postgresql/src/common/jsonapi.c

1131 lines
29 KiB
C

/*-------------------------------------------------------------------------
*
* jsonapi.c
* JSON parser and lexer interfaces
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/common/jsonapi.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/jsonapi.h"
#include "mb/pg_wchar.h"
#ifndef FRONTEND
#include "miscadmin.h"
#endif
/*
* The context of the parser is maintained by the recursive descent
* mechanism, but is passed explicitly to the error reporting routine
* for better diagnostics.
*/
typedef enum /* contexts of JSON parser */
{
JSON_PARSE_VALUE, /* expecting a value */
JSON_PARSE_STRING, /* expecting a string (for a field name) */
JSON_PARSE_ARRAY_START, /* saw '[', expecting value or ']' */
JSON_PARSE_ARRAY_NEXT, /* saw array element, expecting ',' or ']' */
JSON_PARSE_OBJECT_START, /* saw '{', expecting label or '}' */
JSON_PARSE_OBJECT_LABEL, /* saw object label, expecting ':' */
JSON_PARSE_OBJECT_NEXT, /* saw object value, expecting ',' or '}' */
JSON_PARSE_OBJECT_COMMA, /* saw object ',', expecting next label */
JSON_PARSE_END /* saw the end of a document, expect nothing */
} JsonParseContext;
static inline JsonParseErrorType json_lex_string(JsonLexContext *lex);
static inline JsonParseErrorType json_lex_number(JsonLexContext *lex, char *s,
bool *num_err, int *total_len);
static inline JsonParseErrorType parse_scalar(JsonLexContext *lex, JsonSemAction *sem);
static JsonParseErrorType parse_object_field(JsonLexContext *lex, JsonSemAction *sem);
static JsonParseErrorType parse_object(JsonLexContext *lex, JsonSemAction *sem);
static JsonParseErrorType parse_array_element(JsonLexContext *lex, JsonSemAction *sem);
static JsonParseErrorType parse_array(JsonLexContext *lex, JsonSemAction *sem);
static JsonParseErrorType report_parse_error(JsonParseContext ctx, JsonLexContext *lex);
/* the null action object used for pure validation */
JsonSemAction nullSemAction =
{
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL
};
/* Recursive Descent parser support routines */
/*
* lex_peek
*
* what is the current look_ahead token?
*/
static inline JsonTokenType
lex_peek(JsonLexContext *lex)
{
return lex->token_type;
}
/*
* lex_expect
*
* move the lexer to the next token if the current look_ahead token matches
* the parameter token. Otherwise, report an error.
*/
static inline JsonParseErrorType
lex_expect(JsonParseContext ctx, JsonLexContext *lex, JsonTokenType token)
{
if (lex_peek(lex) == token)
return json_lex(lex);
else
return report_parse_error(ctx, lex);
}
/* chars to consider as part of an alphanumeric token */
#define JSON_ALPHANUMERIC_CHAR(c) \
(((c) >= 'a' && (c) <= 'z') || \
((c) >= 'A' && (c) <= 'Z') || \
((c) >= '0' && (c) <= '9') || \
(c) == '_' || \
IS_HIGHBIT_SET(c))
/*
* Utility function to check if a string is a valid JSON number.
*
* str is of length len, and need not be null-terminated.
*/
bool
IsValidJsonNumber(const char *str, int len)
{
bool numeric_error;
int total_len;
JsonLexContext dummy_lex;
if (len <= 0)
return false;
/*
* json_lex_number expects a leading '-' to have been eaten already.
*
* having to cast away the constness of str is ugly, but there's not much
* easy alternative.
*/
if (*str == '-')
{
dummy_lex.input = unconstify(char *, str) + 1;
dummy_lex.input_length = len - 1;
}
else
{
dummy_lex.input = unconstify(char *, str);
dummy_lex.input_length = len;
}
json_lex_number(&dummy_lex, dummy_lex.input, &numeric_error, &total_len);
return (!numeric_error) && (total_len == dummy_lex.input_length);
}
/*
* makeJsonLexContextCstringLen
*
* lex constructor, with or without StringInfo object for de-escaped lexemes.
*
* Without is better as it makes the processing faster, so only make one
* if really required.
