
/*
* Don't allow reindex for an invalid index on TOAST table, as
* if rebuilt it would not be possible to drop it.
*/
if (IsToastNamespace(get_rel_namespace(relationOid)) &&
!get_index_isvalid(relationOid))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex invalid index on TOAST table concurrently")));
/*
* Check if parent relation can be locked and if it exists,
* this needs to be done at this stage as the list of indexes
* to rebuild is not complete yet, and REINDEXOPT_MISSING_OK
* should not be used once all the session locks are taken.
*/
if ((options & REINDEXOPT_MISSING_OK) != 0)
{
heapRelation = try_table_open(heapId,
ShareUpdateExclusiveLock);
/* leave if relation does not exist */
if (!heapRelation)
break;
}
else
heapRelation = table_open(heapId,
ShareUpdateExclusiveLock);
table_close(heapRelation, NoLock);
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Track the heap relation of this index for session locks */
heapRelationIds = list_make1_oid(heapId);
/*
* Save the list of relation OIDs in private context. Note
* that invalid indexes are allowed here.
*/
indexIds = lappend_oid(indexIds, relationOid);
MemoryContextSwitchTo(oldcontext);
break;
}
case RELKIND_PARTITIONED_TABLE:
/* see reindex_relation() */
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"",
get_rel_name(relationOid))));
return false;
default:
/* Return error if type of relation is not supported */
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot reindex this type of relation concurrently")));
break;
}
/*
* Definitely no indexes, so leave. Any checks based on
* REINDEXOPT_MISSING_OK should be done only while the list of indexes to
* work on is built as the session locks taken before this transaction
* commits will make sure that they cannot be dropped by a concurrent
* session until this operation completes.
*/
if (indexIds == NIL)
{
PopActiveSnapshot();
return false;
}
Assert(heapRelationIds != NIL);
/*-----
* Now we have all the indexes we want to process in indexIds.
*
* The phases now are:
*
* 1. create new indexes in the catalog
* 2. build new indexes
* 3. let new indexes catch up with tuples inserted in the meantime
* 4. swap index names
* 5. mark old indexes as dead
* 6. drop old indexes
*
* We process each phase for all indexes before moving to the next phase,
* for efficiency.
*/
/*
* Phase 1 of REINDEX CONCURRENTLY
*
* Create a new index with the same properties as the old one, but it is
* only registered in catalogs and will be built later. Then get session
* locks on all involved tables. See analogous code in DefineIndex() for
* more detailed comments.
*/
foreach(lc, indexIds)
{
char *concurrentName;
Oid indexId = lfirst_oid(lc);
Oid newIndexId;
Relation indexRel;
Relation heapRel;
Relation newIndexRel;
LockRelId *lockrelid;
indexRel = index_open(indexId, ShareUpdateExclusiveLock);
heapRel = table_open(indexRel->rd_index->indrelid,
ShareUpdateExclusiveLock);
/* This function shouldn't be called for temporary relations. */
if (indexRel->rd_rel->relpersistence == RELPERSISTENCE_TEMP)
elog(ERROR, "cannot reindex a temporary table concurrently");
pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
RelationGetRelid(heapRel));
pgstat_progress_update_param(PROGRESS_CREATEIDX_COMMAND,
PROGRESS_CREATEIDX_COMMAND_REINDEX_CONCURRENTLY);
pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
indexId);
pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
indexRel->rd_rel->relam);
/* Choose a temporary relation name for the new index */
concurrentName = ChooseRelationName(get_rel_name(indexId),
NULL,
"ccnew",
get_rel_namespace(indexRel->rd_index->indrelid),
false);
/* Create new index definition based on given index */
newIndexId = index_concurrently_create_copy(heapRel,
indexId,
concurrentName);
/*
* Now open the relation of the new index, a session-level lock is
* also needed on it.
