postgresql/src/include/funcapi.h
Andres Freund 27e082b0c6 Clean up in the wake of TupleDescGetSlot() removal / 10763358c3.
The previous commit wasn't careful enough to remove all traces of
TupleDescGetSlot().

Besides fixing the oversight of not removing TupleDescGetSlot()'s
declaration, this also removes FuncCallContext->slot. That was
documented to be for use in combination with TupleDescGetSlot(), a
cursory search over extensions finds no users, and there doesn't seem
to be convincing reasons to keep it around. If we later in the v12
release cycle find users, we can re-consider this part of the commit.

Reported-By: Michael Paquier
Discussion: https://postgr.es/m/20180926000413.GC1659@paquier.xyz
2018-09-27 11:38:11 -07:00

339 lines
11 KiB
C

/*-------------------------------------------------------------------------
*
* funcapi.h
* Definitions for functions which return composite type and/or sets
* or work on VARIADIC inputs.
*
* This file must be included by all Postgres modules that either define
* or call FUNCAPI-callable functions or macros.
*
*
* Copyright (c) 2002-2018, PostgreSQL Global Development Group
*
* src/include/funcapi.h
*
*-------------------------------------------------------------------------
*/
#ifndef FUNCAPI_H
#define FUNCAPI_H
#include "fmgr.h"
#include "access/tupdesc.h"
#include "executor/executor.h"
#include "executor/tuptable.h"
/*-------------------------------------------------------------------------
* Support to ease writing Functions returning composite types
*-------------------------------------------------------------------------
*
* This struct holds arrays of individual attribute information
* needed to create a tuple from raw C strings. It also requires
* a copy of the TupleDesc. The information carried here
* is derived from the TupleDesc, but it is stored here to
* avoid redundant cpu cycles on each call to an SRF.
*/
typedef struct AttInMetadata
{
/* full TupleDesc */
TupleDesc tupdesc;
/* array of attribute type input function finfo */
FmgrInfo *attinfuncs;
/* array of attribute type i/o parameter OIDs */
Oid *attioparams;
/* array of attribute typmod */
int32 *atttypmods;
} AttInMetadata;
/*-------------------------------------------------------------------------
* Support struct to ease writing Set Returning Functions (SRFs)
*-------------------------------------------------------------------------
*
* This struct holds function context for Set Returning Functions.
* Use fn_extra to hold a pointer to it across calls
*/
typedef struct FuncCallContext
{
/*
* Number of times we've been called before
*
* call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
* incremented for you every time SRF_RETURN_NEXT() is called.
*/
uint64 call_cntr;
/*
* OPTIONAL maximum number of calls
*
* max_calls is here for convenience only and setting it is optional. If
* not set, you must provide alternative means to know when the function
* is done.
*/
uint64 max_calls;
/*
* OPTIONAL pointer to miscellaneous user-provided context information
*
* user_fctx is for use as a pointer to your own struct to retain
* arbitrary context information between calls of your function.
*/
void *user_fctx;
/*
* OPTIONAL pointer to struct containing attribute type input metadata
*
* attinmeta is for use when returning tuples (i.e. composite data types)
* and is not used when returning base data types. It is only needed if
* you intend to use BuildTupleFromCStrings() to create the return tuple.
*/
AttInMetadata *attinmeta;
/*
* memory context used for structures that must live for multiple calls
*
* multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
* by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
* context for any memory that is to be reused across multiple calls of
* the SRF.
*/
MemoryContext multi_call_memory_ctx;
/*
* OPTIONAL pointer to struct containing tuple description
*
* tuple_desc is for use when returning tuples (i.e. composite data types)
* and is only needed if you are going to build the tuples with
* heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that
* the TupleDesc pointer stored here should usually have been run through
* BlessTupleDesc() first.