*/
JsonLexContext *
makeJsonLexContextCstringLen(char *json, int len, int encoding, bool need_escapes)
{
JsonLexContext *lex = palloc0(sizeof(JsonLexContext));
lex->input = lex->token_terminator = lex->line_start = json;
lex->line_number = 1;
lex->input_length = len;
lex->input_encoding = encoding;
if (need_escapes)
lex->strval = makeStringInfo();
return lex;
}
/*
* pg_parse_json
*
* Publicly visible entry point for the JSON parser.
*
* lex is a lexing context, set up for the json to be processed by calling
* makeJsonLexContext(). sem is a structure of function pointers to semantic
* action routines to be called at appropriate spots during parsing, and a
* pointer to a state object to be passed to those routines.
*/
JsonParseErrorType
pg_parse_json(JsonLexContext *lex, JsonSemAction *sem)
{
JsonTokenType tok;
JsonParseErrorType result;
/* get the initial token */
result = json_lex(lex);
if (result != JSON_SUCCESS)
return result;
tok = lex_peek(lex);
/* parse by recursive descent */
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
result = parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
result = parse_array(lex, sem);
break;
default:
result = parse_scalar(lex, sem); /* json can be a bare scalar */
}
if (result == JSON_SUCCESS)
result = lex_expect(JSON_PARSE_END, lex, JSON_TOKEN_END);
return result;
}
/*
* json_count_array_elements
*
* Returns number of array elements in lex context at start of array token
* until end of array token at same nesting level.
*
* Designed to be called from array_start routines.
*/
JsonParseErrorType
json_count_array_elements(JsonLexContext *lex, int *elements)
{
JsonLexContext copylex;
int count;
JsonParseErrorType result;
/*
* It's safe to do this with a shallow copy because the lexical routines
* don't scribble on the input. They do scribble on the other pointers
* etc, so doing this with a copy makes that safe.
*/
memcpy(&copylex, lex, sizeof(JsonLexContext));
copylex.strval = NULL; /* not interested in values here */
copylex.lex_level++;
count = 0;
result = lex_expect(JSON_PARSE_ARRAY_START, &copylex,
JSON_TOKEN_ARRAY_START);
if (result != JSON_SUCCESS)
return result;
if (lex_peek(&copylex) != JSON_TOKEN_ARRAY_END)
{
while (1)
{
count++;
result = parse_array_element(&copylex, &nullSemAction);
if (result != JSON_SUCCESS)
return result;
if (copylex.token_type != JSON_TOKEN_COMMA)
break;
result = json_lex(&copylex);
if (result != JSON_SUCCESS)
return result;
}
}
result = lex_expect(JSON_PARSE_ARRAY_NEXT, &copylex,
JSON_TOKEN_ARRAY_END);
if (result != JSON_SUCCESS)
return result;
*elements = count;
return JSON_SUCCESS;
}
/*
* Recursive Descent parse routines. There is one for each structural
* element in a json document:
* - scalar (string, number, true, false, null)
* - array ( [ ] )
* - array element
* - object ( { } )
* - object field
*/
static inline JsonParseErrorType
parse_scalar(JsonLexContext *lex, JsonSemAction *sem)
{
char *val = NULL;
json_scalar_action sfunc = sem->scalar;
JsonTokenType tok = lex_peek(lex);
JsonParseErrorType result;
/* a scalar must be a string, a number, true, false, or null */
if (tok != JSON_TOKEN_STRING && tok != JSON_TOKEN_NUMBER &&
tok != JSON_TOKEN_TRUE && tok != JSON_TOKEN_FALSE &&
tok != JSON_TOKEN_NULL)
return report_parse_error(JSON_PARSE_VALUE, lex);
/* if no semantic function, just consume the token */
if (sfunc == NULL)
return json_lex(lex);
/* extract the de-escaped string value, or the raw lexeme */
if (lex_peek(lex) == JSON_TOKEN_STRING)
{
if (lex->strval != NULL)
val = pstrdup(lex->strval->data);
}
else
{
int len = (lex->token_terminator - lex->token_start);
val = palloc(len + 1);
memcpy(val, lex->token_start, len);
val[len] = '\0';
}
/* consume the token */
result = json_lex(lex);
if (result != JSON_SUCCESS)
return result;
/* invoke the callback */
(*sfunc) (sem->semstate, val, tok);
return JSON_SUCCESS;
}
static JsonParseErrorType
parse_object_field(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* An object field is "fieldname" : value where value can be a scalar,
* object or array. Note: in user-facing docs and error messages, we
* generally call a field name a "key".