*/
newIndexRel = index_open(newIndexId, ShareUpdateExclusiveLock);
/*
* Save the list of OIDs and locks in private context
*/
oldcontext = MemoryContextSwitchTo(private_context);
newIndexIds = lappend_oid(newIndexIds, newIndexId);
/*
* Save lockrelid to protect each relation from drop then close
* relations. The lockrelid on parent relation is not taken here to
* avoid multiple locks taken on the same relation, instead we rely on
* parentRelationIds built earlier.
*/
lockrelid = palloc(sizeof(*lockrelid));
*lockrelid = indexRel->rd_lockInfo.lockRelId;
relationLocks = lappend(relationLocks, lockrelid);
lockrelid = palloc(sizeof(*lockrelid));
*lockrelid = newIndexRel->rd_lockInfo.lockRelId;
relationLocks = lappend(relationLocks, lockrelid);
MemoryContextSwitchTo(oldcontext);
index_close(indexRel, NoLock);
index_close(newIndexRel, NoLock);
table_close(heapRel, NoLock);
}
/*
* Save the heap lock for following visibility checks with other backends
* might conflict with this session.
*/
foreach(lc, heapRelationIds)
{
Relation heapRelation = table_open(lfirst_oid(lc), ShareUpdateExclusiveLock);
LockRelId *lockrelid;
LOCKTAG *heaplocktag;
/* Save the list of locks in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Add lockrelid of heap relation to the list of locked relations */
lockrelid = palloc(sizeof(*lockrelid));
*lockrelid = heapRelation->rd_lockInfo.lockRelId;
relationLocks = lappend(relationLocks, lockrelid);
heaplocktag = (LOCKTAG *) palloc(sizeof(LOCKTAG));
/* Save the LOCKTAG for this parent relation for the wait phase */
SET_LOCKTAG_RELATION(*heaplocktag, lockrelid->dbId, lockrelid->relId);
lockTags = lappend(lockTags, heaplocktag);
MemoryContextSwitchTo(oldcontext);
/* Close heap relation */
table_close(heapRelation, NoLock);
}
/* Get a session-level lock on each table. */
foreach(lc, relationLocks)
{
LockRelId *lockrelid = (LockRelId *) lfirst(lc);
LockRelationIdForSession(lockrelid, ShareUpdateExclusiveLock);
}
PopActiveSnapshot();
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 2 of REINDEX CONCURRENTLY
*
* Build the new indexes in a separate transaction for each index to avoid
* having open transactions for an unnecessary long time. But before
* doing that, wait until no running transactions could have the table of
* the index open with the old list of indexes. See "phase 2" in
* DefineIndex() for more details.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_1);
WaitForLockersMultiple(lockTags, ShareLock, true);
CommitTransactionCommand();
forboth(lc, indexIds, lc2, newIndexIds)
{
Relation indexRel;
Oid oldIndexId = lfirst_oid(lc);
Oid newIndexId = lfirst_oid(lc2);
Oid heapId;
/* Start new transaction for this index's concurrent build */
StartTransactionCommand();
/*
* Check for user-requested abort. This is inside a transaction so as
* xact.c does not issue a useless WARNING, and ensures that
* session-level locks are cleaned up on abort.
*/
CHECK_FOR_INTERRUPTS();
/* Set ActiveSnapshot since functions in the indexes may need it */
PushActiveSnapshot(GetTransactionSnapshot());
/*
* Index relation has been closed by previous commit, so reopen it to
* get its information.