*/
TupleDesc tuple_desc;
} FuncCallContext;
/*----------
* Support to ease writing functions returning composite types
*
* External declarations:
* get_call_result_type:
* Given a function's call info record, determine the kind of datatype
* it is supposed to return. If resultTypeId isn't NULL, *resultTypeId
* receives the actual datatype OID (this is mainly useful for scalar
* result types). If resultTupleDesc isn't NULL, *resultTupleDesc
* receives a pointer to a TupleDesc when the result is of a composite
* type, or NULL when it's a scalar result or the rowtype could not be
* determined. NB: the tupledesc should be copied if it is to be
* accessed over a long period.
* get_expr_result_type:
* Given an expression node, return the same info as for
* get_call_result_type. Note: the cases in which rowtypes cannot be
* determined are different from the cases for get_call_result_type.
* get_func_result_type:
* Given only a function's OID, return the same info as for
* get_call_result_type. Note: the cases in which rowtypes cannot be
* determined are different from the cases for get_call_result_type.
* Do *not* use this if you can use one of the others.
*
* See also get_expr_result_tupdesc(), which is a convenient wrapper around
* get_expr_result_type() for use when the caller only cares about
* determinable-rowtype cases.
*----------
*/
/* Type categories for get_call_result_type and siblings */
typedef enum TypeFuncClass
{
TYPEFUNC_SCALAR, /* scalar result type */
TYPEFUNC_COMPOSITE, /* determinable rowtype result */
TYPEFUNC_COMPOSITE_DOMAIN, /* domain over determinable rowtype result */
TYPEFUNC_RECORD, /* indeterminate rowtype result */
TYPEFUNC_OTHER /* bogus type, eg pseudotype */
} TypeFuncClass;
extern TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
Oid *resultTypeId,
TupleDesc *resultTupleDesc);
extern TypeFuncClass get_expr_result_type(Node *expr,
Oid *resultTypeId,
TupleDesc *resultTupleDesc);
extern TypeFuncClass get_func_result_type(Oid functionId,
Oid *resultTypeId,
TupleDesc *resultTupleDesc);
extern TupleDesc get_expr_result_tupdesc(Node *expr, bool noError);
extern bool resolve_polymorphic_argtypes(int numargs, Oid *argtypes,
char *argmodes,
Node *call_expr);
extern int get_func_arg_info(HeapTuple procTup,
Oid **p_argtypes, char ***p_argnames,
char **p_argmodes);
extern int get_func_input_arg_names(Datum proargnames, Datum proargmodes,
char ***arg_names);
extern int get_func_trftypes(HeapTuple procTup, Oid **p_trftypes);
extern char *get_func_result_name(Oid functionId);
extern TupleDesc build_function_result_tupdesc_d(char prokind,
Datum proallargtypes,
Datum proargmodes,
Datum proargnames);
extern TupleDesc build_function_result_tupdesc_t(HeapTuple procTuple);
/*----------
* Support to ease writing functions returning composite types
*
* External declarations:
* TupleDesc BlessTupleDesc(TupleDesc tupdesc) - "Bless" a completed tuple
* descriptor so that it can be used to return properly labeled tuples.
* You need to call this if you are going to use heap_form_tuple directly.
* TupleDescGetAttInMetadata does it for you, however, so no need to call
* it if you call TupleDescGetAttInMetadata.
* AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc) - Build an
* AttInMetadata struct based on the given TupleDesc. AttInMetadata can
* be used in conjunction with C strings to produce a properly formed
* tuple.
* HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values) -
* build a HeapTuple given user data in C string form. values is an array
* of C strings, one for each attribute of the return tuple.
* Datum HeapTupleHeaderGetDatum(HeapTupleHeader tuple) - convert a
* HeapTupleHeader to a Datum.
*
* Macro declarations:
* HeapTupleGetDatum(HeapTuple tuple) - convert a HeapTuple to a Datum.
*
* Obsolete routines and macros:
* TupleDesc RelationNameGetTupleDesc(const char *relname) - Use to get a
* TupleDesc based on a named relation.
* TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases) - Use to get a
* TupleDesc based on a type OID.
* TupleGetDatum(TupleTableSlot *slot, HeapTuple tuple) - get a Datum
* given a tuple and a slot.