*/
char *fname = NULL; /* keep compiler quiet */
json_ofield_action ostart = sem->object_field_start;
json_ofield_action oend = sem->object_field_end;
bool isnull;
JsonTokenType tok;
JsonParseErrorType result;
if (lex_peek(lex) != JSON_TOKEN_STRING)
return report_parse_error(JSON_PARSE_STRING, lex);
if ((ostart != NULL || oend != NULL) && lex->strval != NULL)
fname = pstrdup(lex->strval->data);
result = json_lex(lex);
if (result != JSON_SUCCESS)
return result;
result = lex_expect(JSON_PARSE_OBJECT_LABEL, lex, JSON_TOKEN_COLON);
if (result != JSON_SUCCESS)
return result;
tok = lex_peek(lex);
isnull = tok == JSON_TOKEN_NULL;
if (ostart != NULL)
(*ostart) (sem->semstate, fname, isnull);
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
result = parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
result = parse_array(lex, sem);
break;
default:
result = parse_scalar(lex, sem);
}
if (result != JSON_SUCCESS)
return result;
if (oend != NULL)
(*oend) (sem->semstate, fname, isnull);
return JSON_SUCCESS;
}
static JsonParseErrorType
parse_object(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* an object is a possibly empty sequence of object fields, separated by
* commas and surrounded by curly braces.
*/
json_struct_action ostart = sem->object_start;
json_struct_action oend = sem->object_end;
JsonTokenType tok;
JsonParseErrorType result;
#ifndef FRONTEND
check_stack_depth();
#endif
if (ostart != NULL)
(*ostart) (sem->semstate);
/*
* Data inside an object is at a higher nesting level than the object
* itself. Note that we increment this after we call the semantic routine
* for the object start and restore it before we call the routine for the
* object end.
*/
lex->lex_level++;
Assert(lex_peek(lex) == JSON_TOKEN_OBJECT_START);
result = json_lex(lex);
if (result != JSON_SUCCESS)
return result;
tok = lex_peek(lex);
switch (tok)
{
case JSON_TOKEN_STRING:
result = parse_object_field(lex, sem);
while (result == JSON_SUCCESS && lex_peek(lex) == JSON_TOKEN_COMMA)
{
result = json_lex(lex);
if (result != JSON_SUCCESS)
break;
result = parse_object_field(lex, sem);
}
break;
case JSON_TOKEN_OBJECT_END:
break;
default:
/* case of an invalid initial token inside the object */
result = report_parse_error(JSON_PARSE_OBJECT_START, lex);
}
if (result != JSON_SUCCESS)
return result;
result = lex_expect(JSON_PARSE_OBJECT_NEXT, lex, JSON_TOKEN_OBJECT_END);
if (result != JSON_SUCCESS)
return result;
lex->lex_level--;
if (oend != NULL)
(*oend) (sem->semstate);
return JSON_SUCCESS;
}
static JsonParseErrorType
parse_array_element(JsonLexContext *lex, JsonSemAction *sem)
{
json_aelem_action astart = sem->array_element_start;
json_aelem_action aend = sem->array_element_end;
JsonTokenType tok = lex_peek(lex);
JsonParseErrorType result;
bool isnull;
isnull = tok == JSON_TOKEN_NULL;
if (astart != NULL)
(*astart) (sem->semstate, isnull);
/* an array element is any object, array or scalar */
switch (tok)
{
case JSON_TOKEN_OBJECT_START:
result = parse_object(lex, sem);
break;
case JSON_TOKEN_ARRAY_START:
result = parse_array(lex, sem);
break;
default:
result = parse_scalar(lex, sem);
}
if (result != JSON_SUCCESS)
return result;
if (aend != NULL)
(*aend) (sem->semstate, isnull);
return JSON_SUCCESS;
}
static JsonParseErrorType
parse_array(JsonLexContext *lex, JsonSemAction *sem)
{
/*
* an array is a possibly empty sequence of array elements, separated by
* commas and surrounded by square brackets.