*/
indexRel = index_open(oldIndexId, ShareUpdateExclusiveLock);
heapId = indexRel->rd_index->indrelid;
index_close(indexRel, NoLock);
/* Perform concurrent build of new index */
index_concurrently_build(heapId, newIndexId);
PopActiveSnapshot();
CommitTransactionCommand();
}
StartTransactionCommand();
/*
* Phase 3 of REINDEX CONCURRENTLY
*
* During this phase the old indexes catch up with any new tuples that
* were created during the previous phase. See "phase 3" in DefineIndex()
* for more details.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_2);
WaitForLockersMultiple(lockTags, ShareLock, true);
CommitTransactionCommand();
foreach(lc, newIndexIds)
{
Oid newIndexId = lfirst_oid(lc);
Oid heapId;
TransactionId limitXmin;
Snapshot snapshot;
StartTransactionCommand();
/*
* Check for user-requested abort. This is inside a transaction so as
* xact.c does not issue a useless WARNING, and ensures that
* session-level locks are cleaned up on abort.
*/
CHECK_FOR_INTERRUPTS();
heapId = IndexGetRelation(newIndexId, false);
/*
* Take the "reference snapshot" that will be used by validate_index()
* to filter candidate tuples.
*/
snapshot = RegisterSnapshot(GetTransactionSnapshot());
PushActiveSnapshot(snapshot);
validate_index(heapId, newIndexId, snapshot);
/*
* We can now do away with our active snapshot, we still need to save
* the xmin limit to wait for older snapshots.
*/
limitXmin = snapshot->xmin;
PopActiveSnapshot();
UnregisterSnapshot(snapshot);
/*
* To ensure no deadlocks, we must commit and start yet another
* transaction, and do our wait before any snapshot has been taken in
* it.
*/
CommitTransactionCommand();
StartTransactionCommand();
/*
* The index is now valid in the sense that it contains all currently
* interesting tuples. But since it might not contain tuples deleted
* just before the reference snap was taken, we have to wait out any
* transactions that might have older snapshots.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_3);
WaitForOlderSnapshots(limitXmin, true);
CommitTransactionCommand();
}
/*
* Phase 4 of REINDEX CONCURRENTLY
*
* Now that the new indexes have been validated, swap each new index with
* its corresponding old index.
*
* We mark the new indexes as valid and the old indexes as not valid at
* the same time to make sure we only get constraint violations from the
* indexes with the correct names.
*/
StartTransactionCommand();
forboth(lc, indexIds, lc2, newIndexIds)
{
char *oldName;
Oid oldIndexId = lfirst_oid(lc);
Oid newIndexId = lfirst_oid(lc2);
Oid heapId;
/*
* Check for user-requested abort. This is inside a transaction so as
* xact.c does not issue a useless WARNING, and ensures that
* session-level locks are cleaned up on abort.
*/
CHECK_FOR_INTERRUPTS();
heapId = IndexGetRelation(oldIndexId, false);
/* Choose a relation name for old index */
oldName = ChooseRelationName(get_rel_name(oldIndexId),
NULL,
"ccold",
get_rel_namespace(heapId),
false);
/*
* Swap old index with the new one. This also marks the new one as
* valid and the old one as not valid.
*/
index_concurrently_swap(newIndexId, oldIndexId, oldName);
/*
* Invalidate the relcache for the table, so that after this commit
* all sessions will refresh any cached plans that might reference the
* index.
*/
CacheInvalidateRelcacheByRelid(heapId);
/*
* CCI here so that subsequent iterations see the oldName in the
* catalog and can choose a nonconflicting name for their oldName.
* Otherwise, this could lead to conflicts if a table has two indexes
* whose names are equal for the first NAMEDATALEN-minus-a-few
* characters.
*/
CommandCounterIncrement();
}
/* Commit this transaction and make index swaps visible */
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 5 of REINDEX CONCURRENTLY
*
* Mark the old indexes as dead. First we must wait until no running
* transaction could be using the index for a query. See also
* index_drop() for more details.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_4);
WaitForLockersMultiple(lockTags, AccessExclusiveLock, true);
foreach(lc, indexIds)
{
Oid oldIndexId = lfirst_oid(lc);
Oid heapId;
/*
* Check for user-requested abort. This is inside a transaction so as
* xact.c does not issue a useless WARNING, and ensures that
* session-level locks are cleaned up on abort.