*----------
*/
#define HeapTupleGetDatum(tuple) HeapTupleHeaderGetDatum((tuple)->t_data)
/* obsolete version of above */
#define TupleGetDatum(_slot, _tuple) HeapTupleGetDatum(_tuple)
extern TupleDesc RelationNameGetTupleDesc(const char *relname);
extern TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases);
/* from execTuples.c */
extern TupleDesc BlessTupleDesc(TupleDesc tupdesc);
extern AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc);
extern HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values);
extern Datum HeapTupleHeaderGetDatum(HeapTupleHeader tuple);
/*----------
* Support for Set Returning Functions (SRFs)
*
* The basic API for SRFs looks something like:
*
* Datum
* my_Set_Returning_Function(PG_FUNCTION_ARGS)
* {
* FuncCallContext *funcctx;
* Datum result;
* MemoryContext oldcontext;
* <user defined declarations>
*
* if (SRF_IS_FIRSTCALL())
* {
* funcctx = SRF_FIRSTCALL_INIT();
* // switch context when allocating stuff to be used in later calls
* oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
* <user defined code>
* <if returning composite>
* <build TupleDesc, and perhaps AttInMetaData>
* <endif returning composite>
* <user defined code>
* // return to original context when allocating transient memory
* MemoryContextSwitchTo(oldcontext);
* }
* <user defined code>
* funcctx = SRF_PERCALL_SETUP();
* <user defined code>
*
* if (funcctx->call_cntr < funcctx->max_calls)
* {
* <user defined code>
* <obtain result Datum>
* SRF_RETURN_NEXT(funcctx, result);
* }
* else
* SRF_RETURN_DONE(funcctx);
* }
*
*----------
*/
/* from funcapi.c */
extern FuncCallContext *init_MultiFuncCall(PG_FUNCTION_ARGS);
extern FuncCallContext *per_MultiFuncCall(PG_FUNCTION_ARGS);
extern void end_MultiFuncCall(PG_FUNCTION_ARGS, FuncCallContext *funcctx);
#define SRF_IS_FIRSTCALL() (fcinfo->flinfo->fn_extra == NULL)
#define SRF_FIRSTCALL_INIT() init_MultiFuncCall(fcinfo)
#define SRF_PERCALL_SETUP() per_MultiFuncCall(fcinfo)
#define SRF_RETURN_NEXT(_funcctx, _result) \
do { \
ReturnSetInfo *rsi; \
(_funcctx)->call_cntr++; \
rsi = (ReturnSetInfo *) fcinfo->resultinfo; \
rsi->isDone = ExprMultipleResult; \
PG_RETURN_DATUM(_result); \
} while (0)
#define SRF_RETURN_NEXT_NULL(_funcctx) \
do { \
ReturnSetInfo *rsi; \
(_funcctx)->call_cntr++; \
rsi = (ReturnSetInfo *) fcinfo->resultinfo; \
rsi->isDone = ExprMultipleResult; \
PG_RETURN_NULL(); \
} while (0)
#define SRF_RETURN_DONE(_funcctx) \
do { \
ReturnSetInfo *rsi; \
end_MultiFuncCall(fcinfo, _funcctx); \
rsi = (ReturnSetInfo *) fcinfo->resultinfo; \
rsi->isDone = ExprEndResult; \
PG_RETURN_NULL(); \
} while (0)
/*----------
* Support to ease writing of functions dealing with VARIADIC inputs
*----------
*
* This function extracts a set of argument values, types and NULL markers
* for a given input function. This returns a set of data:
* - **values includes the set of Datum values extracted.
* - **types the data type OID for each element.
* - **nulls tracks if an element is NULL.
*
* variadic_start indicates the argument number where the VARIADIC argument
* starts.
* convert_unknown set to true will enforce the conversion of arguments
* with unknown data type to text.
*
* The return result is the number of elements stored, or -1 in the case of
* "VARIADIC NULL".
*/
extern int extract_variadic_args(FunctionCallInfo fcinfo, int variadic_start,
bool convert_unknown, Datum **values,
Oid **types, bool **nulls);
#endif /* FUNCAPI_H */