*/
json_struct_action astart = sem->array_start;
json_struct_action aend = sem->array_end;
JsonParseErrorType result;
#ifndef FRONTEND
check_stack_depth();
#endif
if (astart != NULL)
(*astart) (sem->semstate);
/*
* Data inside an array is at a higher nesting level than the array
* itself. Note that we increment this after we call the semantic routine
* for the array start and restore it before we call the routine for the
* array end.
*/
lex->lex_level++;
result = lex_expect(JSON_PARSE_ARRAY_START, lex, JSON_TOKEN_ARRAY_START);
if (result == JSON_SUCCESS && lex_peek(lex) != JSON_TOKEN_ARRAY_END)
{
result = parse_array_element(lex, sem);
while (result == JSON_SUCCESS && lex_peek(lex) == JSON_TOKEN_COMMA)
{
result = json_lex(lex);
if (result != JSON_SUCCESS)
break;
result = parse_array_element(lex, sem);
}
}
if (result != JSON_SUCCESS)
return result;
result = lex_expect(JSON_PARSE_ARRAY_NEXT, lex, JSON_TOKEN_ARRAY_END);
if (result != JSON_SUCCESS)
return result;
lex->lex_level--;
if (aend != NULL)
(*aend) (sem->semstate);
return JSON_SUCCESS;
}
/*
* Lex one token from the input stream.
*/
JsonParseErrorType
json_lex(JsonLexContext *lex)
{
char *s;
int len;
JsonParseErrorType result;
/* Skip leading whitespace. */
s = lex->token_terminator;
len = s - lex->input;
while (len < lex->input_length &&
(*s == ' ' || *s == '\t' || *s == '\n' || *s == '\r'))
{
if (*s++ == '\n')
{
++lex->line_number;
lex->line_start = s;
}
len++;
}
lex->token_start = s;
/* Determine token type. */
if (len >= lex->input_length)
{
lex->token_start = NULL;
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s;
lex->token_type = JSON_TOKEN_END;
}
else
{
switch (*s)
{
/* Single-character token, some kind of punctuation mark. */
case '{':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_OBJECT_START;
break;
case '}':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_OBJECT_END;
break;
case '[':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_ARRAY_START;
break;
case ']':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_ARRAY_END;
break;
case ',':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_COMMA;
break;
case ':':
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
lex->token_type = JSON_TOKEN_COLON;
break;
case '"':
/* string */
result = json_lex_string(lex);
if (result != JSON_SUCCESS)
return result;
lex->token_type = JSON_TOKEN_STRING;
break;
case '-':
/* Negative number. */
result = json_lex_number(lex, s + 1, NULL, NULL);
if (result != JSON_SUCCESS)
return result;
lex->token_type = JSON_TOKEN_NUMBER;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/* Positive number. */
result = json_lex_number(lex, s, NULL, NULL);
if (result != JSON_SUCCESS)
return result;
lex->token_type = JSON_TOKEN_NUMBER;
break;
default:
{
char *p;
/*
* We're not dealing with a string, number, legal
* punctuation mark, or end of string. The only legal
* tokens we might find here are true, false, and null,
* but for error reporting purposes we scan until we see a
* non-alphanumeric character. That way, we can report
* the whole word as an unexpected token, rather than just
* some unintuitive prefix thereof.
*/
for (p = s; p - s < lex->input_length - len && JSON_ALPHANUMERIC_CHAR(*p); p++)
/* skip */ ;
/*
* We got some sort of unexpected punctuation or an
* otherwise unexpected character, so just complain about
* that one character.
*/
if (p == s)
{
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
return JSON_INVALID_TOKEN;
}
/*
* We've got a real alphanumeric token here. If it
* happens to be true, false, or null, all is well. If
* not, error out.
*/
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = p;
if (p - s == 4)
{
if (memcmp(s, "true", 4) == 0)
lex->token_type = JSON_TOKEN_TRUE;
else if (memcmp(s, "null", 4) == 0)
lex->token_type = JSON_TOKEN_NULL;
else
return JSON_INVALID_TOKEN;
}
else if (p - s == 5 && memcmp(s, "false", 5) == 0)
lex->token_type = JSON_TOKEN_FALSE;
else
return JSON_INVALID_TOKEN;
}
} /* end of switch */
}
return JSON_SUCCESS;
}
/*
* The next token in the input stream is known to be a string; lex it.