*/
CHECK_FOR_INTERRUPTS();
heapId = IndexGetRelation(oldIndexId, false);
index_concurrently_set_dead(heapId, oldIndexId);
}
/* Commit this transaction to make the updates visible. */
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 6 of REINDEX CONCURRENTLY
*
* Drop the old indexes.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_4);
WaitForLockersMultiple(lockTags, AccessExclusiveLock, true);
PushActiveSnapshot(GetTransactionSnapshot());
{
ObjectAddresses *objects = new_object_addresses();
foreach(lc, indexIds)
{
Oid oldIndexId = lfirst_oid(lc);
ObjectAddress object;
object.classId = RelationRelationId;
object.objectId = oldIndexId;
object.objectSubId = 0;
add_exact_object_address(&object, objects);
}
/*
* Use PERFORM_DELETION_CONCURRENT_LOCK so that index_drop() uses the
* right lock level.
*/
performMultipleDeletions(objects, DROP_RESTRICT,
PERFORM_DELETION_CONCURRENT_LOCK | PERFORM_DELETION_INTERNAL);
}
PopActiveSnapshot();
CommitTransactionCommand();
/*
* Finally, release the session-level lock on the table.
*/
foreach(lc, relationLocks)
{
LockRelId *lockrelid = (LockRelId *) lfirst(lc);
UnlockRelationIdForSession(lockrelid, ShareUpdateExclusiveLock);
}
/* Start a new transaction to finish process properly */
StartTransactionCommand();
/* Log what we did */
if (options & REINDEXOPT_VERBOSE)
{
if (relkind == RELKIND_INDEX)
ereport(INFO,
(errmsg("index \"%s.%s\" was reindexed",
relationNamespace, relationName),
errdetail("%s.",
pg_rusage_show(&ru0))));
else
{
foreach(lc, newIndexIds)
{
Oid indOid = lfirst_oid(lc);
ereport(INFO,
(errmsg("index \"%s.%s\" was reindexed",
get_namespace_name(get_rel_namespace(indOid)),
get_rel_name(indOid))));
/* Don't show rusage here, since it's not per index. */
}
ereport(INFO,
(errmsg("table \"%s.%s\" was reindexed",
relationNamespace, relationName),
errdetail("%s.",
pg_rusage_show(&ru0))));
}
}
MemoryContextDelete(private_context);
pgstat_progress_end_command();
return true;
}
/*
* ReindexPartitionedIndex
* Reindex each child of the given partitioned index.
*
* Not yet implemented.
*/
static void
ReindexPartitionedIndex(Relation parentIdx)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("REINDEX is not yet implemented for partitioned indexes")));
}
/*
* Insert or delete an appropriate pg_inherits tuple to make the given index
* be a partition of the indicated parent index.
*
* This also corrects the pg_depend information for the affected index.
*/
void
IndexSetParentIndex(Relation partitionIdx, Oid parentOid)
{
Relation pg_inherits;
ScanKeyData key[2];
SysScanDesc scan;
Oid partRelid = RelationGetRelid(partitionIdx);
HeapTuple tuple;
bool fix_dependencies;
/* Make sure this is an index */
Assert(partitionIdx->rd_rel->relkind == RELKIND_INDEX ||
partitionIdx->rd_rel->relkind == RELKIND_PARTITIONED_INDEX);
/*
* Scan pg_inherits for rows linking our index to some parent.
*/
pg_inherits = relation_open(InheritsRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
Anum_pg_inherits_inhrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(partRelid));
ScanKeyInit(&key[1],
Anum_pg_inherits_inhseqno,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum(1));
scan = systable_beginscan(pg_inherits, InheritsRelidSeqnoIndexId, true,
NULL, 2, key);
tuple = systable_getnext(scan);
if (!HeapTupleIsValid(tuple))
{
if (parentOid == InvalidOid)
{
/*
* No pg_inherits row, and no parent wanted: nothing to do in this
* case.
*/
fix_dependencies = false;
}
else
{
Datum values[Natts_pg_inherits];
bool isnull[Natts_pg_inherits];
/*
* No pg_inherits row exists, and we want a parent for this index,
* so insert it.
*/
values[Anum_pg_inherits_inhrelid - 1] = ObjectIdGetDatum(partRelid);
values[Anum_pg_inherits_inhparent - 1] =
ObjectIdGetDatum(parentOid);
values[Anum_pg_inherits_inhseqno - 1] = Int32GetDatum(1);
memset(isnull, false, sizeof(isnull));
tuple = heap_form_tuple(RelationGetDescr(pg_inherits),
values, isnull);
CatalogTupleInsert(pg_inherits, tuple);
fix_dependencies = true;
}
}
else
{
Form_pg_inherits inhForm = (Form_pg_inherits) GETSTRUCT(tuple);
if (parentOid == InvalidOid)
{
/*
* There exists a pg_inherits row, which we want to clear; do so.
*/
CatalogTupleDelete(pg_inherits, &tuple->t_self);
fix_dependencies = true;
}
else
{
/*
* A pg_inherits row exists. If it's the same we want, then we're
* good; if it differs, that amounts to a corrupt catalog and
* should not happen.
*/
if (inhForm->inhparent != parentOid)
{
/* unexpected: we should not get called in this case */
elog(ERROR, "bogus pg_inherit row: inhrelid %u inhparent %u",
inhForm->inhrelid, inhForm->inhparent);
}
/* already in the right state */
fix_dependencies = false;
}
}
/* done with pg_inherits */
systable_endscan(scan);
relation_close(pg_inherits, RowExclusiveLock);
/* set relhassubclass if an index partition has been added to the parent */
if (OidIsValid(parentOid))
SetRelationHasSubclass(parentOid, true);
/* set relispartition correctly on the partition */
update_relispartition(partRelid, OidIsValid(parentOid));
if (fix_dependencies)
{
/*
* Insert/delete pg_depend rows. If setting a parent, add PARTITION
* dependencies on the parent index and the table; if removing a
* parent, delete PARTITION dependencies.
*/
if (OidIsValid(parentOid))
{
ObjectAddress partIdx;
ObjectAddress parentIdx;
ObjectAddress partitionTbl;
ObjectAddressSet(partIdx, RelationRelationId, partRelid);
ObjectAddressSet(parentIdx, RelationRelationId, parentOid);
ObjectAddressSet(partitionTbl, RelationRelationId,
partitionIdx->rd_index->indrelid);
recordDependencyOn(&partIdx, &parentIdx,
DEPENDENCY_PARTITION_PRI);
recordDependencyOn(&partIdx, &partitionTbl,
DEPENDENCY_PARTITION_SEC);
}
else
{
deleteDependencyRecordsForClass(RelationRelationId, partRelid,
RelationRelationId,
DEPENDENCY_PARTITION_PRI);
deleteDependencyRecordsForClass(RelationRelationId, partRelid,
RelationRelationId,
DEPENDENCY_PARTITION_SEC);
}
/* make our updates visible */
CommandCounterIncrement();
}
}
/*
* Subroutine of IndexSetParentIndex to update the relispartition flag of the
* given index to the given value.
*/
static void
update_relispartition(Oid relationId, bool newval)
{
HeapTuple tup;
Relation classRel;
classRel = table_open(RelationRelationId, RowExclusiveLock);
tup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relationId));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for relation %u", relationId);
Assert(((Form_pg_class) GETSTRUCT(tup))->relispartition != newval);
((Form_pg_class) GETSTRUCT(tup))->relispartition = newval;
CatalogTupleUpdate(classRel, &tup->t_self, tup);
heap_freetuple(tup);
table_close(classRel, RowExclusiveLock);
}