*/
static inline JsonParseErrorType
json_lex_string(JsonLexContext *lex)
{
char *s;
int len;
int hi_surrogate = -1;
if (lex->strval != NULL)
resetStringInfo(lex->strval);
Assert(lex->input_length > 0);
s = lex->token_start;
len = lex->token_start - lex->input;
for (;;)
{
s++;
len++;
/* Premature end of the string. */
if (len >= lex->input_length)
{
lex->token_terminator = s;
return JSON_INVALID_TOKEN;
}
else if (*s == '"')
break;
else if ((unsigned char) *s < 32)
{
/* Per RFC4627, these characters MUST be escaped. */
/* Since *s isn't printable, exclude it from the context string */
lex->token_terminator = s;
return JSON_ESCAPING_REQUIRED;
}
else if (*s == '\\')
{
/* OK, we have an escape character. */
s++;
len++;
if (len >= lex->input_length)
{
lex->token_terminator = s;
return JSON_INVALID_TOKEN;
}
else if (*s == 'u')
{
int i;
int ch = 0;
for (i = 1; i <= 4; i++)
{
s++;
len++;
if (len >= lex->input_length)
{
lex->token_terminator = s;
return JSON_INVALID_TOKEN;
}
else if (*s >= '0' && *s <= '9')
ch = (ch * 16) + (*s - '0');
else if (*s >= 'a' && *s <= 'f')
ch = (ch * 16) + (*s - 'a') + 10;
else if (*s >= 'A' && *s <= 'F')
ch = (ch * 16) + (*s - 'A') + 10;
else
{
lex->token_terminator = s + pg_encoding_mblen_bounded(lex->input_encoding, s);
return JSON_UNICODE_ESCAPE_FORMAT;
}
}
if (lex->strval != NULL)
{
/*
* Combine surrogate pairs.
*/
if (is_utf16_surrogate_first(ch))
{
if (hi_surrogate != -1)
return JSON_UNICODE_HIGH_SURROGATE;
hi_surrogate = ch;
continue;
}
else if (is_utf16_surrogate_second(ch))
{
if (hi_surrogate == -1)
return JSON_UNICODE_LOW_SURROGATE;
ch = surrogate_pair_to_codepoint(hi_surrogate, ch);
hi_surrogate = -1;
}
if (hi_surrogate != -1)
return JSON_UNICODE_LOW_SURROGATE;
/*
* Reject invalid cases. We can't have a value above
* 0xFFFF here (since we only accepted 4 hex digits
* above), so no need to test for out-of-range chars.
*/
if (ch == 0)
{
/* We can't allow this, since our TEXT type doesn't */
return JSON_UNICODE_CODE_POINT_ZERO;
}
/*
* Add the represented character to lex->strval. In the
* backend, we can let pg_unicode_to_server() handle any
* required character set conversion; in frontend, we can
* only deal with trivial conversions.
*
* Note: pg_unicode_to_server() will throw an error for a
* conversion failure, rather than returning a failure
* indication. That seems OK.
*/
#ifndef FRONTEND
{
char cbuf[MAX_UNICODE_EQUIVALENT_STRING + 1];
pg_unicode_to_server(ch, (unsigned char *) cbuf);
appendStringInfoString(lex->strval, cbuf);
}
#else
if (lex->input_encoding == PG_UTF8)
{
/* OK, we can map the code point to UTF8 easily */
char utf8str[5];
int utf8len;
unicode_to_utf8(ch, (unsigned char *) utf8str);
utf8len = pg_utf_mblen((unsigned char *) utf8str);
appendBinaryStringInfo(lex->strval, utf8str, utf8len);
}
else if (ch <= 0x007f)
{
/* The ASCII range is the same in all encodings */
appendStringInfoChar(lex->strval, (char) ch);
}
else
return JSON_UNICODE_HIGH_ESCAPE;
#endif /* FRONTEND */
}
}
else if (lex->strval != NULL)
{
if (hi_surrogate != -1)
return JSON_UNICODE_LOW_SURROGATE;
switch (*s)
{
case '"':
case '\\':
case '/':
appendStringInfoChar(lex->strval, *s);
break;
case 'b':
appendStringInfoChar(lex->strval, '\b');
break;
case 'f':
appendStringInfoChar(lex->strval, '\f');
break;
case 'n':
appendStringInfoChar(lex->strval, '\n');
break;
case 'r':
appendStringInfoChar(lex->strval, '\r');
break;
case 't':
appendStringInfoChar(lex->strval, '\t');
break;
default:
/* Not a valid string escape, so signal error. */
lex->token_start = s;
lex->token_terminator = s + pg_encoding_mblen_bounded(lex->input_encoding, s);
return JSON_ESCAPING_INVALID;
}
}
else if (strchr("\"\\/bfnrt", *s) == NULL)
{
/*
* Simpler processing if we're not bothered about de-escaping
*
* It's very tempting to remove the strchr() call here and
* replace it with a switch statement, but testing so far has
* shown it's not a performance win.
*/
lex->token_start = s;
lex->token_terminator = s + pg_encoding_mblen_bounded(lex->input_encoding, s);
return JSON_ESCAPING_INVALID;
}
}
else if (lex->strval != NULL)
{
if (hi_surrogate != -1)
return JSON_UNICODE_LOW_SURROGATE;
appendStringInfoChar(lex->strval, *s);
}
}
if (hi_surrogate != -1)
return JSON_UNICODE_LOW_SURROGATE;
/* Hooray, we found the end of the string! */
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s + 1;
return JSON_SUCCESS;
}
/*
* The next token in the input stream is known to be a number; lex it.
*
* In JSON, a number consists of four parts:
*
* (1) An optional minus sign ('-').
*
* (2) Either a single '0', or a string of one or more digits that does not
* begin with a '0'.
*
* (3) An optional decimal part, consisting of a period ('.') followed by
* one or more digits. (Note: While this part can be omitted
* completely, it's not OK to have only the decimal point without
* any digits afterwards.)
*
* (4) An optional exponent part, consisting of 'e' or 'E', optionally
* followed by '+' or '-', followed by one or more digits. (Note:
* As with the decimal part, if 'e' or 'E' is present, it must be
* followed by at least one digit.)
*
* The 's' argument to this function points to the ostensible beginning
* of part 2 - i.e. the character after any optional minus sign, or the
* first character of the string if there is none.
*
* If num_err is not NULL, we return an error flag to *num_err rather than
* raising an error for a badly-formed number. Also, if total_len is not NULL
* the distance from lex->input to the token end+1 is returned to *total_len.
*/
static inline JsonParseErrorType
json_lex_number(JsonLexContext *lex, char *s,
bool *num_err, int *total_len)
{
bool error = false;
int len = s - lex->input;
/* Part (1): leading sign indicator. */
/* Caller already did this for us; so do nothing. */
/* Part (2): parse main digit string. */
if (len < lex->input_length && *s == '0')
{
s++;
len++;
}
else if (len < lex->input_length && *s >= '1' && *s <= '9')
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
else
error = true;
/* Part (3): parse optional decimal portion. */
if (len < lex->input_length && *s == '.')
{
s++;
len++;
if (len == lex->input_length || *s < '0' || *s > '9')
error = true;
else
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
}
/* Part (4): parse optional exponent. */
if (len < lex->input_length && (*s == 'e' || *s == 'E'))
{
s++;
len++;
if (len < lex->input_length && (*s == '+' || *s == '-'))
{
s++;
len++;
}
if (len == lex->input_length || *s < '0' || *s > '9')
error = true;
else
{
do
{
s++;
len++;
} while (len < lex->input_length && *s >= '0' && *s <= '9');
}
}
/*
* Check for trailing garbage. As in json_lex(), any alphanumeric stuff
* here should be considered part of the token for error-reporting
* purposes.
*/
for (; len < lex->input_length && JSON_ALPHANUMERIC_CHAR(*s); s++, len++)
error = true;
if (total_len != NULL)
*total_len = len;
if (num_err != NULL)
{
/* let the caller handle any error */
*num_err = error;
}
else
{
/* return token endpoint */
lex->prev_token_terminator = lex->token_terminator;
lex->token_terminator = s;
/* handle error if any */
if (error)
return JSON_INVALID_TOKEN;
}
return JSON_SUCCESS;
}
/*
* Report a parse error.
*
* lex->token_start and lex->token_terminator must identify the current token.
*/
static JsonParseErrorType
report_parse_error(JsonParseContext ctx, JsonLexContext *lex)
{
/* Handle case where the input ended prematurely. */
if (lex->token_start == NULL || lex->token_type == JSON_TOKEN_END)
return JSON_EXPECTED_MORE;
/* Otherwise choose the error type based on the parsing context. */
switch (ctx)
{
case JSON_PARSE_END:
return JSON_EXPECTED_END;
case JSON_PARSE_VALUE:
return JSON_EXPECTED_JSON;
case JSON_PARSE_STRING:
return JSON_EXPECTED_STRING;
case JSON_PARSE_ARRAY_START:
return JSON_EXPECTED_ARRAY_FIRST;
case JSON_PARSE_ARRAY_NEXT:
return JSON_EXPECTED_ARRAY_NEXT;
case JSON_PARSE_OBJECT_START:
return JSON_EXPECTED_OBJECT_FIRST;
case JSON_PARSE_OBJECT_LABEL:
return JSON_EXPECTED_COLON;
case JSON_PARSE_OBJECT_NEXT:
return JSON_EXPECTED_OBJECT_NEXT;
case JSON_PARSE_OBJECT_COMMA:
return JSON_EXPECTED_STRING;
}
/*
* We don't use a default: case, so that the compiler will warn about
* unhandled enum values.
*/
Assert(false);
return JSON_SUCCESS; /* silence stupider compilers */
}
#ifndef FRONTEND
/*
* Extract the current token from a lexing context, for error reporting.
*/
static char *
extract_token(JsonLexContext *lex)
{
int toklen = lex->token_terminator - lex->token_start;
char *token = palloc(toklen + 1);
memcpy(token, lex->token_start, toklen);
token[toklen] = '\0';
return token;
}
/*
* Construct a detail message for a JSON error.
*
* Note that the error message generated by this routine may not be
* palloc'd, making it unsafe for frontend code as there is no way to
* know if this can be safery pfree'd or not.
*/
char *
json_errdetail(JsonParseErrorType error, JsonLexContext *lex)
{
switch (error)
{
case JSON_SUCCESS:
/* fall through to the error code after switch */
break;
case JSON_ESCAPING_INVALID:
return psprintf(_("Escape sequence \"\\%s\" is invalid."),
extract_token(lex));
case JSON_ESCAPING_REQUIRED:
return psprintf(_("Character with value 0x%02x must be escaped."),
(unsigned char) *(lex->token_terminator));
case JSON_EXPECTED_END:
return psprintf(_("Expected end of input, but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_ARRAY_FIRST:
return psprintf(_("Expected array element or \"]\", but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_ARRAY_NEXT:
return psprintf(_("Expected \",\" or \"]\", but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_COLON:
return psprintf(_("Expected \":\", but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_JSON:
return psprintf(_("Expected JSON value, but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_MORE:
return _("The input string ended unexpectedly.");
case JSON_EXPECTED_OBJECT_FIRST:
return psprintf(_("Expected string or \"}\", but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_OBJECT_NEXT:
return psprintf(_("Expected \",\" or \"}\", but found \"%s\"."),
extract_token(lex));
case JSON_EXPECTED_STRING:
return psprintf(_("Expected string, but found \"%s\"."),
extract_token(lex));
case JSON_INVALID_TOKEN:
return psprintf(_("Token \"%s\" is invalid."),
extract_token(lex));
case JSON_UNICODE_CODE_POINT_ZERO:
return _("\\u0000 cannot be converted to text.");
case JSON_UNICODE_ESCAPE_FORMAT:
return _("\"\\u\" must be followed by four hexadecimal digits.");
case JSON_UNICODE_HIGH_ESCAPE:
/* note: this case is only reachable in frontend not backend */
return _("Unicode escape values cannot be used for code point values above 007F when the encoding is not UTF8.");
case JSON_UNICODE_HIGH_SURROGATE:
return _("Unicode high surrogate must not follow a high surrogate.");
case JSON_UNICODE_LOW_SURROGATE:
return _("Unicode low surrogate must follow a high surrogate.");
}
/*
* We don't use a default: case, so that the compiler will warn about
* unhandled enum values. But this needs to be here anyway to cover the
* possibility of an incorrect input.
*/
elog(ERROR, "unexpected json parse error type: %d", (int) error);
return NULL;
}
#endif